Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 13

Größe: px
Ab Seite anzeigen:

Download "Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 13"

Transkript

1 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 13 Aufgabe 40 Für eine Menge K von Klassen einer Schule soll ein Stundenplan erstellt werden. Die Klassen dürfen nicht gleichzeitig bei mehreren Lehrern unterrichtet werden und jeder Lehrer kann gleichzeitig nur eine Klasse unterrichten. Die Anzahl Stunden, die eine Klasse k in einem Fach f bei einem Lehrer l bekommen soll ist durch a l kf gegeben. Diese Anzahl der Stunden muss vom Stundenplan auf jeden Fall abgedeckt werden. a) Erstellen Sie nach Möglichkeit ein lineares Modell, welches die obigen Bedingungen widerspiegelt. Machen Sie dabei bitte auch einen Vorschlag für eine Zielfunktion. b) Wenn eine Menge F 1 von Fächern vorgegeben ist, die nicht in einer Doppelstunde unterrichtet werden dürfen und eine andere Menge F 2 von Fächern, die in einer Doppelstunde unterrichtet werden müssen, wie formulieren Sie für diese Situation entsprechende lineare Nebenbedingungen? (6 Punkte) Lösungsvorschlag: a) Seien folgende Mengen gegeben: L: Menge an Lehrern F: Menge an Fächern T: Menge an Wochentagen] H: Menge an Stunden, dabei sei H = {1,...,h max } Entscheidungsvariable: := { 1, Klasse k wird in Fach f von Lehrer l am Tag t in Stunde h unterrichtet 0, sonst Nebenbedingungen: k K,l L,f F,t T,h H Eine Klasse k kann zu einer bestimmten Zeit nur von einem Lehrer und in einem Fach unterrichtet werden: 1, k K,t T,h H l L f F

2 Ein Lehrer kann in einer Stunde nur eine Klasse in einem Fach unterrichten 1, l L,t T,h H k K f F Die vorgegebene Anzahl Stunden pro Klasse, Fach und Lehrer muss abgedeckt werden: = al kf k K,f F,l L t T h H {0,1} k K,l L,f F,t T,h H Zielfunktionen könnten zum Beispiel sein, dass die Anzahl der Stunden insgesamt minimiert werden soll. Jedoch ist diese durch die dritte Nebenbedingung festgelegt. Ein bei Schulstundenplanproblemen formuliertes Ziel (eher ein Wunsch) ist beispielsweise, dass die Anzahl der Freistunden der Lehrer möglichst gering gehalten werden soll. Diese zu erfassen ist jedoch schon ein Problem für sich. b) Um die Bedingung keine Doppelstunde bzw. nur als Doppelstunde zu formulieren, wird es notwendig, die Menge der Stunden genauer zu betrachten. Im bisherigen Modell hätte auch eine wochenweise Betrachtung ausgereicht. Fächer, die nicht in Doppelstunden unterrichtet werden dürfen: + xt(h+1) 1 f F 1,k K,l L,t T,h = 1,...,h max 1 Fächer, die in einer Doppelstunde unterrichtet werden müssen. x t1 x t2 max x t(hmax 1) x t(h 1) f F 2,k K,l L,t T f F 2,k K,l L,t T + x t(h+1) f F 2,k K,l L,t T,h = 2,...,h max 1 Bei diesen Bedingungen ist nicht ausgeschlossen, dass nicht auch 3 oder 4 Stunden am Stück das gleiche Fach unterrichtet wird. Ist dieser Ausschluss erwünscht, kann dies durch das Hinzufügen der folgenden Nebenbedingungen erreicht werden. x t(h 1) + + xt(h+1) 2 f F 2,k K,l L,t T,h = 2,...,h max 1 Die tatsächlichen Bedingungen an einen Schulstundenplan sind noch sehr viel komplexer. So dürfen bspw. Schüler bis zu einem gewissen Alter keine Freistunden zwischen zwei Unterrichtsstunden eines Tages haben, oder müssen zu gewissen Stunden Klassen aufgespalten und in Form von Kursen unterrichtet werden. Einige dieser Bedingungen erfordern einen hohen Aufwand in der Modellierung und insgesamt ist das Schulstundenplanproblem ein schwer lösbares Problem. Aufgabe 41 Die Firma OR-SummerFun produziert Grills in verschiedenen Ausführungen, für welche eine unterschiedliche Herstellungszeit (HZ in Zeiteinheiten ZE) benötigt wird

3 Nr. Bezeichnung HZ 1 Grundmodell (Kohle, eckig) 2 2 Grundmodell-plus (Kohle, eckig, Abluftklappe) 3 3 Grundmodelle-delux (Kohle, eckig, Abluftklappe, Rollen, Ablagetisch) 4 4 Grundmodell-delux-design (Kohle, rund, Abluftklappe, Rollen, Ablagetisch) 4 5 Luxusmodell (Gas, eckig) 2 6 Luxusmodell-plus (Gas, eckig, Flaschenschrank) 3 7 Luxusmodelle-delux (Gas, eckig, Flaschenschrank, Rollen, Ablagetisch) 5 8 Luxusmodell-delux-design (Gas, rund, Flaschenschrank, Rollen, Ablagetisch) 5 Es liegen für den kommenden Tag folgende Aufträge vor Modell-Nr. Auftragsanzahl Die Firma verfügt über einen ausreichend großen Mitarbeiterpool (gegebenenfalls kann sie auf Zeitarbeitskräfte zurück greifen), wobei jeder Mitarbeiter gleich schnell arbeitet, jeder jeden Grill herstellen kann und eine maximale Arbeitszeit von 8 h hat. Das Ziel der OR-Summerfun ist es nun alle Aufträge für den kommenden Tag mit möglichst wenig Mitarbeitern zu produzieren. Um die Qualität zu sichern, wird jeder produzierte Auftrags-Grill von genau einem Mitarbeiter hergestellt. a) Formulieren Sie für die gegebene Problemstellung bitte ein geeignetes lineares Programm (i) nach dem Kantorovich-Modell (ii) nach dem Gilmore/Gomory Modell (iii) als Fluss-Modell b) Geben Sie bitte ein Beispiel für ein Bin-Packing Problem an, für welches die FFD- Heuristik keine optimale Lösung liefert. c) Gegeben sei das Gilmore/Gomory-Modell für ein eindimensionales Cutting-Stock Problem. Betrachten Sie dazu zwei mögliche Zielfunktionen: die Minimierung der Anzahl der benötigten Grundelemente die Minimierung des Abfalls, wobei überzählig zugeschnittene Teile auch als Abfall angesehen werden.

4 Zeigen Sie, dass die optimalen Lösungen für die beiden resultierenden Modelle identisch sind. (8 Punkte) Lösungsvorschlag: a) (i) Es sei G = Menge der Mitarbeiter j = 1,...,m 8 (mit m z.b. b i = 32,also obere Schranke) i=1 T i = (Dauer in li) HZ von Grillmodell i in ZE,i = 1,...,8 Kantrorovich-Modell s.t. x ij = Anzahl an gefertigten Grills i von Mitarbeiter j,i = 1,...,8,j = 1,...,m { y j = 1, falls Mitarbeiter j benötigt wird, 0, sonst., j = 1,...,m m min Minimiere Anzahl an Mitarbeitern i=1 y j 8 l i x ij 8y j, j i=1 m x ij = b i, i j=1 x ij {0,...,b i }, i,j y j {0,1}, j Ein Mitarbeiter arbeitet max. 8 h Aufträge müssen erfüllt werden Ganzzahligkeitsbedingung und Beschränkung Binarität (ii) Grundelement: 1 Mitarbeiter, der 8 Stunden arbeiten kann Zuschnittsvarianten: a = (a (1),...,a (m) ),a (j) = (a 1j,...,a mj ), j J a = alle Varianten der Grillproduktion, die in 8h vorgenommen werden können Gilmore \ Gomory-Modell x j =Anzahl der Zuschnitte entsprechend Variante a (j), j

