Bestimme: (2x - x)dx. (x + 2) dx. (u - u + 2)du. ( 7 Ò x[ + π Ò x )dx. Berechne händisch: a) x dx

Größe: px
Ab Seite anzeigen:

Download "Bestimme: (2x - x)dx. (x + 2) dx. (u - u + 2)du. ( 7 Ò x[ + π Ò x )dx. Berechne händisch: a) x dx"

Transkript

1 Integrieren 1 1. Bestimme: 2 a) (2x - x)dx c) (u - u + 2)du -1 5 b) (x + 2) dx 0 d) ( 7 Ò x[ + π Ò x )dx 2. 1 Berechne händisch: a) x dx -1 2 b) (x - 1)dx -2 4 c) (-x + 5x -4)dx -4. Berechne von Hand (Dokumentation!) : a) ( x - 2x) dx b) ( x - ) dx 4. Berechne vollständig von Hand (ausfühliche Dokumentation!) : a) x dx b) ( 1 t ) dt c) ( u 2) du Gib eine Stammfunktion von g(t) = π 7(4n 2-25)Òt 2n+4 6. Gib eine Polynomfunktion, die Integralfunktion von h(u) = u+1 ist. 7. Gib eine Stammfunktion an: 1 a) y = x[ - 2x b) y = 2πt - c) f (u) = - 1 u Gib eine Stammfunktion von f(x) = 0,25x an, die keine Integralfunktion von f ist. 9. Gib eine Stammfunktion an: 1 a) y = x - 2x + 5 b) f(t) = 2t ( - π ) + e c) h(i) = i Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 1

2 10. Schreibe einen Ausdruck auf für die Masszahl der schraffierten Fläche (ohne Betragstriche!) 11. f(x) = x - 6x + 40 a) Bestimme die Funktion F(t), die für jedes t > a die Masszahl der schraffierten Fläche angibt. b) Was sagt der Hauptsatz der Differential- und Integralrechnung über F(t) aus? 12. Gib einen Ausdruck, der gleich der Masszahl der schraffierten Fläche ist (ohne Betragsstriche!) 1. Gegeben: Kurve mit der Gleichung k k: y = x + cx + e a) Gib die Gleichung der Funktion F(t) an, die für jedes t > a die Masszahl der schraffierten Fläche angibt (a, c, e sind konstant). b) Was sagt der Hauptsatz der Differential- und Integralrechnung über F(t) aus? Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 2

3 14. Schreibe einen Ausdruck auf für die Masszahl der schraffierten Fläche (ohne Betragsstriche!) 15. Beststimme die Fläche zwischen den Kurven y = - x + 4 x und y = x. 16. Berechne die Fläche zwischen den Kurven y = -x - 2x + 8 und y = -x Bestimme die Fläche zwischen den Kurven kë: y = -x + 10 und k : y = -0,5x + 4x y c =? x 19. Bestimme die Gleichung jener Ursprungsgeraden, welche die Fläche zwischen positiver x-achse und der Kurve y = -x + 2x halbiert. 20. a) Bestimme Extrema und Wendepunkte des Graphen von f(x) = 0.05x - 1.2x + 4. Skizziere den Graphen für -5 x 5. b) Bestimme die Gleichung jener Parabel 2-ten Grades, welche den Graphen in den Wendepunkten berührt. c) Bestimme die von beiden Kurven eingeschlossene Fläche. Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1

4 21. Wie lautet die Gleichung einer nach unten geöffneten, bezüglich der y- Achse symmetrischen Parabel 4-ten Grades, welche die x-achse in P(2...) berührt und mit der x-achse eine Fläche vom Inhalt 1 einschliesst? 22. Die Fläche zwischen pos. x-achse und der Kurve y = 2x - x wird durch eine Ursprungsgerade geteilt. Der oberhalb der Geraden liegende Teil ist 1/4 der ganzen Fläche. Wie gross ist die Steigung der Geraden? 2. Wie gross sind Grundkante und Oberfläche einer geraden quadratischen Pyramide mit Seitenkante s = 1m und maximalem Volumen? 24. Wie gross ist der Grundkreisradius des Kegels mit der Mantellinie 1m und maximalem Volumen und wie gross der Mittelpunktswinkel å des abgewickelten Kegelmantels? 25. Ein Versuchsfeld soll die nebenstehende Form und eine möglichst grosse Fläche haben. Ausserdem soll es mit einem 120m langen Zaun eingefasst werden können. 5a 5a Wie sind a und b zu wählen? b b 6a 26. Wie lautet die Gleichung einer Parabel -ten Grades, die die x-achse im Ursprung berührt und in P(6 0) schneidet und mit der x-achse eine Fläche vom Inhalt 6 einschliesst? 27. Die Fläche zwischen den Kurven y = -0.5x, x = -7, x = -1 und y = 0 wird durch die Gerade x = k so zerschnitten, dass die linke Teilfläche doppelt so gross ist wie die rechte. Bestimme k. 28. Ein gerader Kreiszylinder soll die Oberfläche 12 und maximales Volumen haben. Bestimme den Grundkreisradius r und die Höhe h. 29. Die Parabel y = 2-ax geht durch P(2 0). Der Punkt S liegt auf dem Parabelbogen zwischen dem Scheitel und P, F ist der Fusspunkt des Lotes von S auf die x-achse. Bestimme die Koordinaten von S so, dass das Dreieck OSF maximale Fläche hat. 0. Bestimme die Fläche zwischen den Kurven y = -x + 6 und y = -x - 2x + 8. Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 4

5 1. Die Fläche zwischen den Kurven y = 0.2x, x = 1, x = 4 und y = 0 wird durch die Gerade x = k so zerschnitten, dass die linke Teilfläche halb so gross ist wie die rechte. Bestimme k. 2. F(x) und G(x) sind zwei Stammfunktionen von f(x). Was lässt sich über die Funktion D(x) = F(x) - G(x) sagen?. f(u) = 2u -4u + π; f(u)du =? 4. a) Gib eine Stammfunktion von g(t) = π 7(4n 2-25)Òt 2n+4 b) f(u) = 2u -4u + π; f(u)du =? c) An welchen Stellen kann die Funktion Extrema haben? x 2 4 fx ( ) = ( t + 5t 14t) dt b b 5. Begründe mit Hilfe der Definition des Integrals: c fx () dx = c fx () dx a a Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 5

6 Integrieren 1 : Lösungen 1. a) x - x 0; 2' = 0 b) x / + 2x + 4x [apple = 5/ c) x[/5 - x / + 2x _Ë = -88/15 = d) 7x]/6 + πx / + C 2. a) x /4 _È = 0 b) x / - x _ = 2Ò) apple = 4/ c) -x[/5 + 5x / - 4x _È = 2Ò() apple = -424/15 = a) x /4 - x 0; ' = -/4 b) x / - x + 9x~[# = 8/ c) -2Ò x[/5-2x / + x' apple = -212/15 = a) (x - 2x)dx 0 5 b) (x - ) dx c) -2 (x - 2x + )dx 2 4. a) x /4' _ # = *9/4 - *9/4 = 0 b) x - x[/5' _ = (2-2/5)-(-2 -(-2/5)) = 4-64/5 = -44/5 c) x[/5-4x / + 4x' _# = 0 - (-24/5 -(-4*27/ + 4*(-)) = ( )/15 = 69/15 = 12/5 5. π 7(4n -25)Òt 2n+5 /(2n+5) = π 7(2n-5)t 2n+5 6. H(u) = 0.5u + u 7. a) y = x]/18 - x /2 + C b) y = 2πt / - Òt + C 8. I(x) = t /16 xa = x /16 - a /16 => F(x) = x /16 + c mit c > 0 9. a) x /16 - x / + 5x + C b) 2( - π) Òt / + eòt + C c) i + C 10. (f - g)dx a;d' + (g - f)dx d; g' + (f - g)dx g; h' 11. a) F(t) = (x - 6x + 40)dx a; t' = t /4-2t + 40t - a /4 + 2a - 40a b) F ist diff bar und es ist F (t) = f(t) 12. (t - s)dx a;d' + (s - t)dx d; f' + s dx f; h' = " + s d; h' - t d; f' = t - s a; d' + s - t d; g' + s - t f; g' + t f; g' + s g; h' Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 6

7 1. a) F(t) = a t f(x)dx = x /4 + còx /2 + ex' t a = t /4 + còt /2 + et - a /4 - a c/2 - ea b) F`(t) = t + ct + e 14. a b g(x)dx - b c g(x)dx - a 0 f(x)dx 15. SP: x = -x + 4x => xë = 0; x = 2 Nullst: x# = 0; xè = 4 F = 1/Òapple (-x + 4x - x )dx = 1/Ò(-2x / + 2x ) apple = 8/9 16. f(x) = -x - 2x + 8 (N:-4; 2) ; g(x) = -x + 6 SP: x + x - 2 = 0 => xë = -2; 1 F = _ (-x - x + 2)dx = 27/6 = Nullstellen Parabel: x = 4 ± 2 5 SP:... x - 10x + 16 = 0 => xë = 8; x = 2 I = {(k (x) - kë(x))dx = -x /6 + 5x /2-8x { = P(1 c); t: m = (y - c)/(x - 1) => y = mx - m + c f(x) = cx f (1) = 4c = m => t: y = 4cx - c = => x = /4 (Nullst) => apple f(x)dx - 0.5Ò0.25Òc = 0.15 => 5/5 - c/8 = /20 ==> c = y = -x + 2x = x(-x + 2) N: 0; ± 2 F = y dx 0; 2' = 1 mx = -x + 2x => xë = 0; x = m => 1/2 = (y - mx)dx xë; x ' = (2 - m) /4 => (2 - m) = 2 => m = ± m < 2 => m = 2-2 = x y = mx Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 7

8 20. a) f (x) = 0.2x - 2.4x = x/5 Ò (x - 12) f (x) = 0.6x = /5 Ò (x-2)(x+2) f``(0) = -2.4; f``(± 1 2) = 4.8 => H(0 4); TË (±2-16/5); f wechelt Zeichen bei ±2 => WË (±2 0) (N:±2; ±2 5); b) y = ax + c; W: 0 = 4a + c Berühren: 4a = 8/5-24/5 = -16/5 => c = 16/5 =>p: y = -4/5x + 16/5 c) F = 2Òapple (x /20-6x / x /5-16/5)dx = 2Ò x[/100-2x /15+4x/5'apple = 2( )/75= 128/75 = f(x) = ax + bx + c; f (x) = 4ax + 2bx P p: 16a + 4b + c = 0; P = Ber.Pkt: 2a + 4b = 0 => -16a + c = 0; c = 16a; b = -8a => f(x) = ax - 8ax + 16a => -0.5 = apple f(x)dx = 2a/5-64a/ ü 2a = 256a/15 => a = -15/512 = => f(x) = -15x / x /64-15/2 einfacher: P: y = a(x-2) (x+2) = a(x -4) = a(x -8x+16) SP: 2x - x = mx; N:0; ± 2 xë = 0; x # = ± 2 - m f(x)dx 0; 2' = 1 => 1/4 = (f(x) - mx)dx 0; 2 - m' => m - 4m + = (m-1)(m-) = 0 => m = 1 x y = mx 2. h = 1 - (x 2/2) = 1 - x /2; h = 1 - x /4 V = x / Ò h; V* = (6V) = x (1 - x /2) = x - x]/2 V* = 4x - x[ = 0 => x = 2 / = O = x + 4Òxh / = 4(1 + 2)/ = V = 1/Òπr h ; h = 1 - r ; => V(r) = π/ Ò r 1 - r V*(r) = (r 1 - r ) = r - r];v* (r) = 2r (2-r ) => rmax = 2 / = (m) besser: V(h) = πh(1-h )/;... h = 1 /... 60ò : 2π = å : 2π 2 / => å = 29.9ò Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 8

9 25. U = 16a + 2b = 120 => b = 60-8a F = 6ab + aò4a = 6a(60-8a) + 12a F(a) = 60a - 6a = 6(10a - a ); F`(a) = 6(10-2a) => a = 5 => b = y = ax + bx + cx + d; y = ax + 2bx + c ==> c = d = 0 ==> y = x (ax + b); P(6 0) => 6a + b = 0 => b = -6a => y = ax -6ax ; I = apple ] ydx = ax /4-2ax ]apple = -108a = ±6 ==> a = ±1/ ==> yë = -x / + 2x ; y = x / - 2x 27. IË = -x /8 k_\ = (7 - k )/8 ; I = -x /8 k = (k - 1)/8 IË = 2I : 7 - k = 2k - 2 => k = 801 => k = -801 = oder: -x /8 _\ = 00 => I = 100 = (k - 1)/ V = πr h; o = πr + 2πrh = 12 => h = (12 - πr )/2πr => V(r) = 6r - πr /2; V (r) = 6 - πr /2 => r = 2/ π = P: 0 = 2-4a => a = 1/2; y = 2 - x /2 = 0 => xë = ±2 F = x/2ò(2 - x /2) = x - x /4; F = 1 - x /4 = 0 => x = ± 4 / => x = 2/ = 2 / (0 2) S(x y) P F(x 0) 0. -x + 6 = -x - 2x + 8 => xë = 1; x = -2; ±F = _ (-x - x + 2)dx = -x / - x /2 + 2x _ = Ò x /5 dx 1;k' = x /5 dx k;4' => 2(k[ - 1)/25 = (4[ - k[)/25 => k[ = 42 => k = 42 [ = D(x) = c = konstant. 2/ u - 2u 2 + πu 4. a) π 7(4n -25)Òt 2n+5 /(2n+5) = π 7(2n-5)t 2n+5 b) 2u / - 2u + πu + C c) f (x) = x(x+7)(x-2) = 0 => x Ì-7, 0, 2Î Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 9

10 5. cf(x)dx = lim Û i= Ë n còf(x) x = lim c Ò Û i= Ë n f(x i ) x = c Ò lim Û i= Ë n f(x i ) x = cò f(x)dx Josef Hölzli, Aufgabensammlung : INTEGRIEREN 1 10

und x-achse. c) Die Tangente in der linken Nullstelle von f schneidet G f

und x-achse. c) Die Tangente in der linken Nullstelle von f schneidet G f Matur 5 Hilfsmittel: Formelsammlung, numerischer Taschenrechner Zeit: 4 Stunden 1. a) Diskutiere f(x) = (x - 3x + 2):x (LE für G f : 2H) b) Berechne die endliche Fläche zwischen G f und x-achse. c) Die

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

y x oder y 3x. Nenne eine Gleichung einer Parabel, die den Scheitelpunkt im Ursprung hat und nach oben geöffnet ist.

y x oder y 3x. Nenne eine Gleichung einer Parabel, die den Scheitelpunkt im Ursprung hat und nach oben geöffnet ist. Parabeln Magische Wand Parabeln Magische Wand 10.1 10. 10.3 10.4 10.5 0.1 0. 0.3 0.4 0.5 30.1 30. 30.3 30.4 30.5 50.1 50. 50.3 50.4 50.5 70.1 70. 70.3 70.4 70.5 100.1 100. 100.3 100.4 100.5 10.1 10.1 10.1

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

(Tipp: Formelbuch!) x3 dx?

(Tipp: Formelbuch!) x3 dx? Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral

Mehr

f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1

f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1 Problemstellung. Die gesuchte lineare Funktion durch die Punkte (0, ) und (, 0) lautet f(x) = x + im Intervall [0, ]. Die Gleichungen für die Begrenzungslinien sind: Λ(x) = { ±(x + ) für x < 0 ±( x + )

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS 9.6.7 - m7_nt-a_lsg_gs.pdf Abschlussprüfung 7 - Mathematik Nichttechnik A II - Lösung Teilaufgabe. Der Graph einer ganzrationalen Funktion f vierten Grades mit D f IR ist symmetrisch zur y-achse und

Mehr

Aufgaben zur e- und ln-funktion

Aufgaben zur e- und ln-funktion Aufgaben zur e- und ln-funktion 1.0 Gegeben ist die Funktion f(x) = 2x2 2 mit D. Ihr Graph sei G f. (Abitur 2008 AI) e x f =! 1.1 Geben Sie die Schnittpunkte von G f mit den Koordinatenachsen an. 1.2 Untersuchen

Mehr

Übungsaufgaben für die schriftliche Prüfung in Mathematik

Übungsaufgaben für die schriftliche Prüfung in Mathematik Übungsaufgaben für die schriftliche Prüfung in Mathematik Aufgabe 1) Bestimme den Scheitelpunkt der quadratischen Funktionen 1. Über die quadratische Ergänzung. Über die Ableitung der Funktion a) f(=x²

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Extremstellenbestimmung: A'(a) = 50 2a = 0 a = 25 und damit b = 25.

Extremstellenbestimmung: A'(a) = 50 2a = 0 a = 25 und damit b = 25. 6. Anwendungen der Differentialrechnung 6. Extremwertaufgben Eine Größe G hänge von mehreren Variablen ab. Wenn man sich dafür interesssiert, für welche Werte dieser Variablen die davon abhängige Größe

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Eigenschaften von Funktionen. Aufgabe 1. Führen Sie eine ausführliche Funktionsuntersuchung für folgende Funktion durch:

Eigenschaften von Funktionen. Aufgabe 1. Führen Sie eine ausführliche Funktionsuntersuchung für folgende Funktion durch: Aufgabe 1 Führen Sie eine ausführliche Funktionsuntersuchung für folgende Funktion durch: 1 4 2 f ( x) Ä Å x Ç 0,5x Ç 2 4 Aufgabe 2 Führen Sie eine ausführliche Funktionsuntersuchung für folgende Funktion

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die ganzrationale Funktion g dritten Grades mit D g IR, deren Graph G g in untenstehender Abbildung

Mehr

1 0.5h Gymnasium St. Antonius, Appenzell, Maturaprüfung 2011, Seite h Kantonsschule Romanshorn, Thurgau, Maturaprüfung 2013, Seite 6

1 0.5h Gymnasium St. Antonius, Appenzell, Maturaprüfung 2011, Seite h Kantonsschule Romanshorn, Thurgau, Maturaprüfung 2013, Seite 6 Analysis Vorzeigeaufgaben: Block Zeit Aufgabe 1 0.5h Gymnasium St. Antonius, Appenzell, Maturaprüfung 2011, Seite 2 0.5h Kantonsschule Romanshorn, Thurgau, Maturaprüfung 2013, Seite 3 0.5h Kantonsschule

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Erste Schularbeit Mathematik Klasse 8A G am

Erste Schularbeit Mathematik Klasse 8A G am Erste Schularbeit Mathematik Klasse 8A G am 23.11.216 KORREKTUREN und HINWEISE Aufgabe 1. (2P) Funktionsklassen ihren Eigenschaften zuordnen. In der linken Tabelle sind vier Eigenschaften von Funktionen

Mehr

Hauptprüfung 2006 Aufgabe 1

Hauptprüfung 2006 Aufgabe 1 Hauptprüfung 6 Aufgabe. Geben Sie eine Funktion h an, deren Schaubild mit der folgenden Kurve übereinstimmt. (6 Punkte). Gegeben ist die Funktion f mit f(x) = x + x, x Ihr Schaubild ist K. Berechnen Sie

Mehr

3 Differenzialrechnung

3 Differenzialrechnung Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Differenzial- und Integralrechnung II

Differenzial- und Integralrechnung II Differenzial- und Integralrechnung II Rainer Hauser Dezember 011 1 Einleitung 1.1 Ableitung Die Ableitung einer Funktion f: R R, x f(x) ist definiert als f (x) = df(x) dx = d f(x + h) f(x) f(x) = lim dx

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Erfolg im Mathe-Abi. Trainingsheft Analysis wissenschaftlicher Taschenrechner

Erfolg im Mathe-Abi. Trainingsheft Analysis wissenschaftlicher Taschenrechner Gruber I Neumann Erfolg im Mathe-Abi Trainingsheft Analysis wissenschaftlicher Taschenrechner 18 Aufgaben aus der Analysis zur Bearbeitung mit dem wissenschaftlichen Taschenrechner Inhaltsverzeichnis Erfolg

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Gymnasium Bäumlihof Maturitätsprüfungen Aufgabe 1 Raumgeometrie: Modellflugzeuge 17 P P S(300/0/0), Z(0/300/120)

Gymnasium Bäumlihof Maturitätsprüfungen Aufgabe 1 Raumgeometrie: Modellflugzeuge 17 P P S(300/0/0), Z(0/300/120) Gymnasium Bäumlihof Maturitätsprüfungen 007 Seite von 0 Aufgabe Raumgeometrie: Modellflugzeuge 7 P.......3 S(300/0/0), Z(0/300/0) SZ = 300 300 0 300 0 x 300 300 Gerade durch S und Z: y = 0 + t z 0 Für

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Erste Schularbeit Mathematik Klasse 8D WIKU am

Erste Schularbeit Mathematik Klasse 8D WIKU am Erste Schularbeit Mathematik Klasse 8D WIKU am 3.1.215 KORREKTUR UND KOMMENTAR Aufgabe 1. (2P) Parameter einer linearen Funktion bestimmen. Gegeben ist die Funktion f(x) = ax 4, wobei a R +. Bestimmen

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen 1. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y = x + x 6 b) y = x 3 3x + x c) y = (x + 4)(x + x ) d) y = x 4 5x + 4 e) y = x 3 + x

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Extrem- und Wendepunkte und zeichne ein Schaubild

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen Wolfgang Kippels 28. April 208 Inhaltsverzeichnis Vorwort 2 2 Einleitung 2 3 Übungsaufgaben 3 3. Aufgabe................................... 3 3.2 Aufgabe 2...................................

Mehr

Abschlussprüfung Fachoberschule 2016 Mathematik

Abschlussprüfung Fachoberschule 2016 Mathematik Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende

Mehr

Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen.

Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen. Dokument mit 16 Aufgaben Aufgabe A1 Gegeben ist die Funktion mit 6. a) Bestimme die Gleichung der Tangente an den Graphen von im Punkt 1,21,2. b) Bestimme alle Tangenten an den Graphen, die zu parallel

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Aufgaben zur e-funktion

Aufgaben zur e-funktion Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen

Mehr

Aufgaben zur Prüfungsvorbereitung. 1.2) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen Gleichungssystems!

Aufgaben zur Prüfungsvorbereitung. 1.2) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen Gleichungssystems! Aufgaben zur Prüfungsvorbereitung Komplex 1 - Grundlagen der Mathematik 1.1.) Führen Sie die Polynomdivision aus! x 5 3 x x 3 x 19 x8 : x 5 x 3 1.) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

1. Bestimmen Sie jeweils das allgemeine Folgeglied der Folge (a n )! 2. Bestimmen Sie die Gleichung der Geraden durch folgende Punkte!

1. Bestimmen Sie jeweils das allgemeine Folgeglied der Folge (a n )! 2. Bestimmen Sie die Gleichung der Geraden durch folgende Punkte! 1 Folgen und Reihen 1. Bestimmen Sie jeweils das allgemeine Folgeglied der Folge (a n )! (a) (a n ) = (1; 3; 5; 7;...) (b) (a n ) = ( 3 2 ; 6 5 ; 9 10 ; 12 17 ; 15 26 ;...) 2. Bestimmen Sie die ersten

Mehr

. Ihr Schaubild sei &. a) Geben Sie die Asymptoten von & an. b) Bestimmen Sie den Schnittpunkt der Tangente an & im Punkt 1 1 mit der Achse.

. Ihr Schaubild sei &. a) Geben Sie die Asymptoten von & an. b) Bestimmen Sie den Schnittpunkt der Tangente an & im Punkt 1 1 mit der Achse. Aufgabe A4/04 Gegeben ist die Funktion mit 2; 0. Das Schaubild von hat im Punkt 1 die Tangente. Ermitteln Sie eine Gleichung von. Die Tangente schneidet die Achse im Punkt. Bestimmen Sie die Koordinaten

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse ü ALGEBRA UND GEOMETRIE 5. und 6. Klasse 1. VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Quadratische Funktionen Arbeitsblatt 1

Quadratische Funktionen Arbeitsblatt 1 Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Quadratische Gleichungen und Funktionen Quadratwurzeln 1. Vereinfache und schreibe - wenn möglich - ohne Wurzel. (alle Lösungsschritte aufschreiben) a) 145-24 b) 2500a b c] c) 2 3Ò 6 3 d) 4 + 7-4 - 7 2

Mehr

Abitur 2018 Grundkurs

Abitur 2018 Grundkurs Ott Lengersdorf Abitur 8 Grundkurs Aufgabensammlung zur zentralen Abiturprüfung Mathematik am Berufskolleg Berufliches Gymnasium Fachbereich Wirtschaft und Verwaltung Merkur Verlag Rinteln Wirtschaftswissenschaftliche

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Wiederholung: Differential- und Integralrechnung1

Wiederholung: Differential- und Integralrechnung1 Wiederholung: Differential- und Integralrechnung. Richtig, der Differenzenquotient ist die Steigung der Sekante. Durch den Grenzübergang erhält man die Steigung der Tangente (= Differentialquotient. Falsch,

Mehr

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn)

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn) Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag A /40 Das erste Teilstück einer Achterbahn ruht auf sechs senkrechten Stützen, die in Abständen von 5 m aufgestellt sind (siehe Abb.). Es lässt sich

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS.06.0 - m_nt-a_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. 0 x x 8 x mit der Definitionsmenge Teilaufgabe.

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. I. Nullstellen Arbeitsblatt I.1 Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der Faktoren null wird, sonst nicht. Beispiele:

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens?

Mehr

Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.

Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0. Fach: Mathematik - Quadratische Funktionen Anzahl Aufgaben: 51 Musteraufgaben Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

ALGEBRA UND GEOMETRIE

ALGEBRA UND GEOMETRIE ALGEBRA UND GEOMETRIE VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in Abhängigkeit von N und

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung

Abiturprüfung Mathematik 13 Technik A II - Lösung GS.6.6 - m6_3t-a_lsg_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) mit der Definitionsmenge D f IR \ { ; 3 }. Teilaufgabe. ( BE) Geben Sie

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 8 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 8/9 Übung 8 Aufgabe : Integration a) Berechnen Sie die folgenden Integrale: i) 4x + ) dx ii) 8 3 x dx iii) 3 x3 ) dx

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }.

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }. Abiturprüfung Berufliche Oberschule 6 Mathematik 3 Technik - A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe. (

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr