Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen"

Transkript

1 Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Addierschaltungen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 1 / 19

2 Addierer für UInt 2 (l) Berechnung von C = A + B meist in UInt 2 (l + 1): (C l 1,..., C 0 ) = (A + B) mod 2 l Höchstwertiges Resultatbit erlaubt Überlauferkennung: C l = 1 A + B 2 l Überlauf. Bei regulärem Aufbau (nicht hardware-minimal) fällt C l ohnehin an. Optionen für die Überlaufbehandlung: C l wird nicht berechnet (irregulärer Hardwareaufbau): zirkuläre Arithmetik. C l wird berechnet, aber ignoriert (regulärer Hardwareaufbau): zirkuläre Arithmetik. Wert von C l wird in ein Flag abgespeichert: Kann für Überlaufarithmetik, Sättigungsarithmetik oder Überlauferkennung in zirkulärer Arithmetik benutzt werden. Zustandsänderung in C l löst Unterbrechung aus: Kann für Überlaufarithmetik, Sättigungsarithmetik oder Überlauferkennung in zirkulärer Arithmetik benutzt werden. Berechnung der Summe in all diesen Fällen zunächst gleich! In Sättigungsarithmetik bewirkt C l = 1 zusätzlich das Setzen von C auf den Wert Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 2 / 19

3 Beispieladditionen in UInt 2 (4) A (1011) 2 = (11) 10 (1011) 2 = (11) 10 B (0011) 2 = (3) 10 (0111) 2 = (7) 10 exakte Arithmetik A + B (01110) 2 = (14) 10 (10010) 2 = (18) 10 Überlaufarithmetik (1110) 2 = (14) 10 undefiniert zirkuläre Arithmetik A 16 B (1110) 2 = (14) 10 (0010) 2 = (2) 10 Sättigungsarithmetik (1110) 2 = (14) 10 (1111) 2 = (15) 10 Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 3 / 19

4 Sättigung der Addition in UInt 2 (l) Multiplexer (Schaltung) Oder-Verknüpfung (Schaltung) Bedingter Sprung (Maschinensprache) Folge arithmetisch/logischer Operationen (Maschinensprache) Bedingte Anweisung (höhere Programmiersprache) Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 4 / 19

5 Grundbausteine: Halbaddierer (HA) und Volladdierer (VA) A + B = 2 C + S A B C S A i + B i + C i = 2 C i+1 + S i A i B i C i C i+1 S i Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 5 / 19

6 Halbaddierer: Eigenschaften A + B = 2 C + S A B C S addiert zwei Eingänge derselben Bitposition (single bit binary adder) liefert 2-Bit-Summe, UInt 2 (1) UInt 2 (1) UInt 2 (2) Ergebnis interpretierbar als Carry-Save-Darstellung der Summe Ausgang S alleine entspricht A 2 B in zirkulärer Arithmetik Wertetabelle durch algebraische Gleichung eindeutig bestimmt verschiedene (aber äquivalente) logische Gleichungen aus der Wertetabelle ableitbar Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 6 / 19

7 Halbaddierer: Implementierungsvarianten Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 7 / 19

8 Volladdierer: Eigenschaften A i + B i + C i = 2 C i+1 + S i A i B i C i C i+1 S i addiert drei Eingänge derselben Bitposition (3-operand single bit binary adder) liefert 2-Bit-Summe, UInt 2 (1) UInt 2 (1) UInt 2 (1) UInt 2 (2) Ergebnis interpretierbar als Carry-Save-Darstellung der Summe Wertetabelle durch algebraische Gleichung eindeutig bestimmt verschiedene (aber äquivalente) logische Gleichungen aus der Wertetabelle ableitbar Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 8 / 19

9 Zeitliche Modellierung eines Volladdierers C i+1 (t) = A i (t 2) B i (t 2) + (A i (t 4) B i (t 4)) C i (t 2) S i (t) = A i (t 4) B i (t 4) C i (t 2) Dabei wird t in Einheiten von t g (eine Gattergrundschaltzeit) gemessen und t and = t or = t g sowie t xor = 2 t g angenommen. Wir setzen t VA = t and + t or zur Beschreibung der Verzögerung auf dem Übertragspfad. Zuordnung der Operanden zu den Eingängen A i, B i, C i nach boolescher Logik beliebig. Minimierung des kritischen Pfads durch Anlegen des zuletzt stabilen Signals an C i. Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 9 / 19

10 Hilfsgrößen der Übertragserzeugung Für die Codierung 0 = false, 1 = true erweisen sich folgende Definitionen als nützlich: G i = A i B i generieren (definitiv Ausgangsübertrag) P i = A i B i propagieren (Eingangsübertrag wird durchgeleitet) T i = A i + B i transferieren ( = G i + P i ) L i = A i B i löschen (definitiv kein Ausgangsübertrag) Genau eines der Prädikate G i, P i oder L i besitzt den Wert true. Genau eines der Prädikate T i oder L i besitzt den Wert true. Wichtig: G i, P i, T i, L i direkt und simultan aus A i und B i, also ohne Kenntnis von C i, berechenbar. Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 10 / 19

11 Implementierungsoptionen für Volladdierer S i = A i B i C i + A i B i C i + A i B i C i + A i B i C i = A i B i C i (3-Bit-XOR) = A i (B i C i ) = (A i B i ) C i = P i C i Formel P i C i akzentuiert die Assimilation der Partialsumme mit dem Eingangsübertrag. C i+1 = A i B i + A i C i + B i C i (3-Bit-Majoritätsfunktion) = A i B i + (A i + B i ) C i = G i + T i C i = A i B i + (A i B i ) C i = G i + P i C i C 0 wird bei der Addition formal identisch Null gesetzt. Formeln S i = P i C i und C i+1 = G i + P i C i zusammen ermöglichen gemeinsame Verwendung des Signals P i. Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 11 / 19

12 Übertragserzeugung aus den Hilfsgrößen C i+1 = G i + P i C i Ripple-Carry-Addierer C i+1 = G i + T i C i Carry-Skip-Addierer Ĉ km = C km + km 1 T i Ĉ km m i=km m C i+1 = L i (G i + P i C i ) Manchester-Addierer C i+1 = G i + P i C i Carry-Completion-Addierer C i+1 = L i + P i C i Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 12 / 19

13 Standardentwurf von CMOS-Schaltungen Zu berechnen sei eine boolesche Funktion y = f (x 1,..., x n). Gesuchte CMOS-Schaltung besitzt NMOS-Netzwerk (N-Netz) und PMOS-Netzwerk (P-Netz). Das N-Netz kann den Ausgang y mit Masse verbinden. Die Transistoren des N-Netzes leiten, wenn am Eingang die Versorgungsspannung anliegt. Das N-Netz implementiert daher eine Funktion y = g(x 1,..., x n). Damit hat g(x 1,..., x n) = f (x 1,..., x n) zu gelten. Das P-Netz kann den Ausgang y mit der Versorgungsspannung verbinden. Die Transistoren leiten, wenn am Eingang Masse anliegt. Das P-Netz implementiert daher eine Funktion y = h(x 1,..., x n). Damit hat h(x 1,..., x n) = f (x 1,..., x n) zu gelten. Ein N-Netz für g = g 1 g 2 wird als Reihenschaltung der Subnetze für g 1 und g 2 realisiert, für g = g 1 g 2 als Parallelschaltung. Ebenso für ein P-Netz mit boolescher Form h. Ein nur aus einer Variablen x i bestehendes N-Netz wird durch einen NMOS-Transistor mit Eingang x i realisiert, ein nur aus einer negierten Variablen x i bestehendes P-Netz durch einen PMOS-Transistor mit Eingang x i. Es folgt, dass die booleschen Formen g und h zueinander dual sind. Beispiel: f (A, B, C) = (A B) C g(a, B, C) = (A B) C, h(a, B, C) = (A B) C Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 13 / 19

14 Volladdierer in CMOS-Standardaufbau (aus N. Reifschneider: CAE-gestützte IC-Entwurfsmethoden, 1998, p. 125) Kaskadierter Aufbau. Nur 24 Transistoren. Ergebnisse S i und C i+1 fallen invertiert an. Wenn nicht negierte Signale gewünscht werden, sind zwei Inverter (vier Transistoren) mehr nötig. Kritischer Pfad für Carry-zu-Carry geht durch zwei Gatter. Kritischer Pfad für Carry-zu-Sum geht durch drei Gatter. C i+1 = A i B i + (A i + B i ) C i S i = A i B i C i + (A i + B i + C i ) C i+1 Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 14 / 19

15 Selbstdualität von XOR und Majoritätsfunktion Die Volladdiererfunktionen S i (3-Bit-XOR) und C i+1 (3-Bit-Majoritätsfunktion) sind selbstdual: S i (A i, B i, C i ) = S i (A i, B i, C i ) C i+1 (A i, B i, C i ) = C i+1 (A i, B i, C i ) Eine Überprüfung ist leicht an Hand der Wertetabelle des Volladdierers möglich. Selbstdualität ist eine seltene Eigenschaft, die zu Optimierungen genutzt werden kann. Aus f (x) = f (x) folgt zum Beispiel g(x) = h(x) für den CMOS-Standardentwurf. Die Selbstdualität impliziert die Inversionseigenschaft des Volladdierers: Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 15 / 19

16 Volladdierer als Mirror Adder Vollständig symmetrischer CMOS-Addierer (mirror adder). Wie zuvor 28 Transistoren. N-Netz nicht dual zu P-Netz. Selbstdualität des Volladdierers ausgenutzt. Zweck: Weniger Transistoren in Reihe, Widerstand reduziert; uniformes Layout. Kritischer Pfad für Carry-zu-Carry geht immer noch durch zwei Gatter. Kritischer Pfad für Carry-zu-Sum geht immer noch durch drei Gatter. Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 16 / 19

17 Transistor-Dimensionierung im Mirror Adder Beschleunigung durch geeignete Dimensionierung der Transistoren. Nur Transistoren im markierten Bereich liegen auf kritischem Pfad. Alle anderen Transistoren sollten klein sein, um getriebene Last zu reduzieren. Dimensionierungsbeispiel in N. Weste, K. Eshraghian: Principles of CMOS VLSI design. Gilt als langsam, auch bei sorgfältiger Optimierung. Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 17 / 19

18 Nicht kompositionale Implementierung des Volladdierers Für seriellen Addierer, Carry-Save-Addierer, etc. ist es sinnvoll, annähernd gleiche Latenzen für Summe und Carry zu haben. 26 Transistoren (plus 6 Transistoren der Inverter für A, B, C). Kritischer Pfad für Carry-zu-Carry und Carry-zu-Sum geht durch zwei Gatter. Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 18 / 19

19 Volladdierer mit Transmissionsgattern Anzahl der Transistoren kann durch Transmissionsgatter verringert werden. 26 Transistoren. Mit Inverter für XNOR nur 24 Transistoren, aber langsamer. Variante mit 18 Pass-Transistoren bekannt! Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 19 / 19

Rechnerarithmetik. Vorlesung im Sommersemester 2008. Eberhard Zehendner. FSU Jena. Thema: Ripple-Carry- und Carry-Skip-Addierer

Rechnerarithmetik. Vorlesung im Sommersemester 2008. Eberhard Zehendner. FSU Jena. Thema: Ripple-Carry- und Carry-Skip-Addierer Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Ripple-Carry- und Carry-Skip-Addierer Eberhard Zehendner (FSU Jena) Rechnerarithmetik Ripple-Carry- und Carry-Skip-Addierer

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Klausur Integrierte Schaltungen 07.03.2013 Hinweise: Beantwortung der Fragen bitte nur auf den Aufgabenbättern! (inkl. Rückseite) Nur vom Assistenten angeheftete und abgezeichnete Zusatzblätter werden

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

Björn Fröhlich Matrikelnummer Dipl. Informatik 3. Fachsemester CMOS-NOR-Gatter

Björn Fröhlich Matrikelnummer Dipl. Informatik 3. Fachsemester CMOS-NOR-Gatter Björn Fröhlich Matrikelnummer 73981 Dipl. Informatik 3. Fachsemester bjoern_froehlich@web.de CMOS-NOR-Gatter Proseminar: Statische CMOS-Schaltungen Prof. Dr. Eberhard Zehendner Institut für Informatik

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Darstellung eines 1-Bit seriellen Addierwerks mit VHDL Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Inhalt: 1. Verwendete Tools 1.1 Simili 3.1 1.2 Tina 2. Vorgehensweise

Mehr

Versuch: D1 Gatter und Flipflops

Versuch: D1 Gatter und Flipflops Versuch: D1 Gatter und Flipflops Vorbemerkung Es ist nicht beabsichtigt, daß Sie einfach eine vorgegebene Versuchsanordnung abarbeiten. Sie sollen die hier angewendeten Zusammenhänge erkennen und verstehen.

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Aufgabe 1 Bipolare Transistoren

Aufgabe 1 Bipolare Transistoren 2 Aufgabe 1 Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b1 T2 i c1 T1 i 2 R 2 i a =0 u e u a U 0 i 1 R

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris VHDL VHDL Akronym für Very High-Speed Integrated Circuit Hardware Description Language

Mehr

1 Einfache diskrete, digitale Verknüpfungen

1 Einfache diskrete, digitale Verknüpfungen 1 Einfache diskrete, digitale Verknüpfungen Mit den drei Grund Gattern UND, ODER und Nicht lassen sich alle anderen Gattertypen realisieren! Q = e 1 e 1.1 AND, UND, Konjunktion 2 Die Konjunktion (lateinisch

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop

Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop 17. September 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Uebersicht Ausgewählte

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Prof. Dr. Franz J. Rammig Paderborn, 2..2001 C. Böke Klausur zur Vorlesung "Grundlagen der technischen Informatik" und "Grundlagen der Rechnerarchitektur" Sommersemester 2001 1. Teil: GTI Der erste Teil

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch Schaltlogik Armin Burgmeier (1347488) Gruppe 15 6. Januar 2008 1 Gatter aus diskreten Bauelementen Es sollen logische Bausteine (Gatter) aus bekannten, elektrischen Bauteilen aufgebaut

Mehr

1. Polyadische Zahlensysteme:

1. Polyadische Zahlensysteme: Wie funktioniert ein Rechner? 1. Polyadische Zahlensysteme: Stellenwertsystem zur Darstellung von natürlichen Zahlen. Basis B Stellenwert b Index i = Stelle B N, B 2 N 0 B 1 b, ( ) i b i Ein nicht polyadisches

Mehr

Asynchrone Schaltungen

Asynchrone Schaltungen Asynchrone Schaltungen Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2013 Asynchrone Schaltungen 1/25 2013/07/18 Asynchrone Schaltungen

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Sucosoft S40 KOP/FBS KOP FBS

Sucosoft S40 KOP/FBS KOP FBS Sucosoft S40 KOP/FBS KOP FBS Grafische Elemente Netzwerke erstellen Netzwerke erstellen Programme werden in KOP durch grafische Elemente dargestellt. Abfrage einer Variable auf den Zustand 1 Abfrage einer

Mehr

JMPCN Sprungbefehl nur ausführen, wenn VKE 0 ist. JMPC Sprungbefehl nur ausführen, wenn VKE 1 ist. JMP Ohne Bedingung zur Sprungmarke wechseln.

JMPCN Sprungbefehl nur ausführen, wenn VKE 0 ist. JMPC Sprungbefehl nur ausführen, wenn VKE 1 ist. JMP Ohne Bedingung zur Sprungmarke wechseln. Grafische Elemente Netzwerke erstellen Netzwerke erstellen Programme werden in KOP durch grafische Elemente dargestellt. Abfrage einer Variable auf den Zustand 1 Abfrage einer Variable auf den Zustand

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Musterlösungen. zu den Übungsaufgaben vom

Musterlösungen. zu den Übungsaufgaben vom GRUNDLAGEN DER DIGITALTECHNIK GD MUSTERLÖSUNGEN ZUM MERKBLATT VOM 2. 2. 07 1 Musterlösungen zu den Übungsaufgaben vom 2. 2. 07 1. Geben Sie an (Skizze, ggf. Funktionserläuterung), wie ein D-Flipflop auf

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 13.4.27 9. 1.3 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal:

Mehr

TU ILMENAU Fak. IA - FG Neuroinformatik & Kognitive Robotik. Vorkurs Informatik September Kurs: I 1. Dr. Klaus Debes.

TU ILMENAU Fak. IA - FG Neuroinformatik & Kognitive Robotik. Vorkurs Informatik September Kurs: I 1. Dr. Klaus Debes. Vorkurs Informatik September 2016 Kurs: I 1 Dr. Klaus Debes klaus.debes@tu-ilmenau.de Tel. 03677-69 27 70, 69 28 58 http://www.tu-ilmenau.de/neurob Teaching Wintersemester Vorkurs Informatik Übersicht

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Michael Walz Gruppe 10 28. Oktober 2007 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Vorwort 3 1 Gatter aus diskreten Bauelementen 3 1.1 AND-Gatter.....................................

Mehr

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),

Mehr

Digitalelektronik. Philipp Fischer. 9. Dezember 2002

Digitalelektronik. Philipp Fischer. 9. Dezember 2002 Digitalelektronik Philipp Fischer 9. Dezember 2002 1 Inhaltsverzeichnis Einfache TTL-Schaltungen 4 EOR-Logik 5 Realisation verschiedener Logiken 5 Addierer 6 Parity-Check 6 Multiplexer 7 Basis Flip-Flop

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Klausur Integrierte Schaltungen 01.07.2014 Hinweise: Beantwortung der Fragen bitte nur auf den Aufgabenbättern! (inkl. Rückseite) Nur vom Assistenten angeheftete und abgezeichnete Zusatzblätter werden

Mehr

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen.

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen. Ziele sind das Arbeiten mit Funktionen und dem Aufzählungstyp (enum), sowie - einfache Verzweigung (if else) - Alternativen switch case - einfache Schleifen (while oder do while) Aufgabe 3: Diese Aufgabe

Mehr

Grundlagen der Technischen Informatik. CMOS-Gatterschaltungen. Kapitel 7.3

Grundlagen der Technischen Informatik. CMOS-Gatterschaltungen. Kapitel 7.3 CMOS-Gatterschaltungen Kapitel 7.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design CMOS: Inverter-Schaltung VDD PMOS V in V out V in V out CL NMOS Der Inverter besteht aus zwei Transistoren,

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Iterative Division, Quadratwurzelberechnung

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Iterative Division, Quadratwurzelberechnung Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Iterative Division, Quadratwurzelberechnung Eberhard Zehendner (FSU Jena) Rechnerarithmetik Iterative Division, Quadratwurzel

Mehr

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (2) Architektur des Haswell- Prozessors (aus c t) Einführung

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

P1-63,64,65: Schaltlogik

P1-63,64,65: Schaltlogik Physikalisches Anfängerpraktikum (P1) P1-63,64,65: Schaltlogik Matthias Ernst (Gruppe Mo-24) Karlsruhe, 14.12.2009 Ziel des Versuchs ist ein erster Kontakt mit nichtprogrammierbaren Schaltungen, deren

Mehr

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x

Mehr

Von der Aussagenlogik zum Computer

Von der Aussagenlogik zum Computer Von der Aussagenlogik zum Computer Markus Koch Gymnasium in der Glemsaue Ditzingen Januar 2012 Inhaltsverzeichnis Einleitung...3 Der Computer...3 Grundlagen...4 Wahrheitstabellen...4 Aussagenlogik...4

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 5. Vorlesung Inhalt Interpretation hexadezimal dargestellter Integer-Zahlen Little Endian / Big Endian Umrechnung in eine binäre Darstellung Ausführung von Additionen Optimierte

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht:

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht: 9 Versuch Nr. 7 9.1 Anmerkungen zum Versuch Nr. 7 In den letzten drei Versuchen haben Sie die wichtigsten Bestandteile eines Rechners kennen gelernt, in der Software MAX+PlusII eingegeben und in den Baustein

Mehr

Digitale Elektronik, Schaltlogik

Digitale Elektronik, Schaltlogik Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-64 Digitale Elektronik, Schaltlogik - Vorbereitung - Die Grundlage unserer modernen Welt

Mehr

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug.

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. Aufgabe 1 Gegeben sei folgende Schaltfunktion: y = a / b / c / d. Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. d

Mehr

Digitaltechnik. Digitaltechnik, Addierer Gottfried Straube Fjeldså, Steinerskolen i Stavanger

Digitaltechnik. Digitaltechnik, Addierer Gottfried Straube Fjeldså, Steinerskolen i Stavanger Digitaltechnik 1 Tags Autor/Impressum Geeignet für Klassenstufe Pädagogische Ziele Pädagogischer Hintergrund Nötige Vorbereitungen Hilfsmittel Involvierte Fächer Digitaltechnik, Addierer Gottfried Straube

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,

Mehr

Rechnergestützter VLSI-Entwurf

Rechnergestützter VLSI-Entwurf Schaltungssynthese Dipl.-Ing. e-mail: rgerndt@iam.de Seite SYN/1 Motivation Vereinfachung des Systementwurfes Weniger Fehler durch abstrakte Beschreibung Portierbarkeit der Schaltung (PLD, CPLD, FPGA,

Mehr

Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik

Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik Lehrstuhl für Informatik Cauerstraße 11 91058 Erlangen TECHNISCHE FAKULTÄT Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik Ziel dieser praktischen Übung ist es, einen Taschenrechner

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

Von-Neumann-Rechner / Rechenwerk

Von-Neumann-Rechner / Rechenwerk Von-Neumann-Rechner / Rechenwerk Aufgaben: Durchführung arithmetischer und logischer Verknüpfungen (daher auch der Name Arithmetic Logical Unit) Steuerwerk und Rechenwerk werden usammen auch als CPU usammengefasst.

Mehr

Schaltlogik Versuch P1-63,64,65

Schaltlogik Versuch P1-63,64,65 Vorbereitung Schaltlogik Versuch 1-63,64,65 Iris onradi Gruppe Mo-02 23. Oktober 2010 In diesem Versuch sollen die Grundlagen der digitalen Elektronik erarbeitet werden. Das der Schaltlogik zugrunde liegende

Mehr

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 6

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 6 Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 6 Prof. aitinger / Lammert esprechung: 29.01.2001 S I ufgabe 1 MOS-Widerstände bb_dummy: 1.0 a) Zeichnen Sie einen Querschnitt durch einen

Mehr

Die Reihenschaltung und Parallelschaltung

Die Reihenschaltung und Parallelschaltung Die Reihenschaltung und Parallelschaltung Die Reihenschaltung In der Elektronik hat man viel mit Reihen- und Parallelschaltungen von Bauteilen zu tun. Als Beispiel eine Reihenschaltung mit 2 Glühlampen:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Das negative Zweierkomplementzahlensystem

Das negative Zweierkomplementzahlensystem Das negative Zweierkomplementzahlensystem Ines Junold 07. Dezember 2009 1 / 21 Inhaltsverzeichnis 1 Einleitung 2 Das konventionelle Zweierkomplement 3 Das negative Zweierkomplementsystem 4 Zusammenfassung

Mehr

Anhang zum Lehrbuch Digitaltechnik, Gehrke, Winzker, Urbanski, Woitowitz, Springer-Verlag, 2016.

Anhang zum Lehrbuch Digitaltechnik, Gehrke, Winzker, Urbanski, Woitowitz, Springer-Verlag, 2016. Schaltsymbole in der Digitaltechnik Anhang zum Lehrbuch Digitaltechnik, Gehrke, Winzker, Urbanski, Woitowitz, Springer-Verlag, 2016. In diesem Anhang erfolgt eine Zusammenfassung der wichtigsten Begriffe

Mehr

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929)

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-64 Schaltlogik - Vorbereitung - Vorbemerkung In diesem Versuch geht es darum, die Grundlagen

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker

Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Oliver Neumann Sebastian Wilken 10. Mai 2006 Inhaltsverzeichnis 1 Eigenschaften des Differenzverstärkers 2 2 Verschiedene Verstärkerschaltungen

Mehr

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Was ist ein Rechner? Maschine, die Probleme für

Mehr

Schaltungstechnik

Schaltungstechnik KLAUSUR Schaltungstechnik 26.07.2012 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 2 3 4 5 6 Punkte 15 12 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Grundzüge der Informatik Zahlendarstellungen (7)

Grundzüge der Informatik Zahlendarstellungen (7) Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda e0225646@student.tuwien.ac.at Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

4. Gemischte Schaltungen

4. Gemischte Schaltungen 4. Einleitung Unter einer gemischten Schaltung, auch Gruppenschaltung genannt, versteht man eine Schaltung in der sowohl die eihen- als auch die Parallelschaltung vorkommt. 4.2 Die Maschen- und Knotenpunktregel

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

AFu-Kurs nach DJ4UF. Technik A14: Digitaltechnik. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik A14: Digitaltechnik. Amateurfunkgruppe der TU Berlin.  Stand Technik A14: Digitaltechnik Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 22.02.2016 N X This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Rechnenund. Systemtechnik

Rechnenund. Systemtechnik Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen

Mehr

VHDL Synthese. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009/2010

VHDL Synthese. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009/2010 VHDL Synthese Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009/2010 VHDL Synthese 1/36 2009-11-02 Inhalt Begriff Arten Kombinatorische

Mehr

Analoge CMOS-Schaltungen. OTA -ein OpAmp für Kondensatorlast 1. Teil. Roland Pfeiffer 5. Vorlesung

Analoge CMOS-Schaltungen. OTA -ein OpAmp für Kondensatorlast 1. Teil. Roland Pfeiffer 5. Vorlesung Analoge CMOS-Schaltungen OTA -ein OpAmp für Kondensatorlast 1. Teil 5. Vorlesung Versorgung von Analogschaltungen Rückblick: Differenzverstärker Überführung in Differenzverstärker (genau: differentieller

Mehr