markiert, 0: unmarkiert.)

Größe: px
Ab Seite anzeigen:

Download "markiert, 0: unmarkiert.)"

Transkript

1 4.2 Fibonacci-Heaps Fibonacci-Heaps (F-Heaps) implementieren adressierbare Priority Queues (siehe Anfang von Kap. 4). Wie bei Binomialheaps besteht der Heap aus heapgeordneten Bäumen, jedoch mit gelockerten Strukturbedingungen. Man kann dadurch erreichen, dass (im amortisierten Sinn) decreasekey-operationen kostengünstiger werden. Die Datenstruktur ist so entworfen, dass eine amortisierte Analyse gut durchführbar ist Aufbau von F-Heaps Ein Knoten v hat folgende Felder: Vaterzeiger p(v) Zeiger auf linkes Geschwister: prev(v) Zeiger auf rechtes Geschwister: next(v) Kindzeiger: child(v) Schlüssel: key: aus U Informationsteil: info (anwendungsabhängig) Rang: rank: int (Anzahl der Kinder) Markierung: marked: boolean (1: markiert, 0: unmarkiert.) Organisation in einem Baum: Vaterzeiger der Wurzel ist NIL, für Nichtwurzeln v zeigt der Vaterzeiger p(v) zum Vaterknoten. child(v) zeigt zu einem (beliebigen) Kindknoten (falls es einen gibt); die Kinder sind (mittels next und prev) als zirkuläre doppelt verkettete Liste ( z.d.v.l. ) organisiert. Die Zahl rank(v) gibt die Anzahl der Kinder von v an. In Blättern ist der Kindzeiger NIL, der Rang 0. In jedem Knoten v, der keine Wurzel ist, gilt die Heapbedingung key(v) key(p(v)). Ein Fibonacci-Heap ist eine Kollektion von solchen heapgeordneten Bäumen, wobei die Wurzeln mit Hilfe ihrer next- und prev-zeiger als zirkuläre doppelt verkettete Liste organisiert sind. Keine Wurzel ist markiert. Auf die Liste wird durch einen Ankerzeiger namens MIN zugegriffen, der auf eine Wurzel mit minimalem Wurzeleintrag zeigt Potenzialfunktion Wenn D ein Fibonacci-Heap ist, ist das Potenzial Φ(D) wie folgt definiert: Φ(D) := #(Wurzeln in D) + 2 #(markierte Knoten in D). Wenn eine Operation op auszuführen ist, ist der F-Heap vorher D, der F-Heap nachher D. 1

2 4.2.3 Hilfsoperationen join und cleanup Die Hilfsoperation join(v, w) wird auf zwei Wurzeln v, w mit gleichem Rang angewendet (rank(v) = rank(w)) und vereinigt die Bäume mit diesen Wurzeln zu einem Baum. Die Wurzel mit kleinerem Schlüssel erhält die Wurzel mit größerem Schlüssel als neues Kind. Prozedur (join(v, w)) Input: Zwei Wurzelknoten v, w von gleichem Rang. (1) if key(v) key(w) (2) then (3) mache w zu neuem Kind von v (4) ( w wird in Kindliste direkt neben child(v) eingefügt ); (5) erhöhe rank(v) um 1 (6) else (7) mache v zu neuem Kind von w (8) erhöhe rank(w) um 1. Der Zeitaufwand für für op = join(v, w) ist O(1). Mit Hilfe von join realisieren wir cleanup, eine weitere Hilfsoperation. Zweck dieser Prozedur ist es, die (eventuell sehr lange) Wurzelliste eines F-Heaps zu kompaktieren, und zwar so, dass alle verbleibenden Wurzeln verschiedene Ränge haben. D(n) N bezeichnet eine (später zu berechnende) obere Schranke für den Rang von Knoten, die in einem F-Heap mit n Einträgen auftreten können. Zur vorläufigen Orientierung: Wir werden sehen, dass D(n) = O(log n) gewählt werden kann. Prozedur (cleanup(l)) Input: Wurzelliste L. Ausgabe: F-Heap D mit den gleichen Einträgen, Ränge aller Wurzeln verschieden. Methode: (1) A[0..D(n)]: Array von Zeigern, die anfangs alle NIL sind. (2) while Wurzelliste L ist nicht leer do (3) entnehme nächste Wurzel r aus L; i := rank(r); w := r (4) while A[i] NIL do (5) w := join(w, A[i]); A[i] := NIL; (6) i := i + 1; (neuer Rang von w) ( der Baum unter w enthält alle Knoten der in (3) (6) bearbeiteten Bäume ) (7) A[i] := w (8) Füge Wurzeln in A[0..D(n)] in neue Wurzelliste ein; (9) ermittle Wurzel r mit minimalem Schlüssel; lasse MIN auf r zeigen. Bemerkung: Das Array A[0..D(n)] dient nur dazu, die join-operationen zu organisieren. Wesentlich ist, dass so lange join-operationen ausgeführt werden, bis alle Wurzeln unterschiedliche Ränge haben. Kostenanalyse: Sei l die anfängliche Länge der Wurzelliste L, l D(n) + 1 die Anzahl der Wurzeln am Ende. 2

3 Der Zeitaufwand ist O(D(n) + l). (Dabei wird D(n) Zeit für die Initialisierung des Arrays A[0..D(n)] und das Auslesen der Liste am Ende benötigt. Es werden l Wurzeln betrachtet und l l join-operationen durchgeführt.) Als tatsächliche Kosten setzen wir daher c cleanup (D, D ) = D(n) + l an. Amortisierte Kosten: Da l l Wurzeln verschwinden, ist die Potenzialdifferenz Φ(D ) Φ(D) = l l. Dabei ist l D(n) + 1, und wir erhalten: a cleanup (D, D ) = c cleanup (D, D ) + Φ(D ) Φ(D) = (D(n) + l) + l l 2 D(n) + 1. (Intuition: Die negative Potenzialdifferenz, die sich durch die verschwindenden Wurzeln ergibt, genügt, um für die join-operationen zu bezahlen.) Einfache Operationen new(): MIN := NIL. Zeitaufwand: O(1). Echte Kosten: 1. Amortisierte Kosten: 1. Beachte: Φ(D 0 ) = 0, für den leeren F-Heap D 0. min(): Gib den Eintrag zurück, auf den MIN zeigt. Zeitaufwand: O(1). Echte Kosten: 1. Amortisierte Kosten: 1. insert(e): Erzeuge neue Wurzel v mit Eintrag e; hänge v direkt neben Knoten MIN in Wurzelliste; setze MIN um, falls key(v) < key(min). Zeitaufwand: O(1). Echte Kosten: c insert = 1. Amortisierte Kosten: a insert (D, D ) = c insert (D, D ) + Φ(D ) Φ(D) = = 2 (die neue Wurzel erhöht das Potenzial um 1). makeheap({e 1,..., e n }): new(); for i from 1 to n do insert(e i ). Zeitaufwand: O(n). Echte Kosten: c makeheap = n. Amortisierte Kosten: a makeheap (D 0, D ) = c makeheap (D 0, D ) + Φ(D ) Φ(D 0 ) = n + n = 2n. (Φ(D ) = n wegen der n Wurzeln.) union(h 1, H 2 ): Vereinigt zwei F-Heaps H 1 und H 2. Die beiden Heaps sind durch Zeiger MIN1 und MIN2 gegeben. Füge die Wurzelliste von H 2 in die Wurzelliste von H 1 ein, setze MIN auf MIN1 oder MIN2, je nachdem, welcher Heap das kleinere Minimum hatte. 3

4 Zeitaufwand: O(1). Tatsächliche Kosten: c union = 1. Amortisierte Kosten: a union = c union = 1, weil sich das Potenzial nicht ändert. Prozedur (deletemin()) Input: F-Heap D. Ausgabe: F-Heap D ohne den Knoten v mit minimalem Eintrag; v. Methode: (1) Sei v die Wurzel, auf die MIN zeigt. (2) Klinke v aus der Wurzelliste aus; Restliste: L; (3) Durchlaufe Kindliste von v; (4) für jedes Kind w von v: (5) p(w) := NIL; marked(w) := 0; hänge w in L ein; (6) cleanup(l); ( liefert F-Heap D ) (7) return(d, v). D sei die Datenstruktur nach Zeile (5) (vor cleanup). Der Zeitaufwand zur Erstellung von D ist O(rank(v)) = O(D(n)). Für Zeilen (1) (5) setzen wir echte Kosten c = 1 + rank(v) an. Amortisierte Kosten für Zeilen (1) (5): a = c + Φ(D ) Φ(D) rank(v) 1 + 2D(n). (Die rank(v) neuen Wurzeln erhöhen das Potenzial um je 1.) Amortisierte Kosten inklusive cleanup(l): a deletemin (D, D ) 2 + 4D(n) = O(D(n)) Komplexe Operation: decreasekey Der Zweck dieser Operation ist, in einem Knoten v den dort vorhandenen Schlüssel y durch einen neuen Schlüssel x y zu ersetzen. Problem: Die Heapbedingung könnte nun verletzt sein, wenn x < key(p(v)) ist. Idee für Abhilfe: Hänge v von seinem Vorgänger p(v) ab und mache v zu einer neuen Wurzel. Auf diese Weise können Knoten Kinder verlieren. Um zu vermeiden, dass die Bäume zu sehr ausdünnen und dadurch sehr große Ränge entstehen, obwohl es nicht viele Knoten gibt, werden die Markierungen verwendet. Wenn ein Knoten w, der keine Wurzel ist, erstmals ein Kind verliert, wird er markiert. Wenn er nochmals ein Kind verliert, wird er selbst zu einer neuen Wurzel gemacht. 4

5 Prozedur (decreasekey(v, x)) Input: F-Heap D, (Zeiger auf) Knoten v, Schlüssel x key(v). Ausgabe: F-Heap D mit denselben Einträgen, Schlüssel in v auf x erniedrigt. Methode: (0) Wenn v Wurzel oder x key(p(v)), setze key(v) := x, return. Sonst: (1) (Idee: Verfolge die Folge v 0 = v, v 1 = p(v 0 ), v 2 = p(v 1 )...) (2) i := 1; v 1 := p(v); (3) Füge v als neue Wurzel neben dem MIN-Eintrag ein; ( v 1 verliert Kind v ) (4) key(v) := x; (5) aktualisiere MIN-Zeiger, falls x neuer minimaler Schlüssel; (6) while v i ist markiert do (7) v i+1 := p(v i ); (8) Füge v i als neue Wurzel (unmarkiert) neben dem MIN-Eintrag ein ( v i+1 verliert Kind v i ); (9) i := i + 1; (10) if v i ist keine Wurzel then markiere v i. Man sieht, dass diese Operation eventuell viele neue Wurzeln erzeugen kann und dabei großen Zeitaufwand benötigt. Dabei verschwinden aber Markierungen, wodurch das Potenzial sinkt. Der (negative) Potenzialunterschied wird benutzt, um für diese Kosten zu bezahlen. Im Gegensatz zu den Binomialheaps wird nicht versucht, jetzt aufzuräumen (cleanup würde zu amortisierten Kosten O(log n) führen). Es seien v 0, v 1,..., v k die Knoten, die zu neuen Wurzeln werden. Möglicherweise wird v k+1 markiert (wenn es keine Wurzel ist). Zeitaufwand: O(k + 1) für das Umhängen der Knoten v 0, v 1,..., v k und das Ändern der Vaterzeiger und Markierungen. Als echte Kosten setzen wir an: c decreasekey (D, D ) = k + 1. Amortisierte Kosten: Das Potenzial verändert sich wie folgt: v 1,..., v k sind nicht mehr markiert, aber werden zu Wurzeln, das Potenzial sinkt dadurch um k; Knoten v wird zu neuer Wurzel, dadurch steigt das Potenzial sicher um 1. Falls v k+1 neu markiert wird, steigt das Potenzial um 2. Für die Potenzialänderung gilt also: Φ(D ) Φ(D) k + 3. Die amortisierten Kosten erfüllen demnach a decreasekey (D, D ) = c decreasekey (D, D ) + Φ(D ) Φ(D) k ( k + 3) = 4, sind also durch eine Konstante beschränkt! Die Operation delete(v), die einen Knoten entfernt, der durch einen Zeiger gegeben ist, kann wie folgt realisiert werden: Man verringert mittels decreasekey den Schlüssel in v auf einen Wert < key(min) und führt dann deletemin() aus. Die amortisierten Kosten hierfür sind a decreasekey (D, D ) + a deletemin (D, D ) 6 + 4D(n) = O(D(n)). 5

6 4.2.6 Analyse des maximalen Grades in Fibonacci-Heaps Wir müssen noch zeigen, dass es eine Schranke D(n) für den maximalen Grad eines Knotens in einem F-Heap mit n Einträgen gibt, die D(n) = O(log n) erfüllt. Definition Die Fibonacci-Zahlen sind wie folgt definiert: F 0 = 0, F 1 = 1, F i = F i 2 + F i 1 für i 2. Bekanntlich sind folgendes die ersten Fibonacci-Zahlen: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... Betrachte die bekannte Zahl Φ = 1 2 (1 + 5) = (Das Verhältnis 1 : Φ ist der goldene Schnitt.) Fakt (a) 1 + Φ = Φ 2. (b) Für i 0 gilt: F i+2 Φ i. Beweis: (a) Nachrechnen. (b) Vollständige Induktion. i = 0 : F 2 = 1 = Φ 0. i = 1: F 3 = 2 > Φ 1. Nun sei i 2, die Behauptung gelte für i 2 und i 1. Wir rechnen: F i+2 = F i + F i+1 I.V. Φ i 2 + Φ i 1 = Φ i 2 (1 + Φ) (a) = Φ i. Fakt Für i 1 gilt: 1 + F F i = F i+2. (Beispiel: = 21.) Allgemein ist die Gleichung ganz leicht durch Induktion zu beweisen. Für i = 1 ist sie richtig: 1 + F 1 = = 2 = F 3. Wenn sie für i 1 stimmt (I.V.), folgt: 1 + F 1 + F F i+1 = 2 + F 2 + F F i+1 = 2 + (F 0 + F F i 1 ) + (F 1 + F F i ) also die Induktionsbehauptung. = (1 + F F i 1 ) + (1 + F 1 + F F i ) I.V. = F i+1 + F i+2 = F i+3, In der Analyse von Fibonacci-Heaps spielen die Fibonacci-Zahlen die folgende Rolle: Lemma (a) v Knoten in F-Heap mit rank(v) = i der Unterbaum unter v hat mindestens F i+2 Knoten. (b) F-Heap hat n Einträge alle Ränge sind höchstens D(n) = log 2 n. 6

7 Beweis: (a) Wir benutzen Induktion über die Tiefe des Baums T v unter dem Knoten v (nicht: Induktion über den Rang!). Ind.-Anfang: T v hat Tiefe 0, d. h. er besteht nur aus dem Knoten v. Weil F 2 = 1, stimmt die Behauptung. Ind.-Schritt: Sei v Knoten mit Rang i 1. Es seien w 1,..., w i die aktuell vorhandenen Kinder von v in der Reihenfolge, in der sie zu Kindern von v gemacht wurden (in join-operationen). Der Unterbaum mit Wurzel w j sei T wj. Betrachte ein w j mit j {2,..., i}. Als w j Kind von v wurde, waren w 1,..., w j 1 schon da, also hatte v zu diesem Zeitpunkt Rang mindestens j 1. Nach den Regeln der join-operation (die beiden Knoten haben gleichen Rang) hatte auch w j zu diesem Zeitpunkt Rang mindestens j 1. Nachher kann sich der Rang von w j höchstens um 1 verringert haben (wenn ein zweites Kind von w j abgetrennt worden wäre, wäre w j nach den Regeln für die Behandlung markierter Knoten zur Wurzel gemacht worden). Also gilt aktuell: rank(w j ) j 2, für 2 j i. Nach Induktionsvoraussetzung (T wj hat geringere Tiefe als T v ) hat T wj mindestens F (j 2)+2 = F j Knoten, für 2 j i. Wir schließen: T v hat als Knoten mindestens v und w 1 und die Knoten in T w2,..., T wi, zusammen mindestens 1 + F 1 + F F i = F i+2 viele (mit Fakt 4.2.7). (b) Sei v Knoten mit Rang i in einem Fibonacci-Heap mit n Einträgen. Nach (a) hat T v mindestens F i+2 Knoten, also ist F i+2 n. Mit Fakt 4.2.6: n F i+2 Φ i. Durch Logarithmieren: i log Φ n, oder i (log Φ 2) log 2 n. Dabei ist log Φ 2 = (ln 2)/(ln Φ) = < Zusammenfassung Fibonacci-Heaps sind eine Implementierung des Datentyps Adressierbare Priority Queue. Die Operationen und ihre amortisierten Kosten sind wie folgt, wobei n die Anzahl der Einträge ist: new(): O(1). insert(e): O(1). makeheap({e 1,..., e n }): O(n). union(h 1, H 2 ): O(1). min(): O(1). deletemin(): O(log n). decreasekey(v, x): O(1). 7

8 delete(v): O(log n). Folgerung: Wenn man im Algorithmus von Jarník/Prim für Minimale Spannbäume oder im Algorithmus von Dijkstra für kürzeste Wege von einem Startknoten aus die dort benötigte adressierbare Priority Queue mit einem Fibonacci-Heap implementiert, dann erhält man Laufzeiten von O( V log V + E ), wobei V die Knotenmenge und E die Kantenmenge des betroffenen (Di-)Graphen ist. Dies liegt daran, dass V insert-operationen und V delete- Min-Operationen ausgeführt werden müssen sowie E decreasekey-operationen, und dass maximal n = V Einträge in der Priority Queue liegen. Die gesamten amortisierten Kosten sind O( V log V + E ), und nach dem allgemeinen Resultat zur Potenzialmethode gilt dies dann auch für die gesamten tatsächlichen Kosten. Für alle Graphen mit mindestens V log V Kanten haben diese beiden Algorithmen also lineare Laufzeit! 8

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Fully dynamic algorithms for the single source shortest path problem.

Fully dynamic algorithms for the single source shortest path problem. Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

3 Amortisierte Analyse

3 Amortisierte Analyse (M. Dietzfelbinger,.2.20) 3 Amortisierte Analyse Wir betrachten hier ein Analyseproblem, das oft bei Datenstrukturen, mitunter auch in anderen algorithmischen Situationen auftritt. Angenommen, wir haben

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013

Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013 Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Informatik I Effiziente Algorithmen und wissensbasierte Systeme Seminarausarbeitung Entwurf und Analyse von Datenstrukturen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen

Mehr

Fibonacci-Heaps und Amortisierte Analyse

Fibonacci-Heaps und Amortisierte Analyse Kapitel 6 Fibonacci-Heaps und Amortisierte Analyse Der Fibonacci-Heap dient als eine Implementierung für die abstrakte Datenstruktur Priority Queue und wurde von Michael L. Fredman and Robert E. Tarjan

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Über Arrays und verkettete Listen Listen in Delphi

Über Arrays und verkettete Listen Listen in Delphi Über Arrays und verkettete Listen Listen in Delphi Michael Puff mail@michael-puff.de 2010-03-26 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Arrays 4 3 Einfach verkettete Listen 7 4 Doppelt verkettete

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Highway Hierarchies. Kristian Dannowski, Matthias Hoeschel

Highway Hierarchies. Kristian Dannowski, Matthias Hoeschel Highway Hierarchies Kristian Dannowski, Matthias Hoeschel Gliederung Einleitung / Bidirektional Dijkstra Intuition / Naive Strategie Konstruktion der Highway Hierarchie Suche in der Highway Hierarchie

Mehr

Die k kürzesten Wege in gerichteten Graphen

Die k kürzesten Wege in gerichteten Graphen Die k kürzesten Wege in gerichteten Graphen Marc Benkert Wintersemester 001/00 1 Einführung 1.1 Problemstellung In einem gerichteten, gewichteten Graphen G = (V, E) sollen die k kürzesten Wege zu zwei

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik) Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung) Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr