Teil 1 - Epidemische Modelle

Größe: px
Ab Seite anzeigen:

Download "Teil 1 - Epidemische Modelle"

Transkript

1 Teil 1 - Epidemische Modelle 15. Januar 2013 Literatur: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

2 Gliederung

3 Ziele meines Vortrags Ein grlegen Modell () zur Modellierung vorstellen Beispiele für die praktische dieses Modells aufzeigen Ausblick auf dieses Modells geben

4 Motivation: Warum Epidemien modellieren? 1 Sie führen jährlich zu zahlreichen Tofällen 2 Neue Krankheiten Mutationen üben Druck aus 3 Krankheitsübertragung durch zunehmenden Massenverkehr wahrscheinlicher

5 Motivation: Warum Epidemien modellieren? 1 Sie führen jährlich zu zahlreichen Tofällen 2 Neue Krankheiten Mutationen üben Druck aus 3 Krankheitsübertragung durch zunehmenden Massenverkehr wahrscheinlicher Mathematik kann bei Verlaufsbestimmung bei Planung von Impfkampagnen helfen

6 Definition Epidemie Eine Epidemie bezeichnet ein stark gehäuftes, örtlich zeitlich begrenztes Auftreten einer Erkrankung, vor allem einer Infektionskrankheit. (vgl.

7 Wie sehen epidemische Modelle aus? Sie beschreiben den Einfluss der Krankheit auf die Populationsdynamik Sie beziehen oft nicht alle Einwirkungen mit ein, sondern sind vereinfacht Sie variieren je nach Krankheit Unterscheidung: deterministische stochastische Modelle 2 Basistypen: Gesamtpopulation als konstant vs. Beeinflussung durch Geburtsrate, Sterberate, usw.

8 Die drei Gruppen Es werden drei Gruppen von Individuen unterschieden:

9 Die drei Gruppen Es werden drei Gruppen von Individuen unterschieden: Die gesen Personen (Anzahl S): können von den Infizierten angesteckt werden Die Infizierten (Anzahl I): können die Gesen anstecken Die immunen Personen (Anzahl R): sind immun geworden, gestorben oder isoliert

10 Modellannahmen Je Individuum der Population befindet sich zu jedem Zeitpunkt in einem der Zustände S, I oder R Modell beschreibt, mit welcher Geschwindigkeit (=Rate) der Übergang von einer Gruppe zur nächsten stattfindet Schema: S I R

11 Modellannahmen Je Aufeinandertreffen zweier Individuen ist gleichwahrscheinlich Zuwachs von I ist proportional zur Anzahl I S Übergangsrate von I zu R ist propotional zur Anzahl I Inkubationszeit ist so kurz, dass sie unbedeutend wird

12 Modellmechanismen Mit den gemachten Annahmen ergeben sich damit: Der Fluss von S nach I mit rsi Der Fluss von I nach R mit ai r > 0: Infektionsrate, a > 0: Genesungsrate

13 Modellmechanismen Mit den gemachten Annahmen ergeben sich damit: Der Fluss von S nach I mit rsi Der Fluss von I nach R mit ai r > 0: Infektionsrate, a > 0: Genesungsrate Und die Modellmechanismen: ds = rsi, di = rsi ai, dr = ai

14 Erhaltungssatz Anfangsbedingungen Die konstante Populationsgröße wird folgendermaßen in das System eingebaut: ds + di + dr = 0 S(t) + I(t) + R(t) = N mit N als Größe der Gesamtpopulation

15 Erhaltungssatz Anfangsbedingungen Die konstante Populationsgröße wird folgendermaßen in das System eingebaut: ds + di + dr = 0 S(t) + I(t) + R(t) = N mit N als Größe der Gesamtpopulation Anfangsbedingungen: S(0) = S 0 > 0, I(0) = I 0 > 0, R(0) = 0

16 Aussagen über einen Epidemieausbruch Mit di = rsi ai folgt ρ = a r di = I 0 (rs 0 a) t0 ρ = relative Genesungsrate { > 0, wenn S 0 > ρ, < 0, wenn S 0 < ρ. Wenn S 0 > a r, nimmt I(t) zu eine Epidemie bricht aus. Es gilt I(t) > I 0 für t > 0.

17 Aussagen über einen Epidemieausbruch Da ds 0 S S 0, gilt im anderen Fall, wenn S 0 < a r, di = I(rS a) 0 für alle t 0. Damit gilt I(t) 0, wenn t, keine Epidemie kann ausbrechen.

18 Visualisierung in der Phasenebene Quelle: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

19 Basisreproduktionsrate R 0 = rs 0 a gibt an, wie viele neue Infektionen der erste Infizierte während seiner infektiösen Periode verursacht 1 a ist die Dauer der infektiösen Periode R 0 > 1: Epidemie bricht aus, R 0 < 1: Epidemie bricht nicht aus

20 Basisreproduktionsrate Epidemieausbruch ist begünstigt durch großes R 0 = rs 0 a, also bei:

21 Basisreproduktionsrate Epidemieausbruch ist begünstigt durch großes R 0 = rs 0 a, also bei: langer Dauer der infektiösen Periode 1 a a sehr klein großer Infektionsrate r großer Anzahl von Gesen

22 Schweregrad der Epidemie, I max Aus den Gleichungen für ds di ds mit ρ = a r, (I 0) = (rs a)i rsi di ergibt sich: = 1 + ρ S Integriert man diese Gleichung erhält man die (I, S)-Trajektorien mit I + S ρ ln S = konstant = I 0 + S 0 ρ ln S 0 ( )

23 Schweregrad der Epidemie, I max I + S ρ ln S = konstant = I 0 + S 0 ρ ln S 0 ( ) I max befindet sich offensichtlich bei S = ρ, eingesetzt in (*) erhält man: I max = ρ ln ρ ρ + I 0 + S 0 ρ ln S 0 = I 0 + S 0 ρ ρ ln( ρ S 0 ) = N ρ + ρ ln( ρ S 0 )

24 Überstehen der Epidemie?, S( ) Aus ds dr folgt: ds dr = S ρ S = S 0 exp( R ρ ) S 0 exp( N ρ ) > 0 0 < S( ) N An den Trajektorien sieht man, dass 0 < S( ) < ρ wegen I( ) = 0 folgt R( ) = N S( ) S( ) = S 0 exp( R( ) ρ ) = S 0 exp( N S( ) ) ρ

25 Überstehen der Epidemie?, S( ) Also ist S( ) die positive Wurzel 0 < z < ρ der transzendenten Gleichung S 0 exp( N z ) = z ρ Für die Gesamtzahl der Infizierten ergibt sich I total = I 0 + S 0 S( ) Die Epidemie stirbt also wegen fehlenden Infizierten, nicht wegen fehlenden Gesen aus

26 Vorbereitungen für die praktische Bei den meisten Epidemien schwierig: die Anzahl der neuen Infizierten pro Zeiteinheit zu bestimmen Einfacher: Populationsänderung der Klasse R pro Zeiteinheit bestimmen

27 Vorbereitungen für die praktische Mit dr Bei den meisten Epidemien schwierig: die Anzahl der neuen Infizierten pro Zeiteinheit zu bestimmen Einfacher: Populationsänderung der Klasse R pro Zeiteinheit bestimmen dr mit R(0) = 0 = ai, I = N R S S = S 0 exp( R ρ ) folgt: = ai = a(n R S) = a[n R S 0 exp( R ρ )] Numerisch lösbar, wenn a, r, S 0 N bekannt, diese aber meistens unbekannt

28 Vorbereitungen für die praktische Bei moderaten Epidemien gilt R ρ < 1 man kann die vorherige Gleichung durch folgende Formel approximieren: dr Nach Integration erhält man R(t) = r 2 = a[n S 0 + ( S 0 ρ 1)R S 0R 2 2ρ 2 ] [( S 0 S 0 ρ α = [( S 0 ρ 1)2 + 2S 0(N S 0 ) 1) + α tanh(αat 2 φ)], ρ 2 ] 1/2, φ = tanh 1 ( α S 0 ρ 1)

29 Vorbereitungen für die praktische Damit ist dr = aα2 ρ 2 2S 0 sech 2 ( αat 2 φ) man erhält nur noch 3 Parameter: aα2 ρ 2 2S 0, αa φ

30 Vorbereitungen für die praktische Damit ist dr = aα2 ρ 2 2S 0 sech 2 ( αat 2 φ) man erhält nur noch 3 Parameter: aα2 ρ 2 2S 0, αa φ Falls R ρ < 1: die 3 Parameter werden an die gegebenen Daten angepasst Falls R ρ nicht klein ist: Verwenden der ersten Differentialgleichungen

31 Pest in Bombay Die meisten Infizierten starben dr Anzahl der Tofälle pro Woche Relativ zur Populationsgröße hat sich die Epidemie nicht weit ausgebreitet R ρ < 1 Vergleich mit gegebenen Daten führte zu folgender Gleichung: dr = 890 sech 2 (0, 2t 3, 4)

32 Pest in Bombay Quelle: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

33 Grippeepidemie in einem englischen Jungeninternat 1978 I 0 = 1, N = 763, S 0 = 762 Relativ zur Populationsgröße war die Epidemie schwerwiegend R ρ nicht klein Verwendung anfänglichen Systems von DGLen Die Gleichungen wurden numerisch gelöst Die Lösung für R(t) ist proportional zur Fläche unter der I(t)-Kurve

34 Grippeepidemie in einem englischen Jungeninternat 1978 Quelle: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

35 Modellierung von Geschlechtskrankheiten: SI-Modell Gleiche Anzahl ausschließlich heterosexueller Frauen Männer Infektion wird von einer Klasse in die andere Klasse übertragen Annahme häufigen Partnerwechsels Infizierte sind sofort ansteckend In der Regel keine Immunität

36 Modellierung von Geschlechtskrankheiten: SI-Modell S, I männliche Gruppen; S, I weibliche Gruppen Schema: Quelle: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer S(t) + I(t) = N, S (t) + I (t) = N Anfangsbedingungen: S(0) = S 0, I(0) = I 0, S (0) = S0, I (0) = I0

37 Modellierung von Geschlechtskrankheiten: SI-Modell Modellmechanismen: ds ds di di mit r, a, r, a > 0 = rsi + ai, = r S I + a I, = rsi ai, = r S I a I

38 Weitere Zahlreiche weitere möglich, diese variieren je nach Krankheit Ort: Einbeziehen der Inkubationszeit Einbeziehen Alters der Personen Einführen weiterer Untergruppen (z.b.: asymptomatische Infizierte)...

39 ist ein wichtiges epidemisches Basismodell, aus dem zahlreiche hevorgehen. Diese sind notwendig, da das nur bei bestimmten Krankheiten anwendbar ist. Bei diesen Krankheiten liefert es aber, trotz Vereinfachungen, gute Ergebnisse.

Ausbreitung von Infektionskrankheiten 1 Einleitung

Ausbreitung von Infektionskrankheiten 1 Einleitung Ausbreitung von Infektionskrankheiten 1 Einleitung In der mathematischen Biologie wird die Ausbreitung von Epidemien auf der Basis von Modellen untersucht. In diesem Vortrag will ich einerseits einige

Mehr

Die Dynamik von Infektionskrankheiten: Epidemien und AIDS

Die Dynamik von Infektionskrankheiten: Epidemien und AIDS KAPITEL 3 Die Dynamik von Infektionskrankheiten: Epidemien und AIDS Wir beginnen das dritte Kapitel mit einigen historischen Bemerkungen zu Epidemien: Während der Jahre 1347 135 hat der Ausbruch der Pest

Mehr

Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 4

Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 4 Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 4 Patrick Klein 22.01.13 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Rindertuberkulose

Mehr

Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 3

Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 3 Dynamik von infektiösen Krankheiten: Epidemiemodelle und AIDS - Teil 3 Daniela Niedzwiedz 22. Januar 2013 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Dynamik

Mehr

Räuber-Beute-Modelle, Auslese/Schwellensatz

Räuber-Beute-Modelle, Auslese/Schwellensatz Räuber-Beute-Modelle, Auslese/Schwellensatz Mareike Franz und Brigitte Steinhauser 15. Dezember 2008 1 / 37 1 Räuber-Beute-Modelle 2 Prinzip der Auslese durch Wettbewerb 3 Schwellensatz der Epidemiologie

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

Modelle von Epidemieverläufen

Modelle von Epidemieverläufen Modelle von Epidemieverläufen Kermak und McKendrick, 1927 Grundlegendes und einfaches Modell zur Ausbreitung einer nfektionskrankheit in einer Population. Es werden folgende Gruppen von ndividuen unterschieden:

Mehr

Temperaturabhängige Geschlechtsbestimmung (TSD) bei Krokodilen

Temperaturabhängige Geschlechtsbestimmung (TSD) bei Krokodilen 1 / 45 Temperaturabhängige Geschlechtsbestimmung (TSD) bei Krokodilen J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Ina Förster 13. November 2012 2 / 45 Sitzungsablauf

Mehr

Mathematische Modelle in der Biologie - Kontinuierliche Populationsmodelle für Einzelspezies - Teil 1

Mathematische Modelle in der Biologie - Kontinuierliche Populationsmodelle für Einzelspezies - Teil 1 Mathematische Modelle in der Biologie - Kontinuierliche Populationsmodelle für Einzelspezies - Teil 1 Continuous Population Models for Single Species (1.1.-1.4) Florian Scheid 23.10.2012 Gliederung 1 Einführung

Mehr

Strömungssimulation in Li-Dualinsertationszellen

Strömungssimulation in Li-Dualinsertationszellen Strömungssimulation in Li-Dualinsertationszellen Julius Sewing, Nikolaus Krause, Dennis Dieterle j.sewing@gmx.net nikokrause@gmx.de dennis.dieterle@uni-muenster.de 22. Juni 2010 Sewing, Krause, Dieterle

Mehr

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Reaktionskinetik Maximilian Erlacher Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Themen: 1 Basisenzymreaktion 2 Michaelis-Menten-Analyse 3 Selbstauslöschende Kinetik

Mehr

MODELLIERUNG EINER EPIDEMIEDYNAMIK AM BEISPIEL DER SCHWEINEGRIPPE

MODELLIERUNG EINER EPIDEMIEDYNAMIK AM BEISPIEL DER SCHWEINEGRIPPE EINFÜHRUNG IN DIE MATHEMATISCHE MODELLIERUNG MODELLIERUNG EINER EPIDEMIEDYNAMIK AM BEISPIEL DER SCHWEINEGRIPPE Dzubur Reicher Schmid 1 Einleitung Die Schweinegrippe ist in aller Munde. Wie betrifft uns

Mehr

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Andrea Schneider 05.02.2013 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Gruppe G Mi: Severine Hurni, Esther Marty, Giulia Ranieri, Matthias Engesser, Nicole Konrad Betreuer: Roman Kälin 1. Einleitung Ein dynamisches System ist ein System,

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

UNTERRICHTSPROJEKT UND AUFGABENSAMMLUNG ZUR EPIDEMIOLOGIE. Lisa Preschitz

UNTERRICHTSPROJEKT UND AUFGABENSAMMLUNG ZUR EPIDEMIOLOGIE. Lisa Preschitz UNTERRICHTSPROJEKT UND AUFGABENSAMMLUNG ZUR EPIDEMIOLOGIE Lisa Preschitz Aufgabe 1 Wir betrachten eine Krankheit, die direkt über die Luft von Mensch zu Mensch übertragen werden kann. Diskutiert zunächst

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Bachelorarbeit. Deterministische Modelle zur Beschreibung der Ausbreitung von Krankheiten

Bachelorarbeit. Deterministische Modelle zur Beschreibung der Ausbreitung von Krankheiten Technische Universität Berlin Institut für Mathematik Bachelorarbeit Im Studiengang Technomathematik Deterministische Modelle zur Beschreibung der Ausbreitung von Krankheiten Marcel Merkle Betreut von

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

Mathematische Epidemie-Modelle

Mathematische Epidemie-Modelle Mathematische Epidemie-Modelle Niklas Kolbe Seminararbeit im Rahmen des Hauptseminares Mathematische Biologie im Wintersemester 211/212 bei Prof. Dr. M. Lukacova an der Johannes Gutenberg-Universität Mainz

Mehr

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + =

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + = ist ( 6.4 Logistisches Wachstum Ein Nachteil des Modells vom beschränkten Wachstum besteht darin, dass für kleine t die Funktion ungefähr linear statt exponentiell wächst. Diese chwäche wird durch das

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Exponentialfunktionen

Exponentialfunktionen Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Ein Einfaches AIDS Modell

Ein Einfaches AIDS Modell Ein Einfaches AIDS Modell Martin Bauer: 990395 Guntram Rümmele: 99008 Das SIR - Modell Die Modellierung von epidemischen Modellen hat schon lange Tradition. Man hat schon immer versucht Erklärungen für

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Strömungssimulation in Li-Dualinsertationszellen

Strömungssimulation in Li-Dualinsertationszellen Strömungssimulation in Li-Dualinsertationszellen Christoph Wiesian, Dennis Dieterle, Sven Wagner c.wiesian@uni-muenster.de dennis.dieterle@uni-muenster.de sven.wagner@uni-muenster.de 02.02.2010 Wiesian,

Mehr

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R Tutor: Martin Friesen, martin.friesen@gm.de Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 1. Man berechne alle Lösungen der Differentialgleichung: (t) = t(t), t R Wir benutzten hier den

Mehr

Influenza-Interventionserfolg und Kontaktnetzwerke in der Bevölkerung

Influenza-Interventionserfolg und Kontaktnetzwerke in der Bevölkerung Influenza-Interventionserfolg und Kontaktnetzwerke in der Bevölkerung Hans-Peter Duerr Markus Schwehm, Chris Leary 2, Martin Eichner Institut für Medizinische Biometrie, Universität Tübingen 2 Dept. of

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Eine Zombie-Invasion in Oldenburg

Eine Zombie-Invasion in Oldenburg Die Mathematik des Untergangs Carl von Ossietzky Universität Oldenburg 8. September 2016 Inhalt 1 Ein mathematisches Modell Informelle Definition Ein diskretes Beispiel Übergang zum kontinuierlichen Modell

Mehr

Fragen zu Kapitel III Seite 1 III

Fragen zu Kapitel III Seite 1 III Fragen zu Kapitel III Seite 1 III Grundbegriffe der klassischen Mechanik Fragen 3.1 bis 3.8 Zur Beantwortung der Fragen benötigen Sie folgende Daten Masse der Erde 5,974 10 4 kg Erdradius 6371 km Erdbeschleunigung

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

Analysis I. Vorlesung 28

Analysis I. Vorlesung 28 Prof. Dr. H. Brenner Osnabrück WS 203/204 Analysis I Vorlesung 28 Gewöhnliche Differentialgleichungen Welche Bewegung vollzieht ein Löwenzahnfallschirmchen? Das Fallschirmchen lässt sich zu jedem Zeitpunkt

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 10 Epidemienmodelle - Outbreak Wir werden in diesem Kapitel auch ein paar philosophische Fragen, Einwände und dazugehörige Gegenargumente zur Modellierung behandeln.

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Projekt Bakterienkultur

Projekt Bakterienkultur 1 Einleitung Projekt Bakterienkultur Mathematische Modellierung I Sommersemster 2010 Anna Aichmayr, Georg Rief, Patrica Walker 1.1 Physikalische Grenzen Dienstag, Juli 13, 2010 Der zu untersuchende Bereich

Mehr

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s 1 Das Rätsel vom Käfer auf dem Gummiband Die alten Ägypter glaubten angeblich, Osiris habe am Tempel in Luor ein unsichtbares Gummiband der Länge L = 1m befestigt, auf dessen Anfang er einen Scarabaeus

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Der Parasit im Lebenslauf des Menschen:

Der Parasit im Lebenslauf des Menschen: Der Parasit im Lebenslauf des Menschen: die Modellierung von Querschnittsdaten zur Flussblindheit in Afrika Hans-Peter Dürr Martin Eichner, Klaus Dietz, Hartwig Schulz-Key Institut für Medizinische Biometrie,

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Burgersgleichung in 1D und 2D

Burgersgleichung in 1D und 2D Burgersgleichung in 1D und 2D Johannes Lülff Universität Münster 5.12.2008 Inhaltsverzeichnis 1 Einführung 2 Numerik 3 Phänomenologie 4 Analytische Ergebnisse 5 Zusammenfassung Herkunft der Burgersgleichung

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen 1. Abkühlungsgesetz von Newton Newton s Abkühlungsgesetz beschreibt die Wärmezunahme bzw. -abnahme einer Tasse kalten oder heissen Wassers, die zur Zeit t = 0 in einen grossen Raum

Mehr

Konstante Zu- und Abflüsse (Veränderungen)

Konstante Zu- und Abflüsse (Veränderungen) Konstante Zu- und Abflüsse (Veränderungen) Unser erstes Modell: Ein (großer) Eimer wird unter einen Wasserhahn gestellt. Der Wasserhahn wird geöffnet und ein konstanter Wasserstrom von 2 Litern pro Minute

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Einfache Modelle der Populationsdynamik

Einfache Modelle der Populationsdynamik Vorlesung 4. Einfache Modelle der Populationsdynamik Wintersemester 215/16 1.11.215 M. Zaks allgemeine vorbemerkungen In kleinen Populationen schwanken die Bevolkerungszahlen stochastisch: Geburt/Tod von

Mehr

Überblick. Zellularautomaten. Geschichte. The Game of Life. The Game of Life Regeln LIFE32.EXE

Überblick. Zellularautomaten. Geschichte. The Game of Life. The Game of Life Regeln LIFE32.EXE Einführung in die Medizinische Informatik und Bioinformatik Zellularautomaten Frank Meineke SS 2006 Überblick Geschichte The Game of Life Definition Zellularautomaten Epidemiemodelle Einordung 2 Geschichte

Mehr

Vorlesung V Block 2 Analysis C) Differenzialgleichungen

Vorlesung V Block 2 Analysis C) Differenzialgleichungen Mathematik für MolekularbiologInnen Vorlesung V Block Analysis C) Differenzialgleichungen Übersicht Differenzialgleichungen formulieren Einschub: partielle Ableitung und totales Differential Lösung elementarer

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Stabilität des Golfstroms

Stabilität des Golfstroms Stabilität des Golfstroms Yannis Fürst Seminar: Mathematische Modellierung Seminarleiterin: Dr. Iryna Rybak Universität Stuttgart 11. Mai 2016 Grundlagen der Modellierung Expertenvortrag Modellskizze Beispielmodellierung

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

TU-Berlin. An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel

TU-Berlin. An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel Winterrätsel aus Übungsheft Gewöhnliche Differentialgleichungen Teil II TU-Berlin An einem Wintertag begann es am Vormittag zu Schneien. Der Schnee fiel gleichmäßig den ganzen, weiteren Tag über. Um Uhr

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Molekulare Maschinen als Brownsche Motoren

Molekulare Maschinen als Brownsche Motoren Molekulare Maschinen als Brownsche Motoren Gernot Faulseit 10. Juli 2003 Power Stroke vs. Brownsche Ratsche 10. Juli 2003 Power Stroke vs. Brownsche Ratsche gängige Vorstellung bei der Muskelkontraktion:

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Fakultät Informatik > Angewandte Informatik > Technische Informationssysteme Studentischer Vortrag 1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Mai, Tuan Linh Dresden, 17.Jan.2011 Inhalt 1. Motivation

Mehr

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering Medizinische Biophysik Stephan Scheidegger ZHAW School of Engineering Modelle in der medizinischen Biophysik Inhalt ROETGETECHIK Teil A Systembiophysik (Kapitel 1-4) Teil B Strahlenbiophysik (Kapitel 5-8)

Mehr

Nichtlineare Dynamik in biologischen Systemen

Nichtlineare Dynamik in biologischen Systemen Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik 29. August 2006 11 Nichtlineare Dynamik in biologischen Systemen Erster Gutachter: Prof. Dr. Wolfgang Oehme, Universität

Mehr

Fokker-Planck Gleichung

Fokker-Planck Gleichung Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

Relative Survival Modelle neue Ansätze II

Relative Survival Modelle neue Ansätze II Relative Survival Modelle neue Ansätze II Seminar: Moderne statistische Methoden in der Epidemiologie Seminarleiter: Dr. Michael Schomaker Referent: Sarah Musiol 27.06.2017 Gliederung Motivation Methoden

Mehr

Die nummerierten Felder bitte mithilfe der Videos ausfüllen:

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: 5 Optimale Regelung Zoltán Zomotor Versionsstand: 6. März 5, 9:8 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

Modul 241. Systemen. Modellierung des Wachstums der. Weltbevölkerung - Definition

Modul 241. Systemen. Modellierung des Wachstums der. Weltbevölkerung - Definition Modul 241 Modellierung von Systemen Modellierung des Wachstums der Weltbevölkerung Weltbevölkerung - Definition Der Begriff Weltbevölkerung bezeichnet die geschätzte Anzahl der Menschen, die zu einem bestimmten

Mehr

Modellierung des Bakteriophagen Lambda / Teil II

Modellierung des Bakteriophagen Lambda / Teil II Modellierung des Bakteriophagen Lambda / Teil II Lambda-Phage Beispiel für Modellierung eines genregulatorischen Netzwerkes Vorstellung effizienterer Varianten des Gillespie-Algorithmus Vorträge von Christof

Mehr

Katharina Kausel, April 2012

Katharina Kausel, April 2012 Mathematische Modelle in der Biologie Seminar Biomathematik Seminar Biomathematik Katharina Kausel, April 2012 Mutualismus Was ist Mutualismus? SYMBIOSE Unterschied: eine Art ist ohne die andere LEBENSUNFÄHIG

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 6 Differentialgleichungen erster Ordnung 0.7.0 Beispiel 6.: Durch Verzinsung wächst ein Kapital Kx im Laufe der Zeit x. Der Zuwachs K zum Zeitpunkt x im kleinen Zeitraum x ist proportional zum

Mehr

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. & 26. November 2008 Definition, Summe & Produkt Transponierte Beispiel: Einwohnerzahlen Leslie-Populationsmodell Beispiel Addition Multiplikation

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

Mathematik Teil 2: Differentialgleichungen

Mathematik Teil 2: Differentialgleichungen Mathematik Teil 2: Differentialgleichungen M. Gutting Fakultät IV, Department Mathematik 19. Juni 2017 Natürliches Wachstum/Zerfall Wachstum/Zerfall (Zinsen, Population / Radioaktiver Zerfall) verhält

Mehr

Strukturerhaltende Integrationsverfahren für stochastische Differentialgleichungen in der Modellierung von Zinsderivaten

Strukturerhaltende Integrationsverfahren für stochastische Differentialgleichungen in der Modellierung von Zinsderivaten Strukturerhaltende Integrationsverfahren für stochastische Differentialgleichungen in der Modellierung von Zinsderivaten Michael Günther, Christian Kahl und Thilo Roßberg Bergische Universität Wuppertal

Mehr