5 min j J x j Minimiere Anzahl der Zuschnitte s.t. a ij x j b i, i = 1,...,m j J x j Z, j J x j 0, j J Bestellung muss mindestens erfüllt sein Ganzzahligkeitsbedingung Nichtnegativitätsbedingung (iii) Teillängen sortieren: L = 8 5 > 4 > 3 > 2 > 0 Längen (l j ) Bedarfe (gesamt, b j ) Sei G ein Digraph mit G = (V,E) : V = {v 0,v 1,...,v L } und E = E 1 E R mit Flussmodell (v i,v j ) E 1 k mit j i = l k (v i,v L ) E R,i 0 i > L l m x ij =Anzahl der Durchläufe von Kante(v i,v j ) in einem gerichteten Weg W in G von v 0 nach v L, i,j Minimiere die Flussstärke: min (0,v i ) E x 0i Alles, was in einem Knoten ankommt, muss diesen wieder verlassen: s.t. x ij = x jk, v j V \{v 0,v L } v i P(v j ) v k S(v j ) Bedarfe müssen mindestens erfüllt werden: x i,i+lj b j, j v i V,i+l j L Ganzzahligkeitsbedingung, Nichtnegativität: x ij Z +, i,j

6 b) L := > 0 }{{} Teillängen Minimiere die Anzahl der Grundelemente mit Länge 8 PFFD = (1,1,2,2,2,3), KFFD=3 ABER optimale Lösung p = (1,2,2,1,1,2),k = 2 c) Seien a ij,b i,l i,l gegeben. Dann ergibt sich als Zielfunktion zur Minimierung des Abfalls: min (x j a ij b i )l i + x j (L a ij l i ) i j j i min x j ( a ij l i ) b i l i + x j (L a ij l i ) j i j i j i min x j ( a ij l i + L j i i min L x j k j a ij l i ) b i l i i }{{} =:k Nach der Umformung entspricht die Zielfunktion zur Abfallminimierung bis auf eine additive und eine multiplikative Konstante der Zielfunktion zur Minimierunga der Anzahl der benötigten Grundelemente. Diese Konstanten haben keinerlei Einfluss auf die optimale Lösung. Somit sind die Lösungen beider resultierenden Modelle gleich, lediglich der Zielfunktionswert unterscheidet sich.

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 12 Aufgabe 37 Auf einem Güterumschlagplatz werden

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie) (Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Das Travelling Salesperson Problem 2 Das Travelling Salesperson Problem Zentrales Problem der Routenplanung Unzählige wissenschaftliche Artikel theoretischer sowie

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 22 1 Das Travelling Salesperson Problem

Mehr

Klausur zur Vorlesung Operations Research im Sommersemester 2009

Klausur zur Vorlesung Operations Research im Sommersemester 2009 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Operations Research im Sommersemester 2009 Hinweise:

Mehr

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 1

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 1 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 1 Aufgabe 1 a) Erläutern Sie bitte die allgemeine

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

So planen Sie eine Route

So planen Sie eine Route Prof. Dr. Hans G. Bartels Frankfurt, SS 00 Klausur zum speziellen Seminar Ausgewählte OR-Probleme Bearbeiter Maximale Punktzahl: Nachname :... Musterlösung ohne Gewähr 90 Vorname :... Matr.-Nr. :... Studienfach

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Branch-and-Bound und Varianten. Kapitel 3. Branch-and-Bound und Varianten. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159

Branch-and-Bound und Varianten. Kapitel 3. Branch-and-Bound und Varianten. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159 Kapitel 3 und Varianten Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159 Inhalt Inhalt 3 und Varianten Anwendungsbeispiele Branch-and-Cut Peter Becker (H-BRS) Operations Research

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

(Eigenfertigung und Fremdbezug)

(Eigenfertigung und Fremdbezug) 454 KE - Kostenminimierung / Kosteneinsparung (Eigenfertigung und Fremdbezug Beispiel Klausur Sept. 003 Aufg. 5 a Begründen Sie, warum die Entscheidung zwischen Eigenfertigung und Fremdbezug ein Verfahrenswahlproblem

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 3 (WS 2017/18) wird bearbeitet am 8.1.2018 26. Erweitern Sie das Xpress Modell für das Zuordnungsproblem aus der LV: Es gibt n Mitarbeiter und m Jobs, wobei n m

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Optimierung I, SS 2008

Optimierung I, SS 2008 Aufgabe. ca. 4 Punkte Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Math. M. Ritter, Dipl.-Inf. Dipl.-Math. S. Borgwardt Optimierung I, SS 2008 Übungsblatt Um gegen die

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Mehr

Dynamische Optimierung

Dynamische Optimierung Dynamische Optimierung Mike Hüftle 28. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Dynamisches Optimierungmodell 3 2.1 Grundmodell der dynamischen Optimierung............

Mehr

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16)

Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) Berlin, 14. April 2016 Name:... Matr.-Nr.:... Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) 1 / 10 2 / 10 3 / 11 4 / 9 5 / 10 Σ / 50 Einlesezeit: Bearbeitungszeit:

Mehr

6. Softwarewerkzeuge für die Lineare Programmierung

6. Softwarewerkzeuge für die Lineare Programmierung 6. Softwarewerkzeuge für die Lineare Programmierung Inhalt 6. Softwarewerkzeuge für die Lineare Programmierung GNU Linear Programming Kit Operations Research I Hochschule Bonn-Rhein-Sieg, SS 2013 314 GNU

Mehr

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin:

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 11 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 19.01.2016 Aufgabe 29 Bestimmen Sie mit der Stepping-Stone-ethode einen Transportplan mit minimalen Kosten für das klassische Transportproblem mit

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 1 (WS 2018/19) wird bearbeitet am 31.10.2018 1. Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006

Mehr

Algorithmen zur Visualisierung von Graphen Lagenlayouts

Algorithmen zur Visualisierung von Graphen Lagenlayouts Algorithmen zur Visualisierung von Graphen Lagenlayouts Marcus Krug Institut für Theoretische Informatik 25.06.2009 1/ 41 E-Mail-Graph der Fakultät für Informatik 2/ 41 E-Mail-Graph der Fakultät für Informatik

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Lösungen zu Aufgabenblatt 6

Lösungen zu Aufgabenblatt 6 Fachbereich Informatik Prof. Dr. Peter Becker Vorlesung Graphentheorie Operations Research Wintersemester 2004/05 3. Januar 2005 Lösungen zu Aufgabenblatt 6 Aufgabe 1 (Modellierung von LPs) Formulieren

Mehr

2. Maschinenumgebungen, Ablaufeigenschaften, Ziele

2. Maschinenumgebungen, Ablaufeigenschaften, Ziele 2. Maschinenumgebungen, Ablaufeigenschaften, Ziele Einige der in der Ablaufplanung typischen Bezeichnungen haben wir bereits kennen gelernt. Diese werden im Folgenden ergänzt und zu einer simplen, aber

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Konzentrische U-Bahn-Linienpläne

Konzentrische U-Bahn-Linienpläne Bachelor-Kolloquium Konzentrische U-Bahn-Linienpläne Magnus Lechner 19.03.2014 Betreuer: Prof. Dr. Alexander Wolff Dipl.-Inf. Martin Fink Motivation Warum sind U-Bahn-Linienpläne von Interesse? Motivation

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems LinOpt Tool zur Visualisierung eines multikriteriellen Optimierungsproblems Erstellt von Michael Berklmeir, Michael Haarnagell, Stefan Kraus, Stephan Roser im Rahmen einer Seminararbeit am Lehrstuhl für

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie c NASA (earthasart.gsfc.nasa.gov/ganges.html) 1 Algorithmische Graphentheorie Sommersemester 2015 2. Vorlesung Flüsse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Gewinnmaximierung Sie sind Chef

Mehr

F u n k t i o n e n Lineare Optimierung

F u n k t i o n e n Lineare Optimierung F u n k t i o n e n Lineare Optimierung Das Simplex-Verfahren läuft die Ecken des Polyeders ab, bis es an einer Optimallösung angekommen ist. 1. Einführung Während des 2. Weltkrieges und in den darauf

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 21. November 2012 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Sascha Kurz Jörg Rambau 24. November 2009 2 Aufgabe 3.1. Ein in m Depots gelagertes homogenes

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA Mögliche Fälle für Z Etschberger - WS2016 1 Z =, d.h., es existiert keine zulässige (x 1, x 2 )-Kombination. 2

Mehr

Scheduling-Theorie. Mathematische Modelle und Methoden für deterministische Scheduling-Probleme. LiSA - A Library of Scheduling Algorithms

Scheduling-Theorie. Mathematische Modelle und Methoden für deterministische Scheduling-Probleme. LiSA - A Library of Scheduling Algorithms Scheduling-Theorie Mathematische Modelle und Methoden für deterministische Scheduling-Probleme LiSA - A Library of Scheduling Algorithms Otto-von-Guericke Universität Magdeburg/FMA/Heidemarie Bräsel &

Mehr

3.3 Reduzierte Basen nach Lenstra, Lenstra und Lovász

3.3 Reduzierte Basen nach Lenstra, Lenstra und Lovász Gitter und Codes c Rudolf Scharlau 15. Juni 2009 221 3.3 Reduzierte Basen nach Lenstra, Lenstra und Lovász Alternativ zu klassischen Konzepten wie dem von Minkowski gibt es seit gut 25 Jahren den Reduktionsbegriff

Mehr

ReCoNodes: Optimierungsmethoden zur Steuerung

ReCoNodes: Optimierungsmethoden zur Steuerung Optimierungsmethodik zur Steuerung hardwarerekonfigurierbarer Knoten Prof.Dr.Sándor Fekete Mathematische Optimierung TU Baunschweig & Prof.Dr.-Ing Jürgen Teich Software-Hardware-Co-Design Universität Erlangen-Nürnberg

Mehr

Lineare Optimierung. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet.

Lineare Optimierung. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. Lineare Optimierung Dr. Bommhardt. Das ervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Gleichungen und Ungleichungen n der Wirtschaft sind häufig

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Sätze PLUS Es gilt für A, B R n n : det(ab) = det A det B (Determinantenmultiplikationssatz)

Mehr

Aussage: richtig falsch Entscheidungen über Investitionen werden stets in der kurzfristigen (operativen) Planung getroffen.

Aussage: richtig falsch Entscheidungen über Investitionen werden stets in der kurzfristigen (operativen) Planung getroffen. Aufgabe 1 Richtig oder Falsch? (20 Punkte) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an. Stimmt Ihre Bewertung einer Aussage

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

Lineare und kombinatorische Optimierung

Lineare und kombinatorische Optimierung Lineare und kombinatorische Optimierung Theorie, Algorithmen und Anwendungen Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2017/18 Peter Becker (H-BRS) Lineare

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Hierarchische Zeichnungen 6. Vorlesung Sommersemester 2015 (basierend auf Folien von Marcus Krug, KIT) 2 Beispiel E-Mail-Graph zwischen Einrichtungen der Fak. für Informatik,

Mehr

Packalgorithmen für quaderförmige Objekte. Ilia Belozerov

Packalgorithmen für quaderförmige Objekte. Ilia Belozerov Packalgorithmen für quaderförmige Objekte Ilia Belozerov 1. Motivation 2. Definitionen und Sätze 3. Exakte Lösungsverfahren 4. Heuristische Methoden 5. Vergleich der Heuristiken Übersicht Bedeutung von

Mehr

Ganzzahlige Optimierung (IP)

Ganzzahlige Optimierung (IP) Thema Ganzzahlige Optimierung (IP) Systematik * Problematik * Pragmatik IP und Branch and Bound 1 Agenda 1. Relevanz der Ganzzahligkeit? 2. Formulierung ganzzahliger Modelle 3. Zur Lösung ganzzahliger

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

1. Über stückweise lineare Zielfunktionen bei der Transportmethode

1. Über stückweise lineare Zielfunktionen bei der Transportmethode - 2-1. Über stückweise lineare Zielfunktionen bei der Transportmethode Die Transportkosten entlang eines Transportweges sind stückweise linear, konkret, sie setzen sich aus drei linearen Teilstücken zusammen:

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Untere Schranke für allgemeine Sortierverfahren

Untere Schranke für allgemeine Sortierverfahren Untere Schranke für allgemeine Sortierverfahren Prinzipielle Frage: wie schnell kann ein Algorithmus (im worst case) überhaupt sein? Satz: Zum einer Folge von n Keys mit einem allgemeinen Sortierverfahren

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 1 (WS 2017/18) wird bearbeitet am 23.10.2017 1. Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80

Mehr

Klausur Management Science. Donnerstag, 19. Februar 2015

Klausur Management Science. Donnerstag, 19. Februar 2015 run Lehrstuhl fiir Operations Management Prof. Dr. Rainer Kolisch ArcisstraBe 21, 80333 Miinchen Klausur Management Science Donnerstag, 19. Februar 2015 Name: Vorname: Matrikelnummer: Studiengang: Fachsemester:

Mehr

Schranken für Mengenüberdeckungsprobleme. Diplomarbeit. vorgelegt von. Markus Thiemann. Januar 2009

Schranken für Mengenüberdeckungsprobleme. Diplomarbeit. vorgelegt von. Markus Thiemann. Januar 2009 Schranken für Mengenüberdeckungsprobleme Diplomarbeit vorgelegt von Markus Thiemann geboren am 30. September 1982 in Georgsmarienhütte Januar 2009 Angefertigt im Institut für Numerische und Angewandte

Mehr

Optimierung. Vorlesung 04

Optimierung. Vorlesung 04 Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Kaufmännische Berufsmatura 2016

Kaufmännische Berufsmatura 2016 Kaufmännische Berufsmatura 06 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig

Mehr

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen 10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Optimierung. Vorlesung 9

Optimierung. Vorlesung 9 Optimierung Vorlesung 9 Heute Facility location problem 1. Komplemetärer Schlupf 2. Das Facility Location Problem 3. Problemstellung LP, Duales, Schlupf Eine Approximationsalgorithmus Analyse und Beweis

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Welche der folgende Einfärbungen sind zulässig, wenn K i (i= 1, 2, 3, 4) jeweils eine andere Klassenfarbe bezeichnet? Datum:

Welche der folgende Einfärbungen sind zulässig, wenn K i (i= 1, 2, 3, 4) jeweils eine andere Klassenfarbe bezeichnet? Datum: Aufgabe B040 Durch das Einrichten von Standleitungen soll die Kommunikation zwischen verschiedenen wissenschaftlichen Instituten erleichtert werden. Im Einzelnen sind folgende Verbindungen herzustellen:

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Aufgabe 7.1: Wirtschaftsplanung

Aufgabe 7.1: Wirtschaftsplanung Johann Wolfgang Goethe-Universität Frankfurt am Main Lehrst.f.BWL, insb. Quant. Methoden Prof. Dr. Dietrich Ohse LPUE:SQM6 LP und Erweiterungen lpueb07_ 2003s.doc Aufgabe 7.1: Wirtschaftsplanung Eine Volkswirtschaft

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Zuweisungsprobleme 2 1 3 5 4 Kombinatorische Optimierung Rucksackpackproblem 1 10 2 4 6 3 5 8 6 Aufspannende Bäume Travelling Salesman VLSI Design C. Kanzow, M. Gerdts Kombinatorische

Mehr

V. Metriken. Gliederung. I. Motivation. Lesen mathematischer Symbole. Wissenschaftliche Argumentation. Matrizenrechnung. Seite 67

V. Metriken. Gliederung. I. Motivation. Lesen mathematischer Symbole. Wissenschaftliche Argumentation. Matrizenrechnung. Seite 67 Gliederung I. Motivation II. III. Lesen mathematischer Symbole Wissenschaftliche Argumentation IV. Matrizenrechnung V. Metriken Seite 67 Problemstellung: Gegeben seien 2 Punkte im Raum. Wie groß ist die

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Einführung in die Mathematik des Operations Research Sommersemester 3 en zur Klausur (7. Oktober 3) Aufgabe ( + 3 + 5 = Punkte). Es sei

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr