Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

Größe: px
Ab Seite anzeigen:

Download "Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München"

Transkript

1 Disrete Struturen Wilfried Buchholz Sriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

2 1 Vollständige Indution Wir setzen hier das System Z = {..., 2, 1, 0, 1, 2, 3,...} der ganzen Zahlen und das Rechnen mit diesen Zahlen als beannt voraus. Es sei IN := {0, 1, 2, 3,...} die Menge der nicht-negative ganzen Zahlen. Die Elemente dieser Menge heißen natürliche Zahlen. Im folgenden bezeichen wir mit den Buchstaben i, j,, l, m, n stets natürliche Zahlen. Das Beweisprinzip der vollständigen Indution lautet: A(n 0 ) & n n 0 (A(n) A(n+1)) n n 0 A(n), d.h. um die Aussage n n 0 A(n) zu beweisen, genügt es, folgendes zu zeigen: (I) A(n 0 ) (Indutionsanfang) (II) n n 0 [ A(n) A(n+1) ] (Indutionsschritt oder Schluß von n auf n+1). Die Annahme A(n) in (II) nennt man Indutionsvoraussetzung oder Indutionshypothese (urz IH). Beispiele. (a) Für alle n 5 gilt n 2 < 2 n. (b) Sind a 0 <... < a n natürliche Zahlen, so gilt n a n. Beweis durch (vollständige) Indution nach n: (a) (I) 5 2 = 25 < 32 = 2 5. (II) n 5 & n 2 < 2 n (n + 1) 2 = n 2 + 2n + 1 < n 2 + n 2 < 2 n + 2 n = 2 n+1. (b) (I) 0 a 0. (II) a 0 <... < a n < a n+1 IH n an < a n+1 n+1 a n Satz (Allgemeine Indution). Sei M eine Menge und µ : M IN. Dann gilt fuer jede Aussage A(x): x M[ y M(µ(y) < µ(x) A(y)) A(x)] x MA(x). Ab.: A (n) : y M(µ(y) < n A(y)). Gelte x M[ y M(µ(y) < µ(x) A(y)) A(x)]. Wir zeigen nun na (n) durch Indution nach n. (I) A (0) gilt trivialerweise. Dann: (1) x M(A (µ(x)) A(x)). Mit (1) folgt daraus dann x MA(x). (II) A (n) (1) A (n) & x M(µ(x) = n A(x)) x(µ(x) < n + 1 A(x)), i.e. A (n + 1). Korollar (< IN -Indution). n( < na() A(n)) na(n). Beispiel. Die Folge (a n ) n IN der Fibonacci-Zahlen wird durch folgende Reursionsgleichungen definiert: a 0 := 0, a 1 := 1, a n+2 := a n + a n+1. (a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8,...) Behauptung: n 2 a n+2 ( 3 2 )n. Beweis durch < IN -Indution: Fall 1: n < 2. Trivial. Fall 2: n = 2. a 4 = 3 > 9 4 = ( 3 2 )2. Fall 3: n = 3. a 5 = 5 > 27 8 = ( 3 2 )3. Fall 4: n 4. a n+2 = a n + a n+1 IH ( 3 2 )n 2 + ( 3 2 )n 1 = ( 3 2 )n 2 ( ) > ( 3 2 )n = ( 3 2 )n. 1

3 Definition. n IN heißt Primzahl : 2 n & m, < n(n = m). 1.2 Satz. Jede natürliche Zahl n 2 ann als Produt von Primzahlen dargestellt werden. Beweis durch < IN -Indution: Sei n 2. Fall 1: n Primzahl. Dann fertig. Fall 2: n ist eine Primzahl. Dann existieren m, < n mit n = m. Wegen 2 n gilt 2 m,. Nach IH haben wir Darstellungen m = p 1 p r und = q 1 q s, also n = m = p 1 p r q 1 q s. 1.3 Satz (Prinzip vom leinsten Element). A IN n A A(n ). (Jede nichtleere Menge natürlicher Zahlen besitzt ein Minimum, d.h. leinstes Element.) (1) n[ < n( A n A) n(n A) [< IN -Indution] (2) n(n A) n( < n( A) n A) [logisch äquivalent zu (1)] (3) n(n A) n( < n( A) & n A) [logisch äquivalent zu (2)]. 1.4 Lemma. Jede nach unten (oben) beschränte nichtleere Menge A Z besitzt ein Minimum (Maximum). 1. Sei a A und c eine untere Schrane. Dann ist B := {n : c + n A} = (denn a c B); es existiert also n 0 := min(b). Dann ist c + n 0 = min(a). (x A x c B n 0 x c c + n 0 x.) 2. A nach oben beschränt A = { x : x A} nach unten beschränt Lemma. Seien a, b Z, 1 b. (a) Es existiert genau ein q Z mit bq a < b(q + 1). (b) Es existieren eindeutig q, r Z mit a = bq + r und 0 r < b. (a) Eindeutigeit: bq i a < b(q i + 1) (i = 0, 1) bq 0 a < b(q 1 + 1) & bq 1 a < b(q 0 + 1) q 0 < q & q 1 < q q 0 = q 1. Existenz: Fall 1: 0 a. Sei M := {x Z : xb a}. M ist nicht leer (z.b. ist 0 M) und nach oben beschränt (z.b. durch a). Somit existiert q := max(m). Es folgt bq a < b(q+1). Fall 2: a < { 0. Nach 1. existiert q mit b q a < b( q+1), also b ( q 1) < a b ( q). q falls a = b ( q) Mit q := folgt daraus bq a < b(q + 1). q 1 sonst (b) Sei q wie in (a) und r := a bq. b-adische Darstellung natürlicher Zahlen 1.6 Lemma. Sei b, c i, c i IN und 2 b. (a) 0 c 0,..., c n < b n i=0 c ib i < b n+1. (b) 0 c 0, c 0,..., c n, c n < b & n i=0 c ib i = n i=0 c i bi c i = c i für i = 0,..., n. 2

4 Beweis durch Indution nach n: (a) n i=0 c ib i = n 1 i=0 c ib i IH bzw.( ) n + c n b < b n + c n b n = (1 + c n )b n b n+1. ( ) Im Fall n = 0 ist n 1 i=0 c ib i = 0 < b n. (b) n i=0 c ib i = n i=0 c i bi =: a a = b( n 1 i=0 c i+1b i ) + c 0 & a = b( n 1 i=0 c i+1 bi ) + c 0 c 0 = c 0 & n 1 i=0 c i+1b i = n 1 i=0 c i+1 bi IH c0 = c 0 & c i+1 = c i+1 für i = 0,..., n 1. Lemma 1.5b 1.7 Satz. Seien a, b IN mit 2 b und 0 < a. Dann existiert genau eine Tupel (c n,..., c 0 ) natürlicher Zahlen < b, so daß a = n i=0 c ib i und c n > 0. Man nennt (c n,..., c 0 ) die b-adische Darstellung von a. Die b-adische Darstellung von 0 sei ( ). Existenz: Indution nach a. Nach Lemma 1.5b existieren c 0, a mit a = ba +c 0 und 0 c 0 < b. Wegen 2 b ist 0 a < a. Ist a = 0, so c 0 = a > 0. Andernfalls haben wir nach IH a = n i=0 c i bi mit 0 c i < b und c n > 0. Wir setzen c i+1 := c i und erhalten a = ba +c 0 = b(c nb n +...+c 0b 0 )+c 0 = c n+1 b n c 1 b 1 +c 0 b 0. Eindeutigeit: Ist a = n i=0 c ib i mit 0 c 0,..., c n < b und 0 < c n, so gilt b n a L.1.6a < b n+1. Damit ist n eindeutig bestimmt. Die Eindeutigeit von c 0,..., c n folgt aus L.1.6b. Bezeichnung. D(b; a) bezeichne die b-adische Darstellung von a IN. Ferner sei [ ] b := 0 und [c n,..., c 0 ] b := n c i b i. Bemerung. i=0 Aus dem Beweis von Satz 1.7 erhält man folgende reursive Beschreibung von D(b; a): { ( ) falls a = 0 D(b; a) = D(b; q) (r) falls 0 < a = bq + r mit 0 r < b. Umgeehrt gilt: [c n,..., c 0 ] b := b [c n,..., c 1 ] b + c 0. Beispiele. [5, 4, 3, 2, 1] 7 = 7 [5, 4, 3, 2] 7 +1 = 7(7 [5, 4, 3] 7 +2)+1 = 7(7(7 [5, 4] 7 +3)+2)+1 = 7(7(7(7 [5] 7 +4)+3)+2)+1 = = 7(7(7( ) + 3) + 2) + 1 = 7(7( ) + 2) + 1 = 7( ) + 1 = = Verschiedene Darstellungen von 893: Hexadesimal: 893 = = 16( ) + 13 = 16(16( ) + 7) + 13 = [3, 7, 13] 16. Otal: 893 = = 8( ) + 5 = 8(8( ) + 7) + 5 = 8(8(8( ) + 5) + 7) + 5 = [1, 5, 7, 5] 8. Binär: 893 = , 446 = , 223 = , 111 = , 55 = , 27 = , 13 = , 6 = , 3 = , 1 = Also 893 = [1, 1, 0, 1, 1, 1, 1, 1, 0, 1] 2. 3

5 2 Endliche Mengen; Grundlagen der Kombinatori Abürzungen. 1. Für n IN sei I n := {i IN : i < n} (= {0,..., n 1}) 2. f : X Y : f ist eine Abbildung (Funtion) von X nach Y. 3. f : X Y : f ist eine bijetive Abbildung (Bijetion) von X nach (auf) Y. 4. Y X := Menge aller Abbildungen von X nach Y. 5. P(X) := Menge aller Teilmengen von X (Potenzmenge von X). 2.1 Lemma. Ist f : I m I n injetiv, so m n. Korollar. Aus f : I m I n folgt m = n. Beweis durch Indution nach n: 1. n = 0: Dann auch m = n = n und f(i m ) I n0 : Aus IH folgt m n n = n und f(i m ) I n0 : Dann ist m = m und es existiert ein j m 0 mit f(j) = n j = m 0 : Dann f I m0 : I m0 I n0 injetiv und somit nach IH { m 0 n 0, also auch m n. f(m0 ) falls i = j 3.2. j < m 0 : Dann f(m 0 ) < n 0. Definition g : I m0 I n0, g(i) :=. f(i) sonst Wie man leicht sieht, ist g injetiv und folglich m 0 n 0. Definition. Eine Menge X heißt endlich, wenn es ein n IN und eine Bijetion f : I n X gibt. Dieses (nach Lemma 2.1 eindeutig bestimmte) n heißt Mächtigeit oder Anzahl der Elemente von X und wird mit X bezeichnet. (Eindeutigeit f : X I n & g : X I m f g 1 : I m I n m = n.) Eine Menge X heißt unendlich, wenn sie nicht endlich ist. Für unendliches X sei X :=. Für n IN sei (per Definition) n <. Bemerung. IN ist unendlich. f : IN I n injetiv f I n+1 I n injetiv L.2.1 n+1 n. Widerspruch. Bemerung. = 0, {a} = Lemma. X, Y endlich und X Y = X Y = X + Y. Sei f : X I m und g : Y I n. Definition: h : X Y I m+n, h(z) := h ist offenbar bijetiv, also X Y = m + n = X + Y. { f(z) falls z X m + g(z) falls z Y. 2.3 Lemma. Y I n Y n. Beweis durch Indution nach n: Für n = 0 ist die Behauptung trivial, denn I 0 =. Sei jetzt n = n Fall 1: Y I n0 : Beh. folgt aus IH. Fall 2: Y = Y 0 {n 0 } mit Y 0 I n0 : Y 0 IH n 0 & {n 0 } = 1 Y L.2.2 = Y 0 + {n 0 } n = n. 4

6 2.4 Lemma. (a) f : X Y bijetiv X = Y. (b) f : X Y injetiv X Y. (c) f : X Y f(x) X. (d) X endlich & X Y X < Y. (a) lar. (b) Sei g : Y I n und Z := g(f(x)). Dann g f : X Z I n und folglich X (a) = Z L.2.3 n = Y. (c) Ohne Beschränung der Allgemeinheit önnen wir X = I n, also f : I n Y, annehmen. Offenbar ist dann g : f(i n ) I n, g(x) := min{i < n : f(i) = x} injetiv. Nach (b) gilt deshalb f(i n ) I n. (d) Sei y 0 Y \ X. Dann X < X + 1 = X {y 0 } (b) Y. 2.5 Lemma. Ist X endlich und f : X Y, so gilt: (a) f injetiv f(x) = X. (b) X = Y ( f injetiv f surjetiv ). (a) : f injetiv f : X f(x) bijetiv L.2.4a f(x) = X. : Sei f nicht injetiv. Dann gibt es x 0, x 1 X mit f(x 0 ) = f(x 1 ) und x 0 x 1. Sei X 0 := X \ {x 0 }. Dann X = X und f(x 0 ) = f(x), also f(x) = f(x 0 ) 2.4c X 0 < X. (b) f injetiv (a) f(x) = X X = Y f(x) = Y 2.6 Lemma. Für endliche Mengen X, Y gilt: (a) X Y = X Y. (b) Y X = Y X. (c) P(X) = 2 X. (a) Indution nach X : 1. X = : X Y = = 0 = X Y. 2. X = X 0 {a}: Dann X Y = (X 0 Y ) ({a} Y ) und folglich ( ) f(x) = Y. ( ) f(x) Y und L.2.4c,d. X Y = X 0 Y + {a} Y = X 0 Y + Y = ( X 0 +1) Y = X Y. (b) Indution nach X : 1. X = : Y X = 1 = Y X = X 0 {a}: Die Abbildung Y X0 Y Y X, (f, y) f {(a, y)} ist bijetiv und folglich Y X = Y X0 Y (a) = Y X0 Y IH = Y X0 Y = Y X. { 1 falls x X (c) Für M X sei χ M : X {0, 1}, χ M (x) :=. 0 sonst Dann ist die Abbildung P(X) {0, 1} X, M χ M bijetiv und folglich gilt P(X) = {0, 1} X (b) = 2 X Bemerung. In Verallgemeinerung von 2.2 und 2.6a gilt: (a) Ist X die disjunte Vereinigung der Mengen X 1,..., X n, so ist X = X X n. (b) X 1... X n = X 1... X n. 5

7 Definitionen. 0! := 1, (n+1)! := n! (n+1); P (X) := {Y P(X) : Y = }. 2.7 Lemma. ( ) ( ) ( n n 1 n 1 (a) = + 1 ( n (b) P (X) = ( ) n n (c) = 2 n. =0 ), falls n = X. ( ) n n! =!(n )! ), falls 0 <, n., falls n; für > n sei ( ) ( ) n n Bemerung. = für n. n ( ) n = 0. (a) 1. = n: ( ) ( n n = 1 = n 1 ) ( n 1 + n 1 ) n. 2. > n: ( ) ( n = 0 = n 1 ) ( 1 + n 1 ). (n 1)! 3. 0 < < n: ( 1)!(n 1 ( 1))! + (n 1)! (n 1)! + (n 1)!(n ) = = n!!(n 1 )!!(n )!!(n )!. (b) Indution nach n: 1. n = 0 oder = 0: lar < n, : Dann X = X 0 {a} mit X 0 = n 1. Ferner P (X) = P (X 0 ) M mit M := {Y {a} : Y P 1 (X 0 )}. Somit P (X) = P (X 0 ) + M = P (X 0 ) + P 1 (X 0 ) IH = ( ) ( n 1 + n 1 1 ) (a) = ( n ). (c) Sei X = {1,..., n}. Offenbar ist P(X) die disjunte Vereinigung der Mengen P (X) ( = 0,..., n). Daraus folgt n =0 P (X) = P(X) und weiter (mit (b) und 2.6c) die Behauptung. n ( ) n 2.8 Lemma (Binomischer Satz). (x + y) n = x n y, für alle x, y R und n IN. Beweis durch Indution nach n: I. n = 0: (x + y) 0 = 1 = ( ) 0 0 x 0 y 0 = 0 i=0 =0 ( 0 ) x 0 y. II. (x + y) n+1 = (x + y) (x + y) n IH = (x + y) n ( n ) x n y = n ( n ) x n+1 y + n n =0 ( n ) x n+1 y + n+1 x n+1 + n =1 ( n+1 Abürzungen. =1 ( n 1 ) x n+1 y = x n+1 + n ) x n+1 y + y n+1 = n+1 =0 ( n+1 =0 [ (n =1 ) x n+1 y. =0 ) ( + n 1) ] x n+1 y + y n+1 = =0 ( n ) x n y +1 = Bij(X, Y ) (bzw. Inj(X, Y ) bzw. Surj(X, Y )) bezeichne die Menge aller bijetiven (bzw. injetiven bzw. surjetiven) Abbildungen von X nach Y. S(X) := Bij(X, X) nennt man die symmetrische Gruppe der Menge X. Schließlich sei S n := S({1,..., n}). Die Elemente von S n nennt man Permutationen der Zahlen 1,..., n. 2.9 Lemma. (a) X = Y = n Bij(X, Y ) = n!. (b) m = X Y = n Inj(X, Y ) = n! = n (n 1) (n 2) (n m + 1). (n m)! 6

8 (a) Indution nach n: 1. n = 0: Bij(X, Y ) = 1 = 0!. 2. n > 0: Sei a X und F y := {f Bij(X, Y ) : f(a) = y}. Offenbar ist Bij(X, Y ) die disjunte Vereiningung aller F y (y Y ). Ferner gilt F y = Bij(X \ {a}, Y \ {y}) IH = (n 1)!. Folglich Bij(X, Y ) = y Y F y = (n 1)! n = n!. (b) Offenbar ist Inj(X, Y ) die disjunte Vereinigung aller Mengen Bij(X, Z) (Z P m (Y )), und folglich Inj(X, Y ) = ( ) (a)+l.2.7b n n! Z P m(y ) Bij(X, Z) = m! = m (n m)!. Beispiel. Auf einer Party, auf der mindestens 23 Personen sind, ist die Chance, dass davon zwei Personen am gleichen Tag Geburtstag haben, größer als die, daß es eine Geburtstagspaare gibt. Sei X := {1,..., m}, Y := {1,..., n}. (m = 23, n = 365) Y X \ Inj(X, Y ) Y X = Y X Inj(X, Y ) Y X = 1 n (n 1) (n m + 1) = n m Beispiel. Wieviele Möglicheiten gibt es, aus einer Menge von n Kugeln m Kugeln (genauer, m mal eine Kugel) zu ziehen, wobei folgende vier Versionen unterschieden werden? 1. Ziehen ohne Zurüclegen, Reihenfolge nicht relevant: Ziehung = m-elementige Teilmenge von {1,..., n}. 3. Ziehen ohne Zurüclegen, Reihenfolge relevant: Zahl der möglichen Ziehungen: ( n m). Ziehung = Injetion von {1,..., m} nach {1,..., n}. Zahl der möglichen Ziehungen: n! (n m)!. 3. Ziehen mit Zurüclegen, Reihenfolge relevant: Ziehung = m-tupel aus {1,..., n} (d.h. Element von {1,..., n} m ). Zahl der möglichen Ziehungen: n m. 4. Ziehen mit Zurüclegen, Reihenfolge nicht relevant: Eine Ziehung ist ein m-tupel von Elementen aus {1,..., n}, wobei es nicht auf die Reihenfolge anommt. Die möglichen Ziehungen entsprechen deshalb den Elementen von Z m,n := {( 1,..., m ) : m n}. Bestimmung von Z m,n Definition: Φ : Z m,n P m ({2,..., n+m}), Φ( 1,..., m ) = { i + i : i = 1,..., m}. Φ ist bijetiv, folglich Z m,n = P m ({2,..., n+m}) = ( ) n+m 1 m. Beweis von Φ surjetiv : Sei X P m ({2,..., n+m}). Dann existiert 1 <... < m mit X = { 1,..., m}. Sei i := i i. Dann m n und Φ( 1,..., m ) = X. Beweis von Φ injetiv : Seien ( 1,..., m ) (l 1,..., l m ) Elemente von Z m,n. Dann existiert ein j {1,..., m} mit j l j und i = l i für 1 i < j. O.E.d.A. j < l j. Es folgt j + j Φ( 1,..., m ) \ Φ(l 1,..., l m ) und somit Φ( 1,..., m ) Φ(l 1,..., l m ). 7

9 3 Teilbareit in Z Vereinbarung. Die Buchstaben a, b, c, d, q, p, x, y, z bezeichnen im folgenden stets ganze Zahlen (d.h. Elemente von Z). x bezeichnet den Absolutbetrag von x. IN 1 := {n IN : 1 n}. Definition. b a : x Z(xb = a) (b teilt a, b ist Teiler von a) Folgerungen. (a) c b & b a c a (b) c a & c b c xa + yb (c) c 0 (b a bc ac) (d) b a b a b a (e) a 0 und 1 a (f) (0 a a = 0) und (a 1 a { 1, 1}) (g) b a & 1 a b a (h) b a & a 0 1 b a (i) (j) b a & a b a = b 1( a b) a = b Definition Eine Teilmenge a von Z heißt Ideal in Z, wenn gilt: (i) (ii) 0 a a, b a a + b a (iii) x Z & a a xa a z.b. sind {0} und Z Ideale, ebenso Za := {xa : x Z} (für a Z), allgemeiner Za Za n := { n i=1 x ia i : x 1,..., x n Z} (für a 1,..., a n Z). Bemerung. b a a Zb Za Zb. 3.1 Satz (Z ist Hauptidealring). Zu jedem Ideal a von Z gibt es genau ein a IN mit a = Za. Für a = {0} ist die Behauptung trivial (a = 0). Sei jetzt a {0}. Existenz: Die Menge IN 1 a ist nicht leer [ 0 b a b a ], hat also ein leinstes Element a. Za a: trivial. a Za: y a & y = qa + r mit 0 r < a r a r = 0 y Za. Eindeutigeit: Ist auch a = Za mit a IN 0, so folgt a a & a a, also a = a. Definition (größter gemeinsamer Teiler). Für a 1,..., a n Z (n 1) sei T (a 1,..., a n ) := {b Z : b a 1 &... & b a n } { ggt(a 1,..., a n ) := max T (a1,..., a n ) falls i(a i 0) 0 sonst Bemerung. T (a 1,..., a n ) = T (b 1,..., b m ) ggt(a 1,..., a n ) = ggt(b 1,..., b m ). 8

10 3.2 Lemma. (a) a 1,..., a n Za a T (a 1,..., a n ). (b) a Za Za n T (a 1,..., a n ) T (a). (c) a T (a 1,..., a n ) T (a) T (a 1,..., a n ). (d) Za = Za Za n T (a 1,..., a n ) = T (a). (a) lar (b) a = x 1 a x n a n & b a 1 &... & b a n b a. (c) a a i & b a b a i. (a),(b) (d) Za = Za Za n a 1,..., a n Za & a Za Za n a T (a 1,..., a n ) & T (a 1,..., a n ) T (a) (c) T (a 1,..., a n ) = T (a). 3.3 Lemma. (Darstellung von ggt). Für a 1,..., a n Z und d IN sind äquivalent: (i) d = ggt(a 1,..., a n ) (ii) (iii) d T (a 1,..., a n ) & d Za Za n Zd = Za Za n (iv) T (d) = T (a 1,..., a n ) Nach Satz 3.1 gibt es ein a IN mit Za Za n = Za. Für dieses gilt: ( ) a = ggt(a 1,..., a n ). Beweis von ( ): Im Fall a = 0 ist die Beh. lar. Sei jetzt a > 0. Dann: a 1,..., a n Za a T (a 1,..., a n ); a Za Za n L.3.2b b T (a 1,..., a n )( b a ) b T (a 1,..., a n )(b a). Das Lemma ergibt sich nun wie folgt: (i) ( ) d T (a 1,..., a n ) & d = a (ii) L.3.2a a 1,..., a n Zd & d Za Za n (iii) L.3.2d (iv) (i). 3.4 Lemma. Aus a = qb + c folgt T (a, b) = T (b, c) und weiter ggt(a, b) = ggt(b, c). d T (b, c) & a = qb + c d a. d T (a, b) & c = a qb d c. Eulidischer Algorithmus zur Bestimmung des ggt Seien r 0, r 1 IN \ {0} gegeben. (i) Man berechnet, q 0,..., q 1, r 2,..., r +1 IN, so daß r 1 > r 2 >... > r +1 = 0 und ( n ) r n = q n r n+1 + r n+2 für n = 0,..., 1. (ii) Dann ist ggt(r 0, r 1 ) = r, und durch Elimination von r 2,..., r 1 aus den Gleichungen ( 0 ),..., ( 2 ) erhält man eine Linearombination r = x r 0 + y r Aus ( 0 ),..., ( 1 ) folgt mit 3.4: ggt(r 0, r 1 ) = ggt(r 1, r 2 ) =... = ggt(r 1, r ) = ggt(r, 0) = r. 9

11 2. Durch Indution nach n zeigt man x, y(r = xr n + yr n+1 ): 2.1. Aus ( 2 ) folgt r = r 2 q 2 r 1. ( ) n 2.2. r = x r n+1 + y r n+2 r = x r n+1 + y (r n q n r n+1 ) = y r n + (x yq n ) r n+1. Beispiel: r 0 = 111, r 1 = 39. r n = q n r n+1 + r n+2 r 0 = 111 = r 1 = 39 = r 2 = 33 = r 3 = 6 = r 4 r 5 ggt(111, 39) = 3 = ( 5) 6 = ( 5)( ) = ( 5) = ( 5) ( ) = ( 17) 39 Bemerung. ggt(a 1,..., a n ) = ggt(ggt(a 1,..., a n 1 ), a n ) (n 2). Sei d := ggt(a 1,..., a n 1 ). Dann T (a 1,..., a n ) = T (a 1,..., a n 1 ) T (a n ) L.3.3 = T (d) T (a n ) = T (d, a n ). Bemerung. Aus Lemma 3.3 folgt: ggt(a 1,..., a n ) = 1 1 Za Za n. Definition a 1,..., a n heißen teilerfremd (relativ prim), wenn ggt(a 1,..., a n ) = 1. a 1,..., a n heißen paarweise teilerfremd, wenn ggt(a i, a j ) = 1 für alle i, j {1,..., n} mit i j. 3.5 Lemma. (a) a bc & ggt(a, b) = 1 = a c (b) ggt(a 1, b) =... = ggt(a n, b) = 1 = ggt(a 1... a n, b) = 1. (c) a 1,..., a n paarweise teilerfremd und a i b für i = 1,..., n = a 1... a n b. (a) a bc & xa + yb = 1 a bc & xac + ybc = c a c. (b) Indution nach n: 1. n = 1: trivial. 2. Schritt: i {1,..., n+1}(ggt(a i, b) = 1) i {1,..., n}(ggt(a i, b) = 1) & ggt(a n+1, b) = 1 IH ggt(a 1... a n, b) = 1 & ggt(a n+1, b) = 1 ( ) ggt(a 1... a n+1, b) = 1. ( ) ggt(a, b) = 1 & ggt(c, b) = 1 ggt(ac, b) = 1. xa + yb = 1 & x c + y b = 1 1 = (xa + yb)(x c + y b) = xx ac + (xay + yx c + yby ) b. (c) Indution nach n: 1. n = 1: trivial. 2. Schritt: Vorauss. IH & (b) ( ) a b & c b & ggt(a, c) = 1 ac b. a 1... a n b & a n+1 b & ggt(a 1... a n, a n+1 ) = 1 ( ) a 1... a n+1 b. xa = b & yc = b & x a + y c = 1 b = x ab + y cb = x ayc + y cxa = (x y + y x)ac. Definition P := {n IN : 2 n & m, < n(n = m)} (Menge aller Primzahlen) 10

12 3.6 Lemma. Für alle a 0,..., a Z und p P gilt: (a) a IN & a p = a = 1 oder a = p. (b) p a 0... a = i (p a i ). (a) Sei a IN mit a p. Dann 1 a p und es existiert IN mit a = p. Wäre 1 < a < p, so auch < p und p wäre eine Primzahl. (b) Annahme: p a i für i = 0,...,. Nach (a) gilt dann ggt(a i, p) = 1 für i = 0,...,. Mit Lemma 3.5b folgt daraus ggt(a 0 a, p) = 1, d.h. p a 1 a Definition. Für p P und a Z \ {0} sei v p (a) := max{m IN : p m a}. 3.7 Lemma. Ist a = p n pn mit paarw. verschiedenen Primzahlen p 0,..., p und n 0,..., n IN, so gilt für alle p P: { 0 falls p {p0,..., p v p (a) = } n i falls p = p i {p 0,..., p }. (1) p a i (p = p i & n i > 0) Beweis von : p a 3.6b i ( p p ni i ). p p ni i p p ni i 0 < n i. p p ni i & n i > 0 3.6b 3.6a p p i p = p i. (2) i {0,..., } v pi (a) = n i. o.e. i = 0. p n0 0 a: lar. pn0+1 0 a: Annahme: a = p n0+1 0 c. Dann p n0 0 pn1 1 pn = pn0+1 0 c und somit p n1 1 pn = p 0 c. Mit (1) folgt p 0 {p 1,..., p }. Widerspruch. (3) p {p 0,..., p } (1) p a v p (a) = Lemma. Für alle a, b IN \ {0} gilt: (a) a = b p P( v p (a) = v p (b) ). (b) p P( v p (a b) = v p (a) + v p (b) ). (c) a b p P( v p (a) v p (b) ). (d) p P( v p (ggt(a, b)) = min{v p (a), v p (b)} ). Nach Satz 1.2 gibt es paarweise verschiedene Primzahlen p 0,..., p, sowie n 0,..., n, m 0,..., m IN mit a = p n0 0 pn und b = p m0 0 p m. Nach 3.7 gilt dann v p i (a) = n i und v pi (b) = m i für i = 1,...,, sowie v p (a) = 0 = v p (b) für p {p 0,..., p }. (a) p P(v p (a) = v p (b)) n i = v pi (a) = v pi (b) = m i für i = 1,..., a = b. (b) a b = p n0+m0 0 p n +m und somit (nach 3.7) v pi (a b) = n i + m i = v pi (a) + v pi (b) für i = 1,...,, sowie v p (a b) = 0 = v p (a) + v p (b) für p {p 0,..., p }. (c) : xa = b (b) v p (a) v p (x) + v p (a) = v p (b). : Nach Voraussetzung gilt n i m i für i = 0,...,. Deshalb c := p m0 n p m n IN. Es folgt a c = p m p m = b. 11

13 (d) Sei c := p min(n0,m0) 0... p min(n,m ). Dann v p (c) = min{v p (a), v p (b)} ( ) Es folgt: d a & d b (c) p P(v p (d) v p (a)) & p P(v p (d) v p (b)) p P(v p (d) min{v p (a), v p (b)}) (c)+( ) d c. Also T (a, b) = T (c) und deshalb c = ggt(a, b). Beispiel: n = 360 = , m = 756 = ggt(n, m) = = Satz (Primzahlsatz von Eulid). Es gibt unendlich viele Primzahlen. Für jedes n 2 gibt es eine Primzahl p mit n < p n! + 1, denn sind p 0 <... < p alle Primzahlen n und ist p ein Primteiler von p 0 p +1, folgt p {p 0,..., p }, also p > n, und natürlich ist p p 0 p +1 n!+1. Zusatz: Es gibt beliebig große Lücen in der Primzahlfolge, denn für jedes n 2 ommt unter den Zahlen n! + 2, n! + 3,..., n! + n eine Primzahl vor [ n! + i hat den echten Teiler i ]. 4 Restlassen Definitionen. Sind x 1, x 2 irgendwelche Objete, so bezeichnet (x 1, x 2 ) das (geordnete) Paar mit erster Komponente x 1 und zweiter Komponente x 2. Für Paare (x 1, x 2 ), (y 1, y 2 ) gilt: (x 1, x 2 ) = (y 1, y 2 ) x 1 = y 1 & x 2 = y 2. Für Mengen X 1, X 2 bezeichnet X 1 X 2 die Menge aller geordneten Paare (x 1, x 2 ) mit x 1 X 1 und x 2 X 2, d.h.: X 1 X 2 := {(x 1, x 2 ) : x 1 X 1 & x 2 X 2 } (artesisches Produt). Eine binäre (oder 2-stellige) Relation ist eine Menge von geordneten Paaren. Ist R M M, so nennt man R eine binäre Relation auf M. Schreibweise; Ist R eine binäre Relation, so schreibt man oft Rxy (oder auch xry ) statt (x, y) R Eine binäre Relation R auf der Menge M heißt reflexiv, wenn x M(xRx); antireflexiv, wenn x( xrx); symmetrisch, wenn x, y(xry yrx); transitiv, wenn x, y, z(xry & yrz xrz). Eine Relation R X X heißt Äquivalenzrelation auf M, wenn sie reflexiv, symmetrisch und transitiv ist. Ist R eine Äquivalenzrelation auf M, so sei [x] R := {y M : xry} (Äquivalenzlasse von x M), M/R := {[x] R : x M}. 4.1 Lemma. Ist R eine Äquivalenzrelation auf der Menge M, so gilt: (a) x [x] R ( x M), (b) xrx [x] R = [x ] R [x] R [x ] R ( x, x M), (c) M = x M [x] R. 12

14 (a) x M xrx x [x]. (b) xrx & y [x ] xrx & x Ry xry y [x]. xrx & y [x] x Rx & xry x Ry y [x ]. [x] = [x ] x [x] = [x] [x ]. y [x] [x ] xry & x Ry xry & yrx xrx. (c) folgt aus (a). Vereinbarung. Im folgenden sei stets m 1 und p P. Definitionen. a m b : a b mod m : m a b (a und b sind ongruent modulo m) r m (a) := Rest von a bei Division durch m, [andere (übliche) Notation: a mod m] d.h. r m (a) {0,..., m 1} und q Z(a = mq + r m (a)). [a] m := {y Z : a m y} (Restlasse von a modulo m) a + Zm := {a + x : x Zm}. 4.2 Lemma. (a) r m (a) = r m (b) a m b. (b) m ist eine Äquivalenzrelation auf Z. (c) a + Zm = [a] m. (d) a + Zm = b + Zm a m b. (a) Sei r := r m (a) und r := r m (b). Dann a = mq + r und b = mq + r mit r, r {0,..., m 1}. : r = r a b = (mq + r) (mq + r) = m(q q ). : a m b m a b m m(q q ) + r r m r r r r = 0, denn r r < m. (b) folgt aus (a). (c) y a + Zm x Zm(y = a + x) q(y = a + qm) m y a a m y y [a] m. (d) folgt aus (b), (c) und 4.1b. 4.3 Lemma. (Regeln für das Rechnen modulo m) (a) a i m b i für i = 1,..., n = n i=1 a i m n i=1 b i und n i=1 a i m n i=1 b i (b) a m b = a n m b n. (c) m 1,..., m paarweise teilerfremd und a b mod m j für j = 1,..., = a b mod m 1 m. (d) ac m bc & ggt(m, c) = 1 = a m b. (a) Es reicht, den Fall l = 2 zu betrachten: m b i a i (i = 1, 2) m (b 1 a 1 ) + (b 2 a 2 ) & m (b 1 a 1 )b 2 + a 1 (b 2 a 2 ) m (b 1 + b 2 ) (a 1 +a 2 ) & m b 1 b 2 a 1 a 2. (b) folgt aus (a). (c) m j b a ( j) 3.5c m 1... m b a. (d) m (a b)c & ggt(m, c) = 1 3.5a m a b. 13

15 Folgerung. Ist n = a i 10 i mit 0 a i < 10 für alle i, so gilt: i=0 n a 0 + a a mod 3, n a 0 + a a mod 9, n a 0 a 1 + a 2 mod 11. d.h. n ist genau dann durch 3 (bzw. 9) teilbar, wenn die Summe der Ziffern durch 3 (bzw. 9) teilbar ist; n ist genau dann durch 11 teilbar, wenn die alternierende Summe der Ziffern durch 11 teilbar ist. Für alle i IN ist 10 i 1 mod 3, 10 i 1 mod 9 und 10 i ( 1) i mod 11. Beispiel: Rest von 2 16 bei Division durch 11: 2 4 = (2 4 ) mod 11. Definition. Z/Zm := {[a] m : a Z} (Menge aller Restlassen modulo m) 4.4 Lemma. (a) Z/Zm = {[0] m, [1] m,..., [m 1] m } und Z/Zm = m. (b) Z ist disjunte Vereinigung von [0] m,..., [m 1] m. (a) Für alle a Z gilt r m (a) {0,..., m 1} und m a r m (a), also [a] m = [r m (a)] m. Außerdem [i] m [j] m für alle i, j {0,..., m 1} mit i j. (b) folgt aus 4.2d und 4.1c. Definition ϕ(m) := {a {0,..., m 1} : ggt(a, m) = 1} (Euler-Funtion oder Eulersche ϕ-funtion) 4.5 Lemma. Für p P und n 1 gilt ϕ(p n ) = p n p n 1 = p n 1 (p 1). Für alle a {0,..., p n 1} gilt: ggt(a, p n ) 1 b > 1(b a & b p n ) ( ) p a ( p = a < p n ) < p n ( p = a). Also {a {0,..., p n 1} : ggt(a, p n ) 1} = {p : = 0,..., p n 1 1} = p n 1. ( ) 1 < b & b p n p b. [Bew.: 1 < b & b p n ( q P) q b & b p n q p n q = p p b ] 4.6 Lemma. (a) ggt(a, m) = 1 a (aa m 1). (b) a m b = ggt(a, m) = ggt(b, m). (a) ggt(a, m) = 1 a, q(aa + qm = 1) a (m aa 1) a (aa m 1). (b) m a b x(x a & x m x b & x m) ggt(a, m) = ggt(b, m). Definition. Die Restlassen [x] m mit ggt(x, m) = 1 heißen prime Restlassen modulo m. (Def. sinnvoll wegen L.4.6b) (Z/Zm) := {[x] m : [x] m ist prime Restlasse modulo m} heißt die prime Restlassengruppe modulo m. Bemerung. ϕ(m) = (Z/Zm). Definition. B Z heißt primes Restsystem modulo m, wenn B aus jeder primen Restlasse modulo m genau ein Element enthält, d.h. wenn B durch b [b] m bijetiv auf (Z/Zm) abgebildet wird, d.h. wenn B = {b 1,..., b ϕ(m) } mit i( ggt(b i, m) = 1 ) und i, j(b i m b j i = j). Beispiel. ϕ(12) = 4. {1, 5, 7, 11} und { 5, 1, 13, 17} sind prime Restsysteme modulo

16 4.7 Lemma. Ist {b 1,..., b ϕ(m) } ein primes Restsystem modulo m und gilt ggt(a, m) = 1, so ist auch {ab 1,..., ab ϕ(m) } ein primes Restsystem modulo m. ggt(b i, m) = 1 & ggt(a, m) = 1 3.5b ggt(ab i, m) = 1. ab i m ab j & ggt(a, m) = 1 4.3d b i m b j i = j. 4.8 Satz. (a) (Euler) ggt(a, m) = 1 = a ϕ(m) 1 mod m (b) (Fermat) a p a mod p, insbesondere a p 1 1 mod p falls p a (a) Sei {b 1,..., b ϕ(m) } primes Restsystem. Dann ist auch {ab 1,..., ab ϕ(m) } primes Restsystem, also existiert eine Permutation π mit ab π(i) m b i. Es folgt a ϕ(m) 4.3a b 1 b ϕ(m) = ab π(1) ab π(ϕ(m)) m b 1 b ϕ(m). Aus a ϕ(m) b 1 b ϕ(m) m b 1 b ϕ(m) und ggt(b i, m) = 1 für i = 1,..., ϕ(m) folgt (mit 4.3d) a ϕ(m) m 1. (b) p a ggt(a, p) = Lemma. 4.5 und (a) a p 1 = a ϕ(p) p 1 a p p a. p a p a p a. Sei Z m = {0,..., m 1} mit m = p q, wobei p, q zwei verschiedene Primzahlen. Wie unten gezeigt wird, ist dann ϕ(m) = (p 1) (q 1). Für s IN sei V s : Z m Z m, V s (n) := r m (n s ). (a) (n s ) t m n. (b) V t (V s (n)) = n, falls n Z m. Dann gilt für alle s, t, n IN mit st 1 mod ϕ(m): (a) Da p und q verschiedene Primzahlen sind, genügt es (nach 4.3c), die Kongruenzen (n s ) t p n und (n s ) t q n zu beweisen. Aus Symmetriegründen önnen wir uns auf den Beweis für p beschränen. Im Fall p n ist die Behauptung offenbar richtig, denn wegen st 1 mod ϕ(m) ist st 1 und somit p auch Teiler von (n s ) t. Sei also p ein Teiler von n. Nach 4.8b gilt dann n p 1 1 mod p ( ). Wegen st 1 mod ϕ(m) existiert ein x IN mit st = 1 + x ϕ(m). Es folgt (n s ) t = n st = n 1+x(p 1)(q 1) = n (n p 1 ( ) x(q 1) ) p n. (b) Sei a := V s (n). Dann V t (V s (n)) = V t (a) Def m a t m (n s ) t (a) m n, also V t (V s (n)) = n. Anwendung: RSA-Verfahren. Eine Fatorisierung zufällig gewählter großer Zahlen läßt sich auch mit leistungsfähigen Großrechnern nicht in vernünftiger Zeit durchführen. Auf dieser pratischen Unmöglicheit der Fatorisierung beruht eine gängige Verschlüsselungstechni, nämlich das nach seinen Erfindern Ronald Rivest, Adi Shamir und Leonard Adleman benannte RSA-Verfahren. Dessen Grundidee besteht darin, daß die Verschlüsselung mit Hilfe eines sogenannten öffentlichen Schlüssels einfach durchzuführen ist, jedoch das Entschlüsseln nur bei Verwendung eines geheimen privaten Schlüssels in vernünftiger Zeit möglich ist. Sei m = p q, wobei p q zwei (sehr große) Primzahlen. Man wählt ein s < ϕ(m) mit ggt(ϕ(m), s) = 1. Das Paar (m, s) nennt man den öffentlichen Schlüssel. Aus s und ϕ(m) ann man mit Hilfe des Eulidischen Algorithmus eine Zahl t mit st 1 mod ϕ(m) berechnen (privater Schlüssel). Die Verschlüsselung einer Nachricht n Z m erfolgt durch Anwendung der Funtion V s. Die verschlüsselte Nachricht V s (n) ann dann mit Hilfe des privaten Schlüssels t, d.h. der Funtion V t, wieder entschlüsselt werden (L.4.9). 15

17 Beispiel. p := 53, q := 61, m = 3233, ϕ(m) = Wir wählen s := 1013 mit ggt(ϕ(m), s) = 1 (s ist sogar eine Primzahl). Mit Hilfe des Eulid. Algorithmus erhalten wir 25ϕ(m)+77s = 1. Folglich önnen wir t = 77 als privaten Schlüssel nehmen. Die Nachricht n = 10 wird mittels s = 1013 zu n := r m ( ) = 2189 verschlüsselt. Aus der verschlüsselten Nachricht n erhält man mittels t = 77 wieder n = r m ( ) = Lemma. Sei m = m 1... m mit paarweise teilerfremden m 1,..., m ( 1), und sei q i := m m i = j i m j (i = 1,..., ). Dann gilt: (a) Es gibt y 1,..., y, so daß q i y i 1 mod m i für i = 1,...,. (b) Ist q i y i 1 mod m i für i = 1,...,, so gilt für alle a, b 1,..., b Z: a b i (q i y i ) mod m a b i mod m i für i = 1,...,. i=1 (a) ggt(m i, m j ) = 1 für j i 3.5b ggt(m i, q i ) = 1 4.6a y i (q i y i 1 mod m i ). (b) Sei a 0 := i=1 b i(q i y i ). Wegen q i y i 1 mod m i und q j 0 mod m i für j i gilt dann a 0 j=1 b jq j y j b i q i y i b i mod m i, und es folgt: a a 0 mod m L.4.3c i(a a 0 mod m i ) i(a b i mod m i ). Bemerung. Mit Hilfe von Lemma 4.10 ann man sogenannte simultane Kongruenzen x b i mod m i (i = 1,...,, m 1,..., m paarweise teilerfremd) lösen. Seien z.b. m 1 = 3, m 2 = 7, m 3 = 11. Dann ist m = m 1 m 2 m 3 = 231 und q 1 = m 2 m 3 = 77, q 2 = m 1 m 3 = 33, q 3 = m 1 m 2 = 21. Wir bestimmen y i, so daß 1 q i y i mod m i : y 1 := 2 [denn mod 3], y 2 := 3 [denn mod 7], y 3 := 1 [denn 1 21 ( 1) mod 11]. Daraus ergibt sich q 1 y 1 = 154, q 2 y 2 = 99, q 3 y 3 = 21. Eine Lösung etwa der simultanen Kongruenzen x 1 mod 3, x 2 mod 7, x 6 mod 11 erhält man nach Lemma 4.10 durch 3 i=1 b iq i y i = ( 21) = = = 226. Beispiel (Berechnung von mod 1001) 1001 = , ( 1) mod 7, ( 2) mod 11 [denn mod 11 (L.4.8b)] mod 13 [denn mod 13 (L.4.8b) und mod 13 ] Außerdem gilt: = 143, mod 7, 7 13 = 91, mod 11, 7 11 = 77, mod 13. Mit Lemma 4.10b folgt daraus = mod Satz. Ist m = m 1... m mit paarweise teilerfremden m 1,..., m, so wird durch ψ([x] m ) := ([x] m1,..., [x] m ) eine bijetive Abbildung ψ : Z/Zm Z/Zm 1... Z/Zm Ferner gilt: ψ((z/zm) ) = (Z/Zm 1 )... (Z/Zm ). definiert. Der erste Teil der Behauptung folgt schon aus Lemma Wir beweisen das hier aber nochmal diret. 16

18 1. ψ wohldefiniert: [x] m = [x ] m x m x mi m x mi x ( i) ([x] m1,..., [x] m ) = ([x ] m1,..., [x ] m ). 2. ψ injetiv: ([x] m1,..., [x] m ) = ([x ] m1,..., [x ] m ) x mi x ( i) 3.5c x m x [x] m = [x ] m. 3. Z/Zm = m = Z/Zm 1... Z/Zm = Z/Zm 1... Z/Zm & ψ injetiv L.2.5b 4. ψ((z/zm) ) = (Z/Zm 1 )... (Z/Zm ) gilt wegen: [x] m (Z/Zm) ggt(x, m) = 1 Korollar 1 (Die Euler-Funtion ist multipliativ). ψ surjetiv. 3.5b ggt(x, m i ) = 1 ( i) [x] mi (Z/Zm i ) ( i). ϕ(m 1... m ) = ϕ(m 1 )... ϕ(m ), falls m 1,..., m paarweise teilerfremd. ϕ(m) = (Z/Zm) 4.11 = (Z/Zm 1 )... (Z/Zm ) = ϕ(m 1 )... ϕ(m ). Korollar 2 (Chinesischer Restsatz). Ist m = m 1... m mit paarweise teilerfremden m 1,..., m, so gilt für alle b 1,..., b Z: Das System von Kongruenzen x b i mod m i (i = 1,..., ) besitzt eine modulo m eindeutig bestimmte Lösung a. Mit anderen Worten, es gibt genau eine Restlasse [a] m, so daß a b i mod m i für i = 1,...,. Seien b 1,..., b Z und sei ψ wie Dann ([b 1 ] m1,..., [b ] m ) Z/Zm 1... Z/Zm ; nach 4.11 existiert also genau ein [a] m Z/Zm mit ψ([a] m ) = ([b 1 ] m1,..., [b ] m ), d.h. mit [a] mi = [b i ] mi für i = 1,...,. 17

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Elementare Zahlentheorie II

Elementare Zahlentheorie II Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,

Mehr

Elementare Zahlentheorie II

Elementare Zahlentheorie II Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? FRANZ PAUER, FLORIAN STAMPFER (UNIVERSITÄT INNSBRUCK) 1. Einleitung Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat. Im Lehrplan der Seundarstufe

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

3. Der größte gemeinsame Teiler

3. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Binomische Formel mod p

Binomische Formel mod p Binomische Formel mo p Lemma Binomische Formel mo p Seien a, b Z un p P. Dann gilt (a+b) p a p + b p mo p. Nach Binomischer Formel gilt (a+b) p = p p ) i=0( i a i b p i = a p + b p + p 1( p ) i=1 i a i

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Das RSA-Kryptosystem

Das RSA-Kryptosystem www.mathematik-netz.de Copyright, Page 1 of 12 Das RSA-Kryptosystem Um dieses Dokument verstehen zu können benötigt der Leser nur grundlegende Kenntnisse der Algebra und ein gewisses mathematisches Verständnis.

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2. Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden

Mehr

Elementare Zahlentheorie (Version 1)

Elementare Zahlentheorie (Version 1) Elementare Zahlentheorie (Version (Winter Semester, 2005-6 Zur Notation N ist die Menge der natürlichen Zahlen:, 2, 3, 4, 5,... und so weiter. Z ist die Menge aller ganzen Zahlen:..., 4, 3, 2,, 0,, 2,

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

2011W. Vorlesung im 2011W Institut für Algebra Johannes Kepler Universität Linz

2011W. Vorlesung im 2011W  Institut für Algebra Johannes Kepler Universität Linz und Was ist? Mathematik und Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml und Was ist? Inhalt Was ist? und Was ist? Das ist doch logisch!

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

Zahlentheorie II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers

Zahlentheorie II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie II Thomas Huber Aktualisiert: 1. August 2016 vers. 1.2.1 Inhaltsverzeichnis 1 Kongruenzen I 2 1.1 Denitionen.................................. 2 1.2

Mehr

2 Restklassenringe und Polynomringe

2 Restklassenringe und Polynomringe 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

3. Vorlesung. Arithmetische Theorien.

3. Vorlesung. Arithmetische Theorien. 3. Vorlesung. Arithmetische Theorien. In dieser Vorlesung wollen wir uns mit dem Begriff des Rechnens befassen und zwar mit dem angewandten als auch dem formalen Rechnen. Wir wissen dass die griechischen

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 4 Das Lemma von Bezout Satz 1. (Lemma von Bézout) Jede Menge von ganzen Zahlen a 1,...,a n besitzt einen größten gemeinsamen Teiler

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007.

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007. Zahlentheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 7. September 2007. Inhaltsverzeichnis 1 Einleitung und Grundlagen 4 1.1 Einleitung............................. 4 1.2 Zahlensysteme..........................

Mehr

Skriptum zum Brückenkurs. Mathematik

Skriptum zum Brückenkurs. Mathematik Sriptum zum Brücenurs Mathemati gehalten in den Wintersemestern 008/09, 009/10, 010/11, 011/1, 01/13, 013/14 und in den Sommersemestern 011, 01, 013, 014 von Sven Kosub 11. April 014 Version v6. Inhaltsverzeichnis

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr