Algorithmen zur optimalen Quantisierung von Signalen

Größe: px
Ab Seite anzeigen:

Download "Algorithmen zur optimalen Quantisierung von Signalen"

Transkript

1 Algorithmen zur optimalen Quantisierung von Signalen Flavius Guiaş Universität Dortmund Habilitationsvortrag,

2 INHALT 1 Mathematische Grundlagen 2 Ein effizienter Algorithmus für die skalare Quantisierung (X. Wu, 1991) Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

3 BEGRIFFE Signal: W Maß P auf R d (bzw. ZV X mit Verteilung P, oder Dichtefunktion f von P). Quantisierung: Darstellung (Codierung) des Signals durch eine endliche Menge von Quantisierungslevel (Codewörter) c = {y 1,..., y n } R d (Codebuch). n-quantisierer: eine Borel-messbare Abbildung q : R d R d mit q(r d ) n (q F n ). Zellen: S i = q 1 ({y i }) d.h. x S i q(x) = y i (Partition von R d ). Quantisierungsfehler: D(q) = E[d(X, q(x)] = d eine Abstandsfunktion auf R d und ZV X P. n i=1 S i d(x, y i )dp(x), mit häufige Wahl: d(x, y) = x y r mit Norm auf R d, r 1 Parameter. speziell: d(x, y) = x y 2 ( : euklidischer Abstand) Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

4 Historische Beispiele 1898: W.F.Sheppard: On the calculation of the most probable values of frequency constants for data arranged according to equidistant divisions of a scale f(x)=e x2 / Histogramme Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

5 Informationstheorie Oliver, Pierce, Shannon (1948): PCM (pulse-code modulation) akustische Signale 1 Tiefpass-Filter (f s /2) 2 Sampling mit Frequenz f s 3 Quantisierung der Amplituden (A/D-Konversion) 4 Bit-Darstellung: -feste Rate: R = log n -variable Rate (Huffman-Codierung) 5 Übertragung des digitalisierten Signals 6 Dekodierung (D/A-Konversion) d > 1: Vektorquantisierung Shannon (1949,1959): source coding theory Zerlegung des akustischen Signals in d aufeinanderfolgende Blöcke gleichzeitige Quantisierung über R d Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

6 Optimales Codebuch Lösung des Minimierungsproblems inf D(q) = inf E[d(X, q(x))], q F n q F n X P. Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

7 Ein allgemeiner Algorithmus 1 START: beliebiger Quantisierer q 0 mit Codebuch c 0 = {x 1,..., x n }. 2 optimale Partition für gegebenes Codebuch: Voronoi-Diagramm: S i {x R d : d(x, x i ) d(x, x j ), j i}. -definiere q 1 (x) = n x i 1 Si (x). i=1 Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

8 Ein allgemeiner Algorithmus 3 optimales Codebuch für gegebene Partition: -gegeben: S i = q 1 1 ({x i}) -ersetze x i durch y i definiert durch: E[d(X, y i ) X S i ] = min y E[d(X, y) X S i ] y i : Zentroid für S i. n -definiere q 2 (x) = y i 1 Si (x). i=1 Beispiel: d(x, y) = x y 2, (Massenzentrum) y i = S i xdp(x) P(S i ) = E[X X S i ]. Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

9 Ein allgemeiner Algorithmus Abstiegsalgorithmus: alterniere Schritte 1. und 2. Abbruch: falls D(q i ) D(q i+1 ) < εd(q i ). Algorithmus von Lloyd -S.P.Lloyd (1957), d = 1, x y 2 -H.Steinhaus (1956), d = 3, x y 2. Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

10 Konvergenz? notwendige Bedingungen zur (lokalen) Optimalität: 1 Partition optimal zum Codebuch 2 Codebuch optimal zur Partition i.a. nicht hinreichend: Gegenbeispiel: Lloyd (1982). Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

11 Konvergenz? falls P diskretes W Maß : (1) und (2) sind hinreichend zur lokalen Optimalität. weitere notwendige Bedingung: P( S i S j ) = 0 für i j. d.h. wenn Konvergenz, dann evtl. gegen ein lokales Minimum (möglicherweise schlecht!) Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

12 Ansätze simulated annealing (stochastische Relaxation) neues Codebuch + zufälliges Rauschen mit E[ ] = 0. Metropolis-Methode: falls Fehler kleiner, akzeptiere die neue Konfiguration, sonst akzeptiere mit W keit e β D, β = T 1. T : Temperatur (Varianz des Rauschens) verringert im Laufe der Simulation fuzzy-clustering (für diskrete W Maße) genetische Algorithmen neuronale Netze prädiktive Verfahren (mit Gedächtnis): für Folgen von Input-Vektoren (z.b. Videosignale) Prädiktor: Xn = φ( X n 1 ˆ,..., X n m) ˆ Input-Vektor: X n Fehler: X n X q n =: e n = ê n (quantisiert) setze ˆX n = X n + ê n. Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

13 Reduktion der Komplexität Ansätze für die Struktur des Codebuchs (z.b. Gitter) Baum-Strukturierung: schrittweise Eliminierung der ungeeigneten Kandidaten y i in der Berechnung von min j d(x, y j ). Minimiere eine Kombination zwischen Fehlermaß und Kostenfunktion (Komplexitätskosten) Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

14 Mathematische Grundlagen (Graf & Luschgy : Foundations of Quantization for Probability Distributions (2000)) Annahme: d(x, y) = x y r mit Norm auf R d, r 1. Definiere ψ r : R d R, ψ r (a) = E[ X a r ] (konvex). Sei C r (P) = {y : ψ r (y) min} (Zentroide) Falls ψ r strikt konvex C r (P) = 1 (Eindeutigkeit) Hinreichende Bedingungen für strikte Konvexität: r > 1 und ( strikt konvex oder P(S(a, b)) < 1 a, b) (S(a, b) := {x : x a = x b }) r = 1, strikt konvex und P(L) < 1, L R d (Gerade) x + ty x Sei + (x, y) = lim (Richtungsableitung) t 0 + t falls diff bar auf R d \ {0} ( glatt ): (x) (Gradient in x 0). Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

15 1. Äquivalenz n-quantisierungsproblem n-zentren-problem V n,r (P) := inf q F n E[ X q(x) r ] = inf c n E[min a c X a r ] c = {a 1,... a n } ψ n,r (a 1,... a n ) = E[ min 1 i n X a i r ]. n > 1: mehrere Zentren i.a. ψ n,r nicht konvex. Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

16 2. Äquivalenz n-quantisierungsproblem beste Approximation von P durch ein diskretes W Maß mit n Trägerpunkte Abstandsbegriff: V n,r (P) = inf Q P n ρ r r(p, Q) ( ρ r (P 1, P 2 ) = inf x y r dµ(x, y) µ R d R d für P 1, P 2 Borel W Maße auf R d mit x r dp i (x) < ) 1/r wobei µ Borel W Maß auf R d R d mit Marginalien P 1 und P 2 : µ(a R d ) = P 1 (A), µ(r d B) = P 2 (B). Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

17 High resolution theory Theorem (Zador, u.a.) Für Q r ([0, 1] d ) := inf n 1 nr/d V n,r (U([0, 1] d )) gilt Q r ([0, 1] d ) > 0 und, falls E[ X r+δ ] < für ein δ > 0 und dp = fdλ d, r = 2, = : lim n nr/d V n,r (P) = Q r ([0, 1] d ) f L d/d+r. n 2/d V n,r (U([0, 1] d )) = n 2/d n i=1 n = n (λ 2/d d (S i ) (d+2)/d i=1 n = n 2/d M(S i, y i ) λ d (S i ) (d+2)/d i=1 S i x y i 2 dx S i x y i 2 dx ) λ d (S i ) (d+2)/d Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

18 High resolution theory M(S i, y i ): Trägheitsmoment. falls n und alle Zellen kongruent ( S): Gersho s Vermutung (1979): Q 2 ([0, 1] d ) n 2/d n M(S) n (d+2)/d = M(S). das inf wird erreicht falls alle Zellen kongruent zu einer Zelle sind, welche R d tesseliert. Diese Tesselation ist eine Voronoi-Partition entsprechend zu einem Gitter. d = 2: wahr (L.Fejes Toth (1959)) Hexagone d = 3 (?) bestes Gitter: kubisches Gitter, Tesselation durch Oktahedren numerische Experimente: Du& Wang (2005) Flavius Guiaş (Universität Dortmund) Algorithmen zur optimalen Quantisierung von Signalen Habilitationsvortrag, / 18

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Jurij-Andrei Reichenecker 21. Juni Tessellationen

Jurij-Andrei Reichenecker 21. Juni Tessellationen Jurij-Andrei Reichenecker 21. Juni 2010 Tessellationen Seite 2 Tessellationen 21. Juni 2010 Jurij-Andrei Reichenecker Inhalt Einführung Voronoi Tessellation Algorithmus zur Erstellung von Voronoi Tessellationen

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Optimaler Transport. Marzena Franek. Skiseminar Februar Institut für Numerische und Angewandte Mathematik

Optimaler Transport. Marzena Franek. Skiseminar Februar Institut für Numerische und Angewandte Mathematik Institut für Numerische und Angewandte Mathematik Skiseminar Februar 2009 1 Das Problem von Monge 1 Das Problem von Monge 2 1 Das Problem von Monge 2 3 1 Das Problem von Monge 2 3 4 1 Das Problem von Monge

Mehr

Datenkompression: Skalarquantisierung. H. Fernau

Datenkompression: Skalarquantisierung. H. Fernau Datenkompression: Skalarquantisierung H. Fernau email: fernau@uni-trier.de WiSe 2008/09 Universität Trier 1 (Skalar-)Quantisierung Allgemeines Problem: Die Ausgabe einer Quelle muss durch eine endliche

Mehr

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund Einführung in die Boltzmann-Gleichung Flavius Guiaş Universität Dortmund Antrittsvorlesung, 19.04.2007 INHALT 1 Herleitung der Boltzmann-Gleichung 2 Boltzmann-Ungleichung und Maxwell-Verteilung 3 H-Theorem

Mehr

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 581 21. Greedy Algorithmen Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 Aktivitäten Auswahl 582 Koordination von Aktivitäten, die gemeinsame Resource exklusiv

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

SPRACHCODIERUNG. Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation

SPRACHCODIERUNG. Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation SPRACHCODIERUNG Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation INHALTSVERZEICHNIS 1. Physikalische- und digitale Größen 2. Signal Rausch Abstand 3. Modulationsmethoden 1. PCM: Pulse Code

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Einführung und geometrische Grundlagen

Einführung und geometrische Grundlagen 31. Oktober 2005 Vortrag zum Seminar Bildsegmentierung und Computer Vision Übersicht 1 2 3 Abstandsfunktionen Beispiele Mit Bildsegmentierung bezeichnet man die Zerlegung der Bildebene in sinnvolle Teilbereiche.

Mehr

Markierte Punktprozesse und zufällige Tesselationen

Markierte Punktprozesse und zufällige Tesselationen und zufällige Tesselationen Seminar stochastische Geometrie und ihre Anwendungen 7. Dezember 2009 und zufällige Tesselationen Gliederung 1 2 3 und zufällige Tesselationen Gliederung 1 2 3 und zufällige

Mehr

21. Dynamic Programming III

21. Dynamic Programming III Approximation 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Sei ein ε (, 1) gegeben. Sei I eine bestmögliche Auswahl. Suchen eine gültige Auswahl I mit

Mehr

15 Grundlagen der Simulation

15 Grundlagen der Simulation 15 Grundlagen der Simulation 15.1 Einführung Komplexe Problemstellungen, die einer analytischen Behandlung nur sehr schwer oder gar nicht zugänglich sind Lösung von diskreten (oder analytischen) Optimierungsaufgaben,

Mehr

Medien- Technik. Digital Audio

Medien- Technik. Digital Audio Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle

Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle Bootstrap-Methoden zur Ermittlung kritischer Werte für asymptotische FWER-Kontrolle [Dudoit, van der Laan, Pollard: Multiple Testing. Part I Single-Step Procedures for Control of General Type-I-Error Rates]

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Techniken zur Berechnung der Dimension

Techniken zur Berechnung der Dimension Seminarvortrag Ulm, 21.11.2006 Übersicht Masse-Verteilungs-Prinzip Berechnung der Dimension von Fraktalen Es ist oft nicht einfach die Hausdorff - Dimension allein durch deren Definition zu berechnen.

Mehr

Multimedia Systeme. Dr. The Anh Vuong. http: Multimedia Systeme. Dr. The Anh Vuong

Multimedia Systeme. Dr. The Anh Vuong.   http:   Multimedia Systeme. Dr. The Anh Vuong email: av@dr-vuong.de http: www.dr-vuong.de 2001-2006 by, Seite 1 Multimedia-Application Applications Software Networks Authoringssofware, Contentmangement, Imagesprocessing, Viewer, Browser... Network-Architecture,

Mehr

Universität Leipzig, SoSo 2013

Universität Leipzig, SoSo 2013 Vorlesung Wahrscheinlichkeitstheorie I Universität Leipzig, SoSo 2013 Prof. Dr. Max v. Renesse renesse@uni-leipzig.de Sprechstunde: Di 13.15-14.45, A 337 Übungen: Mo 11.15 -- 12.45 A 314 K. Zimmermann

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

Seminar zur Numerischen Analysis im Wintersemester 2008/2009. Signalverarbeitung und Wavelets. Datenkompression

Seminar zur Numerischen Analysis im Wintersemester 2008/2009. Signalverarbeitung und Wavelets. Datenkompression Seminar zur Numerischen Analysis im Wintersemester 008/009 Signalverarbeitung und Wavelets Datenkompression Nadine Pawlitta 03.0.009 Inhaltsverzeichnis Einführung Verlustfreie Kompression. Entropiecodierung.......................................

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung 5 Konfidenzschätzung 5. Einige Grundbegriffe zur Konfidenzschätzung Diesem Kapitel liegt das parametrische Modell {X, B X, P } mit P {P Θ} zugrunde. {Θ, B Θ } sei ein Meßraum über Θ und µ ein σ-finites

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Vorlesung 13b. Relative Entropie

Vorlesung 13b. Relative Entropie Vorlesung 13b Relative Entropie 1 S sei eine abzählbare Menge (ein Alphabet ). 2 S sei eine abzählbare Menge (ein Alphabet ). Die Elemente von S nennen wir Buchstaben. S sei eine abzählbare Menge (ein

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Signifikanztests Optimalitätstheorie

Signifikanztests Optimalitätstheorie Kapitel Signifikanztests Optimalitätstheorie Randomisierte Tests In einem statistischen Modell M, A, P ϑ sei ein Testproblem gegeben: H : ϑ Θ gegen H : ϑ Θ ; wobei also durch Θ Θ Θ eine Zerlegung des Parameterbereichs

Mehr

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}.

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. 1 Das Lebesgue-Maß 1.1 Etwas Maßtheorie Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. Definition 1.1. Ein nichtleeres Mengensystem A P(X) heißt σ-algebra, wenn: (A1) X A (A2) Wenn

Mehr

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Definition Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Seminar über Algorithmen WS 2005/2006 Vorgetragen von Oliver Rieger und Patrick-Thomas Chmielewski basierend auf der Arbeit

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Grundlagen der Informationstheorie. Hanna Rademaker und Fynn Feldpausch

Grundlagen der Informationstheorie. Hanna Rademaker und Fynn Feldpausch Grundlagen der Informationstheorie Hanna Rademaker und Fynn Feldpausch . Thema Informationstheorie geht zurück auf Claude Shannon The Mathematical Theory of Communication beschäftigt sich mit Information

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Patrick Knapp Berichtseminar zur Bachelorarbeit Universität Konstanz 14.12.2010 Einleitung Aufgabenstellung min J(y,

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Algebraisches Internet

Algebraisches Internet . p. 1/40 Algebraisches Internet Axel Kohnert Braunschweig Mai 2010 Universität Bayreuth axel.kohnert@uni-bayreuth.de . p. 2/40 Übersicht Designs Network Codes Konstruktion Decodieren I - Designs. p. 3/40

Mehr

Compressed Sensing für Signale aus Vereinigungen von Unterräumen

Compressed Sensing für Signale aus Vereinigungen von Unterräumen Compressed Sensing für Signale aus Vereinigungen von Unterräumen Nadine Pawlitta 21. Januar 2011 Nadine Pawlitta () CS auf Vereinigungen von Unterräumen 21. Januar 2011 1 / 28 Übersicht 1 Grundprinzip

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Stochastische Integration Stochastische Differentialgleichungen Stochastische Partielle Differentialgleichungen. Dominic Breit

Stochastische Integration Stochastische Differentialgleichungen Stochastische Partielle Differentialgleichungen. Dominic Breit Dominic Breit 14.12.213 Outline 1 Stochastische Integration 2 3 Brwonsche Bewegung (1) Eine Brownsche Bewegung W = (W t ) t [,T ] über einem Wahrscheinlichkeitsraum (Ω, F, P) ist ein zeitstetiger stochastischer

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Weierstraß-Institut für Angewandte Analysis und Stochastik Zufällige Geometrie und das Internet der Dinge

Weierstraß-Institut für Angewandte Analysis und Stochastik Zufällige Geometrie und das Internet der Dinge Weierstraß-Institut für Angewandte Analysis und Stochastik Zufällige Geometrie und das Internet der Dinge Dr. Benedikt Jahnel Das Internet der Dinge - Alles ist vernetzt pixabay.com "Das Internet der Dinge

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H.

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H. 11 Hilberträume Sei H ein Vektorraum über K = R oder K = C. Definition 11.1. (a) Eine sesquilineare Form auf H ist eine Abbildung, : H H K so, dass für alle x, x, y, y H und α, β K gilt αx + βx, y = α

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Bayesian analysis of spatial point processes in the neighbourhood of Voronoi. networks

Bayesian analysis of spatial point processes in the neighbourhood of Voronoi. networks Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks Judith Schmidt und Bettina Hund 02 Juli 2008 Seminar: Stochastische Geometrie und ihre Anwendungen - Zufa llige Netzwerke

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 25 Überblick Überblick Metropolis-Algorithmus

Mehr

Die mittlere Höhe eines Binärbaumes. h(t) = 1 e(t) mit E(t) = Menge der Blätter von t, h(b, t) = Höhe des Blattes b in t

Die mittlere Höhe eines Binärbaumes. h(t) = 1 e(t) mit E(t) = Menge der Blätter von t, h(b, t) = Höhe des Blattes b in t Höhe von Binärbäumen Die mittlere Höhe eines Binärbaumes h(t) = 1 e(t) b E(t) mit E(t) = Menge der Blätter von t, h(b, t) = Höhe des Blattes b in t h(b, t), Höhe von Binärbäumen Die mittlere Höhe eines

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen

Mehr

Optimierung. Vorlesung 13

Optimierung. Vorlesung 13 Optimierung Vorlesung 13 Letze Woche Branch&Bound Suchbaum Nach Möglichkeit nicht komplett durchsuchen Abschätzungen nach oben und unten Suchheuristiken Randomisierte Lokale Suche Simulated Annealing Metropolis

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr