Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 18

Größe: px
Ab Seite anzeigen:

Download "Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 18"

Transkript

1 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 18

2 Elfte Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik / 18

3 Formale Potenzreihe und erzeugende Funktion Definition 4.1 Ist (a n ) n N0 eine Folge komplexer Zahlen, so nennt man den Ausdruck der Form A(x) = a n x n eine formale Potenzreihe und erzeugende Funktion der Folge (a n ) n N0. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 3 / 18

4 Formale Potenzreihe und erzeugende Funktion Definition 4.1 (Fortsetzung) Gleichheit, Summe und Produkt (Cauchy-Produkt, Faltung) zweier formaler Potenzreihen sind definiert durch A(x) = a n x n und B(x) = A(x) = B(x) a n = b n n N 0. A(x) + B(x) = (a n + b n )x n. A(x)B(x) = k=0 n a k b n k x n. b n x n Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 4 / 18

5 Ring der formalen Potenzreihen Bemerkung 4. Das Wort formal bezieht sich darauf, dass das x nicht notwendigerweise einer (komplexen) Zahl entspricht und wir anders als in der Analysis nicht vornehmlich am Konvergenzverhalten der Reihe für verschiedene x interessiert sind. Zusammen mit und I (x) = 0 = 0x 0 + 0x E(x) = 1 = 1x 0 + 0x 1 + 0x +... bilden die formalen Potenzreihen einen kommutativen Ring mit Einselement. Es existiert zu einer formalen Potenzreihe A(x) = a n x n genau dann ein multiplikatives Inverses B(x) = b n x n, wenn a 0 0 gilt. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 5 / 18

6 Ring der formalen Potenzreihen Bemerkung 4. (Fortsetzung) Beweis: Gibt es B(x) mit A(x)B(x) = E(x), so folgt für den Koeffizienten von x 0 in A(x)B(x), dass a 0 b 0 = 1 gilt, d.h. a 0 0. Gilt a 0 0 und definiert man (b n ) n N0 rekursiv durch so folgt { b n = d.h. A(x)B(x) = E(x). 1/a 0, n = 0, 1 a 0 (a n b 0 + a n 1 b a 1 b n 1 ), n N a n b 0 + a n 1 b a 0 b n = { 1, n = 0, 0, n N, Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 6 / 18

7 Einige wichtige Reihen Beispiel 4.3 Aus der Analysis sind folgende Reihen bekannt, die jeweils für x < 1 konvergieren, d.h. die den Konvergenzradius 1 haben. (i) x n = 1/(1 x). (ii) (iii) (n + 1)x n = 1/(1 x). (n + 1) x n = (1 + x)/(1 x) 3. Wir fassen hier diese Gleichungen als Aussagen über formale Potenzreihen auf, d.h. (i) bedeutet zum Beispiel, dass die multiplikative Inverse der formalen Potenzreihe 1 x die formale Potenzreihe x n ist. Dies kann man folgendermaßen verifizieren. Man setzt Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 7 / 18

8 Einige wichtige Reihen Beispiel 4.3 (Fortsetzung) a n x n = (1 x) x n = (1 x)(1 + x + x +...) und bestimmt die a n durch Koeffizientenvergleich. Der Koeffizient von x 0 ist 1 1. Für n 1 ist der Koeffizient von x n gleich 1 1, d.h. { 1, n = 0, a n = 0, n 1. Es folgt 1 = (1 x) x n. Die Gleichungen (ii) und (iii) kann man analog beweisen. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 8 / 18

9 Wechselgeld Beispiel 4.4 Wir haben fünf 1-Cent Münzen, vier 5-Cent Münzen und drei 0-Cent Münzen, wobei Münzen gleichen Wertes nicht zu unterscheiden sind. Bezeichnet c n die Anzahl der Möglichkeiten, mit unseren Münzen genau n Cent darzustellen, so gilt c n x n = c 0 x 0 + c 1 x 1 + c x c 85 x 85 = (1 + x + x + x 3 + x 4 + x 5 ) (1 + x 5 + x 10 + x 15 + x 0 ) (1 + x 0 + x 40 + x 60 ). So ist es zum Beispiel auf c 50 = Weisen möglich, genau 50 Cent darzustellen. Dieses Beispiel ist ein Spezialfall einer allgemeineren Beobachtung zu Zahlpartitionen. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 9 / 18

10 Wechselgeld Beispiel 4.4 (Fortsetzung) Der Koeffizient c n,k von x n im Produkt p k (x) = k i=1 j=0 x ij = (1 + x + x +...) (1 + x + x ) (1 + x k + x k +...) }{{} k Klammern ist die Anzahl der k-tupel (b 1,..., b k ) N k 0 mit n = b 1 + b + + kb k = 1 } + {{ + 1 } + } + {{ + } + + k } + {{ + k }, b 1 b k b Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 10 / 18

11 Wechselgeld Beispiel 4.4 (Fortsetzung) d.h. der Koeffizient c n,k ist gleich der Anzahl der Partitionen von n in positive ganze Summanden, die alle höchstens k betragen. Der Wert ib i entspricht dabei genau dem Exponenten des Faktors aus der i-ten Klammer. Mit Hilfe des Ferrers Diagramms aus Bemerkung folgt, dass c n,k ebenfalls gleich der Anzahl der Partitionen von n in höchstens k positive ganze Summanden ist, d.h. c n,k = P n, k. Es folgt p k (x) = P n, k x n. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 11 / 18

12 Wechselgeld Beispiel 4.4 (Fortsetzung) Bezeichnet P n die Anzahl aller Partitionen von n in positive ganze Summanden ohne weitere Einschränkungen, so gilt P n = P n, k für k n und es folgt d.h. i=1 p(x) = = = i=1 1 1 x i i=1 j=0 x ij P n x n, 1 1 x i ist die erzeugende Funktion der Folge (P n ) n N0. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 18

13 Fibonacci-Zahlen 10 Bemerkung 4.5 Ein fröhreifes und unsterbliches Kaninchenpaar zeuge ab dem Alter von einem Monat jeden Monat ein weiteres ebenso fröhreifes und unsterbliches Kaninchenpaar. Beginnt man mit einem neugeborenen Paar so hat man nach nach 0 Monaten 1 junges Paar und 0 geschlechtsreife Paare, nach 1 Monat 0 junge Paare und 1 geschlechtsreifes Paar, nach Monaten 1 junges Paar und 1 geschlechtsreifes Paar, nach 3 Monaten 1 junges Paar und geschlechtsreife Paare, nach 4 Monaten junge Paare und 3 geschlechtsreife Paare, nach 5 Monaten 3 junge Paare und 5 geschlechtsreife Paare,... nach n Monaten f n 1 junge Paare und f n geschlechtsreife Paare, nach n + 1 Monaten f n junge Paare und f n+1 = f n 1 + f n geschlechtsreife Paare,... Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 13 / 18

14 Fibonacci-Zahlen 10 Bemerkung 4.5 (Fortsetzung) wobei f n die n-te Fibonacci-Zahl bezeichne, d.h. 0, n = 0, f n = 1, n = 1 und f n + f n 1, n. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 14 / 18

15 Erzeugende Funktion der Fibonacci-Zahlen Satz 4.6 Ist F (x) = f n x n die erzeugende Funktion der Fibonacci-Zahlen, so gilt und für n N 0. f n = 1 5 (( F (x) = x 1 x x 1 + ) n ( 5 1 ) n ) 5 Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 15 / 18

16 Erzeugende Funktion der Fibonacci-Zahlen Satz 4.6 (Fortsetzung) Beweis: Es gilt F (x) = f n x n = 0x 0 + 1x 1 + f n x n = x + (f n 1 + f n )x n n= n= ( ) ( ) = x + x f n 1 x n 1 + x f n x n n= n= = x + xf (x) + x F (x) und daher F (x) = x 1 x x = x ( ) ( ) x x Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 16 / 18

17 Erzeugende Funktion der Fibonacci-Zahlen Satz 4.6 (Fortsetzung) Der Ansatz für die Partialbruchzerlegung liefert α = β = α F (x) = x + β x x x x= 1+ 5 x x= 1 5 = ( = ( 1+ 5 x 1 (1 5) (1+ 5) (1+ 5) (1 5) ) = 1 5 und ) = 1 5. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 17 / 18

18 Erzeugende Funktion der Fibonacci-Zahlen Satz 4.6 (Fortsetzung) Insgesamt folgt F (x) = 1 ( ax 1 ) ( = 1 ) (a n b n ) x n 1 bx 5 und daher per Koeffizientenvergleich f n = 1 5 (a n b n ). Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 18 / 18

Invertieren von Potenzreihen

Invertieren von Potenzreihen Invertieren von Potenzreihen Sei E(x) die Erzeugende Funktion der Reihe, 0, 0, 0,.... E(x) ist neutrales Element der Multiplikation von Potenzreihen. Definition Inverses einer Potenzreihe Sei A(x), B(x)

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion

Mehr

Folien der 16. Vorlesungswoche

Folien der 16. Vorlesungswoche Folien der 16. Vorlesungswoche Nachschlag Kombinatorik: Erzeugende Funktionen Kombinatorik ist die Kunst des intelligenten Abzählens endlicher Mengen. Obwohl die behandelten Probleme einfach und elementar

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 8

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 8 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 8 Sechszehnte Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 8 Satz 5.7

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19 Fünfzehnte Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 19 Definition

Mehr

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form 3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Aufgabenblatt 5: Abgabe am vor der Vorlesung

Aufgabenblatt 5: Abgabe am vor der Vorlesung Aufgabenblatt 5: Abgabe am 15.10.09 vor der Vorlesung Aufgabe 17. In Beispiel 2.24 wurde die abelsche Gruppe (Z/kZ, ) eingeführt und in Definition 2.33 um die Verknüpfung erweitert (in Beispiel 2.25 und

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Mathematik macht Freu(n)de im Wintersemester 2018/19

Mathematik macht Freu(n)de im Wintersemester 2018/19 Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

9. Polynom- und Potenzreihenringe

9. Polynom- und Potenzreihenringe 64 Andreas Gathmann 9. Polynom- und Potenzreihenringe Bevor wir mit der allgemeinen Untersuchung von Ringen fortfahren, wollen wir in diesem Kapitel kurz zwei sehr wichtige weitere Beispiele von Ringen

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Wiederholung Vorlesungen 1 bis 8

Wiederholung Vorlesungen 1 bis 8 Wiederholung Vorlesungen 1 bis 8 Aufgabe 1 a) Sind die im Folgenden gegebenen Ausdrücke als Folge interpretierbar? Wenn ja, wie? i) 1,,4,8,16,3,64,..., ii)... 5, 3, 1,1,3,5,..., iii) 3,10,π,4, 1 7,10,1,14,16,18,...

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Zeigen Sie die folgenden Identitäten zu Idealen: In Z[ 5] gilt () = (, 1 + 5) (, 1 5) und (1 + 5) = (, 1 + 5)

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe 7 Reihen sind spezielle Folgen, die durch Summation entstehen. Definition 7. : {a n } n N sei Folge in C; S n := n Folge {S n } n N unendliche Reihe. Falls a k statt lim S n. a k heißt {S n } n N konvergiert,

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

12 Reihen mit beliebigen abzählbaren Indexmengen

12 Reihen mit beliebigen abzählbaren Indexmengen 12 Reihen mit beliebigen abzählbaren Indexmengen 12.2 Großer Umordnungssatz 12.3 Umordnungssatz für Doppelreihen 12.4 Produktreihe In 3 waren endliche Summen j J a j mit Hilfe einer Bijektion ϕ zwischen

Mehr

Satz 142 (Partialbruchzerlegung)

Satz 142 (Partialbruchzerlegung) Satz 142 (Partialbruchzerlegung) Seien f, g K[x] (K = Q, R, C) Polynome mit grad(g) < grad(f), und es gelte f(x) = (x α 1 ) m1 (x α r ) mr mit N m i 1 und paarweise verschiedenen α i K (i = 1,, r) Dann

Mehr

Berechnung von Teilmengen

Berechnung von Teilmengen Berechnung von Teilmengen Satz Anzahl der Teilmengen 2 n = n k=0 k=0 ( ) n k Beweis Korollar aus Binomischem Lehrsatz (1 + 1) n = n ( n k=0 k) 1 k 1 n k. Oder kombinatorisch: Sei M Menge mit M = n. Die

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n.

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. 1 Die Determinante Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. a) Ein Fehlstand von π ist ein Paar (i, j) mit 1 i < j n und π(i)

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen Vortrag zum Proseminar zur Analysis, 24.10.2012 Adrian Hauffe-Waschbüsch In diesem Vortrag werden die reellen Zahlen aus rationalen Cauchy-Folgen konstruiert. Dies dient zur Vorbereitung der späteren Vorträge,

Mehr

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder. Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung Statt dann als schreibt man auch oder ähnlich, die Folge wird notiert, und das wird abgekürzt mit. Die nennt man die Folgenglieder. Mathematik

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 43 Polynome in mehreren Variablen und Nullstellenmengen Als eine Anwendung der Diagonalisierbarkeit von symmetrischen

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 08.0.06 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum 9. Übungsblatt

Mehr

5. Unendliche Reihen [Kö 6]

5. Unendliche Reihen [Kö 6] 25 5. Unendliche Reihen [Kö 6] 5.1 Grundbegriffe Definition 1. Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n ) n k der Partialsummen s n :=

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Polynome und rationale Funktionen

Polynome und rationale Funktionen Polynome und rationale Funktionen Definition. 1) Eine Funktion P : R R (bzw. P : C C) der Form P (x) = n a k x k = a 0 + a 1 x + a 2 x 2 +... + a n x n mit a k R (bzw. C) und a n 0 heißt Polynom vom Grad

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Anleitung zu Blatt 2, Analysis II

Anleitung zu Blatt 2, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt 2, Analysis II SoSe 202 Funktionenfolgen, Potenzreihen I Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 16 Polynomringe Definition 16.1. Der Polynomring über einem kommutativen Ring R besteht aus allen Polynomen P = a 0 +a 1 X +a

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

$Id: integral.tex,v /05/05 13:36:42 hk Exp $

$Id: integral.tex,v /05/05 13:36:42 hk Exp $ $Id: integral.tex,v.5 07/05/05 3:36:4 hk Exp $ Integralrechnung.4 Integration rationaler Funktionen In diesem Abschnitt wollen wir die Integration rationaler Funktionen diskutieren. Es wird sich herausstellen

Mehr

Formale Potenzreihen, Rekursionen und erzeugende Funktionen

Formale Potenzreihen, Rekursionen und erzeugende Funktionen KAPITEL 2 Formale Potenzreihen, Reursionen und erzeugende Funtionen Wir gehen von folgender abstraten Situation aus Gegeben ist eine Klasse O ombinatorischer Objete und eine Klassifiationsabbildung t :

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen 70 2.5 Ringe und Körper Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen. 2.5.1 Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen +: R R R und : R R R, dann heißt

Mehr

10 Kriterien für absolute Konvergenz von Reihen

10 Kriterien für absolute Konvergenz von Reihen 10 Kriterien für absolute Konvergenz von Reihen 10.1 Majoranten- und Minorantenkriterium 10.3 Wurzelkriterium 10.4 Quotientenkriterium 10.9 Riemannscher Umordnungssatz 10.10 Äquivalenzen zur absoluten

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Analysis I (HS 2016): SUMMIERBARE FAMILIEN

Analysis I (HS 2016): SUMMIERBARE FAMILIEN Analysis I (HS 2016: SUMMIERBARE FAMILIEN Dietmar A. Salamon ETH-Zürich 26. Oktober 2016 Zusammenfassung Dieses Manuskript enthält eine Einführung in den Begriff einer summierbaren Familie reeller oder

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

$Id: reihen.tex,v /12/08 16:13:24 hk Exp $ 1 q

$Id: reihen.tex,v /12/08 16:13:24 hk Exp $ 1 q $Id: reihen.tex,v.35 207/2/08 6:3:24 hk Exp $ 5 Reihen 5. Konvergenz von Reihen In der letzten Sitzung hatten wir die Summenformel für die sogenannte geometrische Reihe q n = für q < q hergeleitet und

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

Anhang: Eine kurze Einführung in formale Potenzreihen

Anhang: Eine kurze Einführung in formale Potenzreihen Anhang: Eine kurze Einführung in formale Potenzreihen A1. Der Ring der formalen Potenzreihen Sei a 0,a 1,a 2,... eine unendliche reelle Folge. Ein Ausdruck der Form a n x n = a 0 +a 1 x+a 2 x 2 +... heißt

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Das ist kein Skript! 1 Erzeugende Funktionen

Das ist kein Skript! 1 Erzeugende Funktionen Das ist kein Skript! Dennoch kann man hier sehen, welche Begriffe definiert wurden und welche Sätze bewiesen wurden. Bei vielen Sätzen ist der Beweis skizziert, so dass diese Zusammenfassung ideal für

Mehr

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 25. August 2006 Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P9: Man betrachte n Münzwürfe, wobei man mit Null Wappen und mit Eins Zahl codiere. Man erhält

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

42.3 Der Fundamentalsatz der Algebra

42.3 Der Fundamentalsatz der Algebra 42 Der Fundamentalsatz der Algebra 42.2 Die Argandsche Ungleichung 42.3 Der Fundamentalsatz der Algebra 42.4 Faktorisierung komplexer olynome 42.5 Faktorisierung reeller olynome 42.6 artialbruchzerlegung

Mehr

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2) Prof. D. Salamon Analysis I MATH, PHYS, CHAB HS 204 Musterlösung Serie 7. Der Vollständigeit wegen, zeigen wir zunächst die Konvergenz der Reihendarstellung der ζ-funtion für s >. ζs : n n s 2 + n s 0

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n 8. Polynomringe Das Umgehen mit Polynomen, d.h. mit Ausdrücken der Form a 0 + a 1 x + a 2 x 2 +... + a n x n ist aus der Schule vertraut, falls die Koeffizienten a 0,..., a n ganze oder rationale oder

Mehr

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Aufgabe 1 Sei V ein endlich-dimensionaler K-Vektorraum, und seien f und g Endomorphismen von V mit f g = g f. Zeige: a) Sind f und g diagonalisierbar,

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr