Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12

Größe: px
Ab Seite anzeigen:

Download "Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12"

Transkript

1 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 12 Aufgabe 37 Auf einem Güterumschlagplatz werden täglich m i Paletten angeliefert, die zu verschiedenen, fest vorgegebenen Standorten (x i,y i ),i = 1,...,n, transportiert werden müssen. Für den Transport der Paletten steht ein Kran zur Verfügung, der aufgrund seiner Konstruktion nur rechtwinklige Änderungen seiner Bewegungsrichtung zulässt. Außerdem kann der Kran immer nur eine Palette versetzen. Es soll nun derjenige Anlieferungsort für die Paletten bestimmt werden, von dem aus die gesamte, vom Kran zurückzulegende Wegstrecke minimal ist. a) Stellen Sie ein entsprechendes Optimierungsmodell auf. b) Überführen Sie das Optimierungsmodell in ein lineares Programmierungsmodell. (4 Punkte) Lösungsvorschlag: a) Die Standorte der Paletten seien (x i,y i ) und der gesuchte Anlieferungsort (x,y). Wenn der Kran den kürzesten Weg von (x,y) zu einem Standort (x i,y i ) fahren soll, so muss er x x i Längeneinheiten parallel zur x-achse zurücklegen und y y i Längeneinheiten parallel zur y-achse. Für jede Palette muss ein Hin- und ein Rückweg beachtet werden, so dass insgesamt w(x,y) = 2 n m i ( x x i + y y i ) i=1 Längeneinheiten zurückzulegen sind. Da keine weiteren Beschränkungen gegeben sind, besteht das Optimierungsproblem aus der Minimierung der Funktion w(x, y): min w(x,y) b) Die Beträge in der Zielfunktion machen dieses unbeschränkte Problem zu einem nichtlinearen Optimierungsproblem. Um also ein lineares Modell zu erhalten, müssen die Beträge anders formuliert werden. Beachte dazu, dass folgende Ungleichungen gelten: x x i x x i und x x i x i x für i = 1,...,n y y i y y i und y y i y i y für i = 1,...,n

2 Führt man also Variable u i und v i ein mit u i = max{x x i,x i x} = x x i und v i = max{y y i,y i y} = y y i für i = 1,...,n so erhält man das neue lineare Modell min w = 2 n i=1 m i(u i + v i ) u.d.n. : u i x x i für i = 1,...,n u i x i x für i = 1,...,n v i y y i für i = 1,...,n v i y i y für i = 1,...,n Das Minimum von w wird angenommen, wenn u i,v i so klein wie möglich sind und stimmt mit dem Minimum des unrestringierten Problems überein. Aufgabe 38 Gegeben sei ein vollständiger, gewichteter Graph G = (K n,c) mit K n = (V,E). Es gelte c(e) Ê e E, die Kantengewichte seien also nicht notwendigerweise nichtnegativ. Gesucht ist eine Partitionierung der Knoten, für die V i V j l i=1 P = {V 1,...,V l } V i V i = 1,...,l, V i = i j, i,j = 1,...,l und = V gilt (die also eine vollständige disjunkte Zerlegung der Knotenmenge darstellt) und die maximiert, wobei c(v i ) := l c(v i ) i=1 (v,w) E,v,w V i c(v,w) sei, also die Summe der Kantengewichte aller Kanten innerhalb von V i. a) Fomulieren Sie ein (binäres) lineares Programm, mit dessen Hilfe sich für einen gegebenen Graphen G die Partitionierung P ermitteln lässt.

3 b) Wie lautet eine Optimallösung, wenn c(e) 0 e E gilt? (Beweis!) c) Wie lautet eine Optimallösung, wenn c(e) 0 e E gilt? (Beweis!) (4 Punkte) Lösungsvorschlag: a) Fomulieren Sie ein (binäres) lineares Programm, mit dessen Hilfe sich für einen gegebenen Graphen G die Partitionierung P ermitteln lässt. Modell: Entscheidungsfrage: Soll Knoten i in der selben Knotenteilmenge wie Knoten j sein? Entscheidungsvariable: { 1, Knoten i ist in der selben Knotenteilmenge wie Knoten j x ij := 0, sonst (i,j) E,i < j Entscheidungsschranken: Es gilt, dass wenn sowohl Knoten i und Knoten j in der selben Knotenteilmenge liegen als auch Knoten j und Knoten k, auch Knoten i in der selben Knotenteilmenge wie Knoten k liegen muss (es gilt Transitivität). Dies lässt sich wie folgt modellieren: x ij + x jk 1 x ik 1 i < j < k n. Wenn x ij = 1 und x jk = 1 gilt, wird hiermit auch forciert, dass x ik = 1 gilt. Da dies jetzt nur für i < j < k gilt, muss man weiterhin noch und x ij + x ik 1 x jk 1 i < j < k n x ik + x jk 1 x ij 1 i < j < k n fordern, also wenn zwei der Aussagen x ij = 1, x jk = 1, x ik = 1 gelten, folgt die dritte. Weiterhin gilt für die x ij die Binaritätsbedingung x ij {0,1} (i,j) E,i < j. Entscheidungsziel: Maximierung der gesamten gewählten Kantengewichte: max c(i,j)x ij

4 b) Wie lautet eine Optimallösung, wenn c(e) 0 e E gilt? (Beweis!) Wegen c(e) 0 und x ij {0,1} gilt c(i,j)x ij c(i, j) für alle zulässigen Lösungen x. Wählt man nun P = {V } (nur eine Teilmenge, die aber ganz V ist, es sind also alle Knoten in derselben Knotenteilmenge), so erhält man das zugehörige x = (1,...,1) und somit c(i,j)x ij = c(i,j). Die Lösung x ist also optimal. c) Wie lautet eine Optimallösung, wenn c(e) 0 e E gilt? (Beweis!) Wegen c(e) 0 und x ij {0,1} gilt c(i,j)x ij 0 für alle zulässigen Lösungen x. Wählt man nun P = {{v 1 },..., {v V }} (alle Teilmengen einelementig, es ist also kein Knoten mit einem anderen in einer gemeinsamen Knotenteilmenge), so erhält man das zugehörige x = (0,...,0) und somit c(i,j)x ij = 0. Die Lösung x ist also optimal. Aufgabe 39 Betrachten Sie bitte folgenden Flugplan der Air Billig-OR: Start Ziel Abflug Ankunft Start Ziel Abflug Ankunft Ber Dort Ber HH Ber M Dort Düss Dort Ber Düss Ber Düss M Düss HH HH M HH Ber M Dort M Düss M Düss Sie können davon ausgehen, dass ausreichend Flugzeuge zu Beginn des Tages am jeweiligen Flughafen vorhanden sind. Um den Kunden auch weiterhin den billigstmöglichen Flugpreis anbieten zu können, werden Sie beauftragt, die Anzahl der Flugzeuge zur

5 Durchführung dieses Planes zu minimieren und ferner und viel wichtiger eine Kostenminimale Zuordnung von Flugcrews zu den einzelnen Flügen auszuarbeiten. Dazu gibt Ihnen die Air Billig-OR folgende Daten: Jede Crew hat regulär einen 8-Stunden-Tag und kostet C pro Tag. (Die Arbeitszeit beginnt mit dem ersten Abflug der Crew am Tag und endet mit der letzten Ankunft am gleichen Tag.) Überstunden kosten zusätzlich 200 C pro Stunde und Crew. Aus Sicherheitsgründen sind pro Crew nur täglich 5 Stunden Flugzeit erlaubt jeder Verstoß kostet eine Konventionalstrafe von 5000 C. Ist eine Crew am Ende des Tages nicht am gleichen Ort, wo sie gestartet ist, so muss die Air Billig-OR für die auswärtige Unterbringung der Crew in einem Hotel weitere 150 C zahlen. Zu guter letzt fordert Ihr Auftraggeber, dass in keinem Flug mehrere Crews mitfliegen. a) Zur Lösung des Problems formulieren Sie den Sachverhalt bitte als Set Partitioning Problem, wie Sie es aus der Vorlesung kennen gelernt haben. (Geben Sie dazu bitte die Entscheidungsfragen, -variablen, Nebenbedingungen und die Zielfunktion an.) b) Wie viele Flugzeuge werden mindestens zur Durchführung des Plans benötigt? (5 Punkte) Lösungsvorschlag: Set Partitioning Probleme haben allgemein folgende Gestalt: maxc x u.d.n. Ax=e x {0,1} wobei a ij {0,1} und e = (1,...,1). Um nun das vorliegende Flugplanungs-Problem hierauf zurückzuführen, ist ein großer Teil an Vorarbeiten zu leisten, da die noch zu definierenden Variablen lediglich Ja-Nein-Entscheidungen modellieren können: Die Zeile i von A gehört zum Flug i des Plans, während jede Spalte j für eine mögliche Zuteilung (Pairing) einer Crew zu einem oder mehreren Flügen steht. Die zu einer Zuteilung j gehörenden Kosten c j sind dann entsprechend aus den Angaben der Aufgabe zu ermitteln. Um genauer sehen zu können, welche Flüge überhaupt von ein und derselben Crew begleitet werden können, zeichnen wir uns die Flüge zunächst in folgende Abbildung. Ber Dort Duss Ä HH M

6 Daraus können wir nach Nummerierung der Flüge in Folge ihrer Abflugzeiten den folgenden Graphen entwickeln, dessen Knoten für einzelne Flüge i und j stehen und zwei Knoten genau dann miteinander verbunden werden, wenn sie von einer Crew in der Reihenfolge i vor j durchgeführt werden können Aus diesem Graphen kann man nun alle (34) denkbaren Zuordnungen von Crews zu Flügen ablesen, dabei entspricht jeder Weg in diesem Graphen einem Pairing (es sei hierbei auch ein einzelner Knoten ein Weg). (13: jeden Flug einzeln; 13: zwei aufeinander folgende; 6: drei aufeinander folgende; 2: vier aufeinander folgende Flüge) Zu jeder einzelnen Zuordnung j bestimmen wir die Kosten c j entsprechend der Aufgabenstellung; etwa für die Flugserie 34 Ber Dort Düss M Düss erhalten wir c 34 = = C. Für eine Zuteilung j = {f 1,...,f l } lassen sich die Kosten also durch c j = ½ Dauer(j)> ½ Dauer(j)>8 (Dauer(j) 8) 200+½ Startort(f1 ) Endort(f l ) 150 berechnen Weiter definieren wir a ij = 1, falls Flug i in Zuteilung j vorkommt und a ij = 0 sonst. Mit diesen Koeffizienten können wir das Problem wie folgt definieren: Entscheidungsfrage: Soll Zuteilung j vorgenommen werden? Entscheidungsvariable: { 1 ja, sie soll vorgenommen werden; x j = 0 nein, soll sie nicht Nebenbedingungen: Jeder Flug soll von genau einer Crew (also Zuteilung) bedient werden. 34 j=1 a ij x j = 1 für alle i = 1,...,13 Zielfunktion: Suche einen Kosten-minimalen Flugplan. min c x Um noch die Frage zur minimalen Anzahl an Flugzeugen zu beantworten: Es sind mindestens sechs Maschinen notwendig, um den Betrieb aufrecht zu halten. Zu Beginn des ersten Tages der Gültigkeit des Flugplanes müssen je 1 in Ber und Düss, sowie je 2 in HH und M zur Verfügung stehen. (Am Abend steht die gleiche Anzahl an Fliegern wieder an den einzelnen Flughäfen.)

7 Wie man bereits an diesem kleinen Beispiel sieht, besteht die Schwierigkeit der Lösung eines Set Packing Problems zu großen Teilen in der Aufgabe, sinnvolle Zuordnungen auszuwählen, da in großen Anwendungen nicht alle simultan in die Nebenbedingungsmatrix aufgenommen werden können.

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 13

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 13 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 13 Aufgabe 40 Für eine Menge K von Klassen einer

Mehr

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i )

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i ) Prof. Dr. U. Faigle J. Voss SS 2011 12. Übung zur Einführung in die Mathematik des Operations Research Dieses Übungsblatt wird nicht mehr gewertet. Aufgabe 1: Sei G = (V, E) ein gerichteter Graph und x

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin:

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 11 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 19.01.2016 Aufgabe 29 Bestimmen Sie mit der Stepping-Stone-ethode einen Transportplan mit minimalen Kosten für das klassische Transportproblem mit

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 1

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 1 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 1 Aufgabe 1 a) Erläutern Sie bitte die allgemeine

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

1. Über stückweise lineare Zielfunktionen bei der Transportmethode

1. Über stückweise lineare Zielfunktionen bei der Transportmethode - 2-1. Über stückweise lineare Zielfunktionen bei der Transportmethode Die Transportkosten entlang eines Transportweges sind stückweise linear, konkret, sie setzen sich aus drei linearen Teilstücken zusammen:

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung Kapitel : Fallstudie Bipartite Graphen Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und. Minimal spannende Bäume. Kürzeste Wege 6. Traveling Salesman

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

1. Transport- und Zuordnungsprobleme

1. Transport- und Zuordnungsprobleme 1. Transport- und Zuordnungsprobleme Themen 1. Transport- und Zuordnungsprobleme Themen: Analyse der Problemstruktur Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme Bezug

Mehr

Effiziente Algorithmen II

Effiziente Algorithmen II 10. Präsenzaufgabenblatt, WiSe 2014/15 Übungstunde am 19.01.2015 Aufgabe Q Betrachten Sie das Knapsackpolytop P = conv(v ) mit V = {x n i=1 a ix i α} {0, 1} n für gegebenes α und a i 0 (insbesondere ist

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Wie schreibe ich einen Kürzester Kruzester

Wie schreibe ich einen Kürzester Kruzester Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Algorithmentechnik im WS 8/9 Ausgabe 16. Dezember 8 Abgabe 13. Januar 9, 15:3 Uhr (im Kasten vor Zimmer 319, Informatik-Hauptgebäude,

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Sascha Kurz Jörg Rambau 24. November 2009 2 Aufgabe 3.1. Ein in m Depots gelagertes homogenes

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Der Wedelin Algorithmus

Der Wedelin Algorithmus Der Wedelin Algorithmus Lösung von großen 0-1 Problemen mit Lagrange Relaxation Christian Spieler 20. Januar 2007 Christian Spieler () Der Wedelin Algorithmus 20. Januar 2007 1 / 25 Ausgangsfrage Die Ausgangsfrage

Mehr

Minimalpolynome und Implikanten

Minimalpolynome und Implikanten Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik 1142KWL09 Aufgabe 1. Zeigen Sie, dass für alle n 2 gilt: n paarweise verschiedene Geraden im R 2 schneiden sich untereinander

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie) (Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie c NASA (earthasart.gsfc.nasa.gov/ganges.html) 1 Algorithmische Graphentheorie Sommersemester 2015 2. Vorlesung Flüsse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Gewinnmaximierung Sie sind Chef

Mehr

(k!) 2 ((n + 1)!) 2 n.

(k!) 2 ((n + 1)!) 2 n. Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik 1142KSL15 6 Punkte Aufgabe 1. Zeigen Sie, dass für alle n N gilt: n k=0 Für n = 0 und n = 1 gilt die Behauptung, da bzw. 1

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 21. November 2012 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Lineare Optimierung Dantzig 1947

Lineare Optimierung Dantzig 1947 Lineare Optimierung Dantzig 947 Lineare Optimierungs-Aufgaben lassen sich mit Maple direkt lösen: with(simplex): g:= 4*x + x2

Mehr

10 Kürzeste Pfade SSSP-Problem

10 Kürzeste Pfade SSSP-Problem In diesem Kapitel setzen wir uns mit der Berechnung von kürzesten Pfaden in einem Graphen auseinander. Definition 10.1 (Pfadgewichte). i) Das Gewicht eines Pfades p = (v 0, v 1,..., v k ) ist die Summe

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Packalgorithmen für quaderförmige Objekte. Ilia Belozerov

Packalgorithmen für quaderförmige Objekte. Ilia Belozerov Packalgorithmen für quaderförmige Objekte Ilia Belozerov 1. Motivation 2. Definitionen und Sätze 3. Exakte Lösungsverfahren 4. Heuristische Methoden 5. Vergleich der Heuristiken Übersicht Bedeutung von

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs Algorithmische Mathematik KSL09 Aufgabe. Zeigen oder widerlegen Sie: Es existiert ein Graph mit Valenzsequenz (8,,,,,,,,,). Geben Sie im Falle der Existenz

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Einführung in die Mathematik des Operations Research Sommersemester 3 en zur Klausur (7. Oktober 3) Aufgabe ( + 3 + 5 = Punkte). Es sei

Mehr

Optimierung I, SS 2008

Optimierung I, SS 2008 Aufgabe. ca. 4 Punkte Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Math. M. Ritter, Dipl.-Inf. Dipl.-Math. S. Borgwardt Optimierung I, SS 2008 Übungsblatt Um gegen die

Mehr

Gemischt-ganzzahlige und Kombinatorische Optimierung

Gemischt-ganzzahlige und Kombinatorische Optimierung 5. Präsenzaufgabenblatt, Sommersemester 2015 Übungstunde am 15.06.2015 Aufgabe J Betrachten Sie die LP-Relaxierung max c T x a T x b 0 x i 1 des 0/1-Knapsack-Problems mit n Gegenständen, c 0 und a > 0.

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Das Travelling Salesperson Problem 2 Das Travelling Salesperson Problem Zentrales Problem der Routenplanung Unzählige wissenschaftliche Artikel theoretischer sowie

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 22 1 Das Travelling Salesperson Problem

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2007)

Vorlesung Lineare Optimierung (Sommersemester 2007) 1 Vorlesung Lineare Optimierung (Sommersemester 007) Kapitel 9: Ganzzahlige Polyeder und Kombinatorische Dualität Volker Kaibel Otto-von-Guericke Universität Magdeburg Montag, 9. Juli 007 Gliederung Ganzzahlige

Mehr

Prüfungsklausur Operations Research,

Prüfungsklausur Operations Research, HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Operations Research, 10.7.2008 A Name, Vorname Matr. Nr. Aufgabe 1 : In drei Porzellanwerken W 1, W 2 und W 3 werden Speiseservice hergestellt,

Mehr

3. Der Algorithmus a) ohne Approximation b) mit Approximation

3. Der Algorithmus a) ohne Approximation b) mit Approximation Kapitel 9 Lösung von großen 0-1 Problemen mithilfe der Lagrange Relaxation - Der Wedelin Algorithmus Seminar Ganzzahlige Optimierung, WS 2006/07 Gliederung 1. Einführung 2. Das binäre ganzzahlige Problem

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Algorithmen I - Tutorium 28 Nr. 12

Algorithmen I - Tutorium 28 Nr. 12 Algorithmen I - Tutorium 28 Nr. 12 20.07.2017: Spaß mit Dynamischer und Linearer Programmierung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16)

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) Berlin, 14. April 2016 Name:... Matr.-Nr.:... Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) 1 / 10 2 / 10 3 / 11 4 / 9 5 / 10 Σ / 50 Einlesezeit: Bearbeitungszeit:

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Das Matching Polytop

Das Matching Polytop Das Matching Polytop Manuel Schneider Institut für Mathematik, TU Berlin Seminar: Algorithmische Diskrete Mathematik 27. Mai 2008 Überblick 1 Beschreibungen durch Ungleichungen Das Perfekte Matching Polytop

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Approximationsalgorithmen. 19. Dezember / 28

Approximationsalgorithmen. 19. Dezember / 28 Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli

Mehr

Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2

Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2 Höhere Mathematik für Bachelorstudiengänge I.2 Wir nehmen an, dass die LOA bereits in Normalform vorliegt: Maximiere c x, wobei A x = b sowie x 0 mit A R m n, b R m und c R n. Neben b 0 nehmen wir noch

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel - Lineare Optimierung Sascha Kurz Jörg Rambau 8. August Lösung Aufgabe.. Da es sich um ein homogenes

Mehr

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

1 Matroide. 1.1 Definitionen und Beispiele. Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler

1 Matroide. 1.1 Definitionen und Beispiele. Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler 1 Matroide 1.1 Definitionen und Beispiele 1. Definition (Unabhängigkeitssystem): Ein Mengensystem

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Lineare Optimierungsaufgaben - eine Einführung

Lineare Optimierungsaufgaben - eine Einführung Lineare Optimierungsaufgaben - eine Einführung Aufgabenstellung, Beispiele, graphisches Lösen und Trafo auf Normalform Vortragsskript von Lorenz Fischer Operations Research bedeutet die Suche nach einer

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr