Propädeutikum Mathematik

Größe: px
Ab Seite anzeigen:

Download "Propädeutikum Mathematik"

Transkript

1 Fultät IV - Wirtshft ud Iforti Ateilug Wirtshftsiforti Ateilug Betrieswirtshft Propädeutiu Mtheti Soerseester 013 Prof. Dr. Jörg Steph Prof. Dr. Dieter Leit

2 Literturhiweise Büher zu Studieeistieg, die de Stoff des Propädeutius ehdel, git es viele. Meistes he sie ei Wort wie Studieeistieg, Studieegi, Vorurs, et. i Titel. I der FH-Biliothe fide sie z.b.: Piehler, Sippel, Pfeiffer: Mtheti zu Studieeistieg, Spriger, 1995 Shäfer, W. et. Al.: Mthetivorurs, Teuer, Wiesde, 00 Keitz, A.: Mtheti zu Studieegi, Vieweg, Wiesde, 001 Crer, E., Neslehov, J.: Vorurs Mtheti, Spriger, 004 Hilfe fidet uh i Iteret, z.b. uter Hier git es uh Lis zu weitere Iteretseite. I der FH-Biliothe ls eoo vorhde: v de Crts, J. / Bosh, R.: Grudwisse Mtheti, Spriger, 009 Hier werde die Mthe-Grudlge i eizigrtiger ud spßiger Weise drgeote: Prtoll, Heiz u..: Mthe hito, Perso, 003 Ei großer Teil der Üugsufge ist de Buh vo Krl Bosh: Brüeurs Mtheti, Oldeourg Verlg Mühe etoe. Dieses Buh det uh ihltlih weitgehed (er iht vollstädig!) de i Propädeutiu ehdelte Stoff.

3 Ihlt 1. Mege. Zhlereihe 3. Reheregel für reelle Zhle 4. Bruhrehe 5. Sue ud Produte 6. Bioishe Forel 7. Poteze ud Wurzel 8. Logrithe 9. Gleihuge it eier Uete 10. Prozetrehug, Dreistz 11. Ugleihuge it eier Uete 1. Gleihugssystee 13. Grudlge der eee Geoetrie 14. Trigooetrishe Futioe

4 1. Mege Eie Mege ist eie Zusefssug vo estite utersheidre Ojete zu eie Gze. Ei Ojet gehört etweder zu eier Mege oder iht. Die Ojete eier Mege heiße Eleete dieser Mege. Flls x Eleet der Mege A ist shreit : x A Flls x iht Eleet vo A ist shreit : x A Zur Drstellug eier Mege A git es folgede Mögliheite: 1. Beshreiug der Eleete vo A durh Age der hrterisierede Eigeshfte. Aufzählug der Eleete vo A 3. Zeihe eies Megedigrs vo A Grudege: Mege ller zulässige Ojete (Uiversu) leere Mege: Mege, die ei Eleet ethält Shreiweise für die leere Mege: oder {} Zwei Mege A ud B sid gleih, i Zeihe A = B, we sie die gleihe Eleete esitze. Eie Mege A heißt Teilege der Mege B, we jedes Eleet vo A uh Eleet vo B ist. Shreiweise: A B Megeopertore: Shittege, Vereiigugsege A B = { x x A ud x B } A B = { x x A oder x B } Hierei wird oder i ihtusshließede Si verwedet, d.h. zu A B gehöre uh diejeige Eleete, die sowohl Eleet vo A ls uh Eleet vo B sid.

5 . Zhlereihe Die Mege der türlihe Zhle IN = { 1,, 3, 4,... } Die Mege der gze Zhle Z = {..., -3, -, -1, 0, 1,, 3,...} Die Mege der rtiole Zhle (Brühe) Q = { y x x, y Z ud y 0} Zu jede Put uf der Zhlegerde (Zhlestrhl) gehört eideutig eie reelle Zhl. IR ezeihet die Mege der reelle Zhle. Für die Zhlereihe gilt: IN Z Q IR 3. Reheregel für reelle Zhle Für die Additio + ud die Multiplitio * vo reelle Zhle,, gelte die Regel: + = + ; = ; Kouttivgesetze ( + ) + = + ( + ); () = (); Assozitivgesetze + 0 = 0 + = ; 0 ist eutrles Eleet der Additio 1 = 1 = ; 1 ist eutrles El. der Multiplitio + (-) = - = 0; - ist iverses Eleet der Additio *(1/) = 1, flls 0; 1/ ist iverses El. der Multiplitio ( + ) = + ; (+) = + ; Distriutivgesetze *0 = 0* = 0 * = 0 gilt geu d, we = 0 oder = 0. Tere sid sivolle Ausdrüe estehed us Kostte (Zhle), Vrile, Reheopertioe ud Kler. Die Reihefolge der Auswertug (Berehug) eies Ters wird durh Klersetzug zw. Vorrgregel vershiedeer Reheopertore estit, z.b. Putrehug geht vor Strihrehug

6 4. Bruhrehe Erweiter ud Kürze vo Zähler ud Neer eies Bruhes it der gleihe Zhl 0 ädert de Wert des Bruhes iht: : : Zwei Brühe / ud /d sid gleih, we d = gilt. U zwei Brühe zu ddiere, üsse die Neer der Brühe gleih sei: U zwei Brühe zu ultipliziere, rehet Zähler l Zähler ud Neer l Neer : d d Dividiere durh eie Bruh edeutet ultipliziere it de Kehrwert des Bruhes: d d d : 5. Sue, Produte, Bioiloeffiziete Flls viele Sude ddiert werde, verwedet oft folgede Shreiweise it de griehishe Buhste Sig ls sogete Suezeihe: Alog verwedet für ds Produt ehrerer Ftore ds Produtzeihe: Für eie türlihe Zhl wird! (sprih: Fultät) defiiert ls ds Produt der erste türlihe Zhle:! = (-1) Zusätzlih wird defiiert 0! = 1. Für zwei türlihe Zhle ud it wird der Bioiloeffiziet (sprih: üer ) defiiert ls: )!!(!

7 6. Bioishe Forel ( + ) = + + ( ) = + ( + )( ) = Allgeeier Bioisher Lehrstz für reelle Zhle ud ud türlihe Zhl : ( ) 0 7. Poteze ud Wurzel Für IN ud IR ist die -te Potez der Zhl, d.h. ds -fhe Produt der Zhl it sih selst, lso =.... heißt Bsis ud Expoet. Es gelte die Potezgesetze: = + ( ) = = ( ) Für 0 defiiert 0 = 1 ud - = 1. Dit gelte die Potezgesetze uh für elieige gzzhlige Expoete ud ußerde gilt, die -te Wurzel us ist diejeige positive reelle Zhl, dere -te Potez gleih ist. Weitere Defiitioe: 1,, 1 1

8 8. Logrithe Für, IR it 1 ud > 0 heißt die Lösug der Gleihug x = der Logrithus vo zur Bsis, geshriee: x = log log ist diejeige Zhl, it der poteziere uss, u zu erhlte. Reheregel: Uforugsregel: log (x y) = log x + log y log (x/y) = log x - log y log (x ) = log x log 1 = 0 log = 1 log log x log x 9. Gleihuge it eier Uete Für eie liere Gleihug der For x = gilt 1. Fll: flls 0, ist x = / die eizige Lösug. Fll: flls = 0 ud 0, git es eie Lösug 3. Fll: flls = 0 ud = 0, ist jedes x IR Lösug. Eie qudrtishe Gleihug der For x + px + q = 0 ht, flls p - 4q 0 ist, die Lösuge x p p 4 1 q x p p 4 q Flls p - 4q = 0, git es die eideutige Lösug p x. Flls p - 4q < 0, ht die qudrtishe Gleihug eie Lösug i der Grudege der reelle Zhle. Ftorisierug vo qudrtishe Tere x + px + q: Sid x 1 ud x die Lösuge der qudrtishe Gleihug x + px + q = 0, so gilt x + px + q = (x x 1 )(x x )

9 10. Dreistz ud Prozetrehug Eifher Dreistz: Zwei Größe A ud B stehe i ostte Verhältis zueider (sid proportiol, je ehr vo A, uso ehr vo B ). Ht Eiheite vo A ud Eiheite vo B gegee ud suht die Azhl x Eiheite vo A, die i desele Verhältis zu d Eiheite vo B stehe, so gilt: x d Ugeehrter Dreistz: Zwei Größe A ud B stehe i ugeehrt proportiole Verhältis zueider ( je ehr vo A, uso weiger vo B ). Ht Eiheite vo A ud Eiheite vo B gegee ud suht die Azhl x Eiheite vo A, die zu d Eiheite vo B gehöre, so gilt: x d Prozet edeutet vo Hudert, d.h. p % sid p Hudertstel lso p/100. Ht eie prozetule Ateil p gegee ud suht die zugehörige solute Zhl, so ultipliziert die solute Größe der Grudgestheit (de Grudwert) it p/100 (etspriht de eifhe Dreistz). Zissätze werde üliherweise i Prozet gegee. Bei der sogete Verzisug it Ziseszis lutet der fudetle Zusehg zwishe Afgspitl K 0, jährlihe Zisstz i, Algezeitru i Jhre ud Edpitl K : i K K 0 (1 ) Ugleihuge it eier Uete Für zwei elieige reelle Zhle ud gilt geu eie der drei Beziehuge < ist leier ls, flls uf de Zhlestrhl lis vo liegt = ist gleih, flls ud desele Put uf de Zhlestrhl drstelle > ist größer ls, flls uf de Zhlestrhl rehts vo liegt. Liere Ugleihuge löst log liere Gleihuge durh Äquivlezuforuge, woei zu ehte ist, ds ei Multiplitio zw. Divisio der Ugleihug it eier egtive Zhl ds Ugleihheitszeihe ugeehrt wird. Zur Lösug qudrtisher Ugleihuge folgederße vorgehe: 1. Shritt: Ugleihug i Norlfor x + px + q > 0 (zw. < 0) rige. Shritt: Ftorisierug i (x x 1 )(x x ) > 0 (zw. < 0) (siehe Kpitel 9) 3. Shritt: Erittlug der Lösugsege durh Fllutersheidug I 3. Shritt verwedet : Ei Produt ist geu d > 0, we eide Ftore > 0 sid oder we eide Ftore < 0 sid, zw. ei Produt ist geu d < 0, we ei Ftor > 0 ist ud ei Ftor < 0 ist.

10 1. Gleihugssystee Liere Gleihugssystee it zwei Uete it der Eisetzugsethode (Sustitutiosethode) oder it der Additiosethode löse. Die Eisetzugsethode lässt sih folgederße sizziere: 1. Auflöse eier der eide Gleihuge h eier Vrile.. Eisetze des für diese Vrile erhltee Ausdrus i die dere Gleihug. 3. Auflösug dieser Gleihug h der (verlieee) Vrile. 4. Eisetze dieser Vrile i 1. Flls i 3. ei Widerspruh etsteht, ht ds Syste eie Lösug. Flls i 3. eie Idetität etsteht ht ds Syste uedlih viele Lösuge, die durh die Gleihug i 1. Beshriee werde öe. Bei ihtliere Gleihugssystee it zwei Uete i viele Fälle eeflls die Sustitutiosethode erfolgreih wede. 13. Grudlge der eee Geoetrie Jeder Put P i der Eee lässt sih durh ei Pr (x P y P ) reeller Zhle eshreie, woei x P die x-koordite vo P ist ud y P die y-koordite vo P. Die Putege eier Gerde g i der Eee lässt sih durh eie liere Gleihug y = x + eshreie, g = { (x y) xir, yir, y = x + }. Hierei ist die Steigug vo g ud der Shittput vo g it der y-ahse des Koorditesystes. Zwei Gerde g ud h it de Steiguge 1 zw. sid prllel, flls 1 =. Die Gerde stehe sereht zueider, flls 1 = -1. Die Shittpute der Gerde estit durh Löse des liere Gleihugssystes (der Gerdegleihuge). Drei Pute A, B ud C, die iht uf eier geeise Gerde liege, ilde ei Dreie. Die de Pute gegeüerliegede Seite (ud ihre Läge) werde it, ud ezeihet, die Wiel it,,. Für die Sue der Wiel i Dreie gilt + + = 180 o. Für die Seiteläge gelte die Dreiesugleihuge < + ; < + ; < +. Ist h die zur Seite gehörige Höhe des Dreies, so gilt für de Fläheihlt F des Dreies: F = ½ h. (Etsprehede Forel gelte für die Seite ud ).

11 Sid ud die Kthete eies rehtwilige Dreies it Hypotheuse (lso = 90 o ), so gilt der Stz des Pythgors: + =. Ei Viere it vier rehte Wiel heißt Rehte. Gegeüerliegede Seite sid gleihlg ud prllel. Sid ud die Seiteläge des Rehtes, so erehet sih sei Fläheihlt F h der Forel F =. Für de Ufg U gilt U = +. Ei Rehte it vier gleihe Seiteläge heißt Qudrt. Die Mege ller Pute der Eee, die zu eie Put M de gleihe Astd r he, ilde eie Kreis. Der Put M ist d der Mittelput des Kreises, der Astd r ist der Rdius des Kreises. Der doppelte Rdius d heißt Durhesser des Kreises. Für de Fläheihlt F ud de Ufg U eies Kreises it Rdius r gelte folgede Forel: F = r U = r 14. Trigooetrishe Futioe I rehtwilige Dreiee it = 90 o gilt (siehe Kpitel 13): si Gegethete Hypotheuse os Athete Hypotheuse t Gegethete Athete Wielessuge lsse sih i Kreis i Grd (eie volle Udrehug etspriht 360 o ) oder i Bogeß (eie volle Udrehug etspriht de Kreisufg r) durhführe. Ei Wiel etspriht der Kreisogeläge α πr 360

12 Der Eiheitsreis ht Rdius r = 1 ud Mittelput i Nullput des Koorditesystes. Ei Kreisoge der Läge t defiiert eie Put uf de Eiheitsreis, desse Koordite it os t ud si t defiiert werde. Dies erweitert die Defiitio der trigooetrishe Futioe sius ud osius i rehtwilige Dreie uf elieige reelle Zhle t. Geäß Defiitio sid diese Futioe periodish it Periode, d.h. es gilt: si(x + ) = si x ud os(x + ) = os x für lle reelle Zhle x. Aus de Stz des Pythgors ergit sih diret die Gleihug si x + os x = 1 für lle reelle Zhle x. Weitere ützlihe Beziehuge zwishe de trigooetrishe Futioe sid si x t x ud os x si( x ). os x

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige

Mehr

9. Jahrgangsstufe Mathematik Unterrichtsskript

9. Jahrgangsstufe Mathematik Unterrichtsskript . Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

Wiederholungsaufgaben Mathematik

Wiederholungsaufgaben Mathematik Wiederholugsufge Mthemtik Liee Shülerie ud Shüler, liee Elter, ei siherer Umgg mit de Theme ud Ihlte der Mittelstufe stellt die Bsis für eie erfolgreihe Mitreit im Mthemtikuterriht der Oerstufe dr. Aus

Mehr

Grundlagen Mathematik 9. Jahrgangsstufe

Grundlagen Mathematik 9. Jahrgangsstufe Grudlge Mthetik 9. Jhrggsstufe ALGEBRA. Uter der (Qudrt-)Wurzel Zhl, die qudriert ergit : der positive Zhl versteht diejeige positive heißt dei der Rdikd.. Rtiole Zhle Q = lle Brüche zw. edliche oder uedlich

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

Potenzen, Wurzeln und ihre Rechengesetze

Potenzen, Wurzeln und ihre Rechengesetze R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5 Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Blok Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeshltet!. Berehe Sie vo Hd: : 9 9. Berehe Sie vo Hd: / /. Zu welhe Zhleege ln,

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Teil I.1 Rechnen mit reellen Zahlen

Teil I.1 Rechnen mit reellen Zahlen Brückekurs Mthetik Ihlt Teil I. Reche it reelle Zhle Sttliche Studiekdeie Leipzig Studierichtug Ifortik Reelle Zhle. Zhlbereiche.2 Grudrecherte.3 Potez- ud Wurzelrechug.4 Logrithe Dr. Christi Heller 2.

Mehr

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1 Gleihuge/Ugleihuge sltt Seite Gleihuge Aufge (Wurzel π37) Fide lle e (x, y, z) R 3 des Gleihugssystems M stellt ds System um zu x z y = 6 x z y = 36 x 3 z 3 y 3 = x z = y 6 x z = y 36 x 3 z 3 = y 3 Aus

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Kapitel 3 Mathematik. Kapitel 3.2 Algebra Grundrechenarten

Kapitel 3 Mathematik. Kapitel 3.2 Algebra Grundrechenarten TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthetik Kpitel 3. Alger Grudreherte Verfsser: Hs-Rudolf Niedererger Elektroigeieur FH/HTL Vordergut, 877 Nidfur 055-654 87 Ausge: August 008 www.i.h 5. Ferur 04 TG

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1 Mthemtik Grudlge Poteziere ud Rdiziere Mthemtik Grudlge für Idustriemeister Semirstude S-Std. (45 mi) Nr. Modul Theorie Üuge 4 Poteziere ud Rdiziere Ihlt 4 Poteziere ud Rdiziere... 4. Poteziere... 4..

Mehr

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten.

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten. 7. Poteze mit rtiole Expoete Eiführedes Beispiel: Wir versuche ls Potez vo zu schreie. Bei dieser Erweiterug solle die isherige Potezgesetze gültig leie. x mit poteziert x x ( ) ( ) log 8 Also defiiere

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F

multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F 8 requezgg lierer Sstee 9 t t t e e e Jede Differetitio etspricht lso eier Multipliktio it! Setze wir diese ere i die Differetilgleichug 87 ei, so erhlte wir ür de requezgg ergit sich lso 88 Beispiel:

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

R. Brinkmann Seite e) 2ad = 8a d. b) ( )( ) b) b 4b = 20b e) 2 3 5

R. Brinkmann  Seite e) 2ad = 8a d. b) ( )( ) b) b 4b = 20b e) 2 3 5 R. Brik http://rik-du.de Seite 7.0.0 Lösuge Poteze II Ergeisse: E Ergeisse ) d 8 d e) d 8 d ) f) 8 E Ergeisse ) d 6 d d d ) y y y E Ergeisse ) + + 6 + E Ergeisse ) 8 + 8 7 + 0( ) ) 7 y + y 8 y + 9 E E6

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse mthphys-olie WURZELFUNKTIONEN Grphe der -te Wurzelfuktio.5.5.5 0.5 0 0.5.5.5.5.5 5 5.5 6 6.5 7 7.5 8 = = = mthphys-olie Wurzelfuktioe Ihltsverzeichis Kpitel Ihlt Seite Die Wurzel ud Wurzelgesetze Die eifche

Mehr

Grundwissen Mathematik Otto-Hahn-Gymnasium Marktredwitz. Jahrgangsstufe 7. Schulweg 27%

Grundwissen Mathematik Otto-Hahn-Gymnasium Marktredwitz. Jahrgangsstufe 7. Schulweg 27% Grudwisse Mthemtik - 9 - Otto-Hh-Gymsium Mrktredwitz Jhrggsstufe 7 7.1 Dte, Digrmme ud Prozete 7.1.1 Dte ud Digrmme Zum Vergleih vo Dte sid Säule- ud lkedigrmme (ute liks) geeiget. Die Verteilug ierhl

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2.

2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2. Mthemtik Buch / 5. Poteze ud Wurzel /ZUSAMMENFASSUNG -502- Zusmmefssug: Poteze / Wurzel Potez 1 Ws ist eie Potez? 2 Poteze mit positivem Expoete 3 Poteze mit egtivem Expoete 4 Zusmmefssug vo 2. Zeherpoteze

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung . Vektore, Mtrize ud Determite 69. Vektor- ud Mtrizerehug. Vektore, Mtrize ud Determite (i) Vektore Im folgede betrhte wir Vektore i der bee, im Rum oder llgemeier (,..., ). Vektore köe ls Spltevektore

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung . Vektore Mtrize ud Determite. Vektor- ud Mtrizerehug. Vektore Mtrize ud Determite (i) Vektore Im Folgede betrhte wir Vektore R i der Ebee R im Rum oder llgemeier (... ) R. Vektore köe ls Spltevektore

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heiz Klus Strik: Mthemtik ist shö, Spriger-Verlg, ISBN: 978--66-79-9 Hiweise zu de Areguge zum Nhdeke ud für eigee Utersuhuge zu A 7.: Aildug ud : Awedug des Stzes vo Pythgors uf ds rehtwiklige Teildreiek,

Mehr

Matrix Theorie FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA MATHEMATIK 1 1

Matrix Theorie FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA MATHEMATIK 1 1 Mtrix Theorie FCHBEREICH BUINGENIEURWESEN PROF. DR. PETER SPRL MTHEMTIK htug! Dieses Folieskript soll de Studierede eiiges mehisher Shreibrbeit behme ud dzu beitrge, sih uf ds eigetlihe Fh ud seie vielfältige

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube FORMELSAMMLUNG ARITHMETIK y Mrcel Lue EINFÜHRUNG... DIE OPERATIONS-STUFEN... OPERATIONE 1. STUFE: ADDITION UND SUBTRAKTION... BEZEICHNUNGEN... VORZEICHENREGEL... RECHENOPERATION. STUFE... MULTIPLIKATION:...

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michel Körer Potezgesetze für rtiole Expoete Michel Körer Grudwisse Wurzel ud Poteze. 0. Klsse Bergedorfer Kopiervorlge Dowloduszug us dem Origiltitel: Kubikwurzel bzw.. Wurzel Aufgbe Wie groß

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen:

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen: Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Block Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeschltet!. Bereche Sie vo Hd ud Bechte Sie dei die Reihefolge der Opertioe:

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

Anna zieht alle drei Kugeln aus einer Schale, z. B. der dritten Schale. Bernd findet vor seinem ersten Zug also folgende Lage vor.

Anna zieht alle drei Kugeln aus einer Schale, z. B. der dritten Schale. Bernd findet vor seinem ersten Zug also folgende Lage vor. Ldewettewer Mtheti Bde-Württeerg 000 Rude ufge I füf Shle liege jeweil drei Kugel ud Berd ziehe weheld Bei eie Zug üe u eier Shle eie, zwei oder drei Kugel etoe werde Wer die letzte Kugel wegit, gewit

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Formelsammlung für das Fach Mathematik Stand:

Formelsammlung für das Fach Mathematik Stand: Formelsmmlug für ds Fh Mthemtik Std:.4.7 Mthemtishe Symole = gleih ugleih < kleier ls kleier oder gleih > größer II größer oder gleih ugefähr gleih; rud dekugsgleih; kogruet etsriht rllel sekreht Betrg

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

2.1.1 Potenzen mit natürlichen Exponenten

2.1.1 Potenzen mit natürlichen Exponenten .. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =

Mehr

Kapitel 3 Mathematik. Kapitel 3.2 Algebra Grundrechenarten

Kapitel 3 Mathematik. Kapitel 3.2 Algebra Grundrechenarten TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthetik Kpitel 3. Alger Grudreherte Verfsser: Hs-Rudolf Niedererger Elektroigeieur FH/HTL Vordergut, 877 Nidfur 055-654 87 Ausge: August 008 www.i.h 6. Ferur 07 TG

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

, d.h. wende zuerst f und dann g an. In der Regel schreiben wir Verknüpfungen multiplikativ.

, d.h. wende zuerst f und dann g an. In der Regel schreiben wir Verknüpfungen multiplikativ. 00606, FöbbS-AG der Erih-äster-Relshule Offeburg wwwstefjiterde Awedugsbeispiele der Gruppetheorie i Geoetrie ud Zhletheorie orbeeruge: Ziel des Referts ist eie geoetrishe ershulihug der Begriffe Gruppe,

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralüug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati Z Archimedische Aordug i R Mathemati für Physier (Aalysis ) MA90 Witersem 07/8 Lösugslatt http://www-m5matumde/allgemeies/ma90

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Budeswettewer Mthemtik Wisseshftszetrum Postfh 0 8 Bo Fo: 08-77 Fx: 08-77 e-mil: ifo@udeswettewer-mthemtik.de www.udeswettewer-mthemtik.de Korrekturkommissio Krl Fegert Aufge ud Lösuge. Rude 00 Üer Kommetre

Mehr

Mathematikaufgabe 79

Mathematikaufgabe 79 Home Strtseite Impressum Kotkt Gästeuh Aufge: Betrhte wir wei sih sheiee Kreise mit utershielihe ie u gemeismer Tgete Berehe Sie s Verhältis er Bogeläge vom Shittpukt es jeweilige Kreises mit er Tgete

Mehr

Johann-Philipp-Reis-Schule

Johann-Philipp-Reis-Schule Joh-Philipp-Reis-Schule Berufliche Schule es Wetterureises i Frieerg Mthemti für Fchoerschule Mthemtische Gruregel Frierich Buchert Joh-Philipp-Reis-Schule Stuieiretor Im Wigert 9 Frieerg Joh-Philipp-Reis-Schule

Mehr

Elementare Algebra. (Arithmetik, Schulmathematik) Seite

Elementare Algebra. (Arithmetik, Schulmathematik) Seite Ausgbe 2007-09 Eleetre Algebr (Arithetik, Schulthetik) Seite Betrg reeller Zhle 10 Bioe Itervlle 10 Liere Fuktioe 8 Liere Gleichuge 8 Mittelwerte Potezgesetze 6 Qudrtische Fuktioe 9 Qudrtische Gleichuge

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik BBS Gerolstei Vorereitugskurs Mthemtik Vorereitugskurs Mthemtik für zweijährige höhere Berufsfhshule Berufsoershule I Dule Berufsoershule Auf der Homepge www.s-gerolstei.de uter Dowlods uter Mthemtik oder

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( 9 7 0 8 9):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2006

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2006 Ldeswettbewerb thetik de-württeberg usterlösuge 1 Rude 2006 ufgbe 1 Die Ziffer vo 1 bis 5 solle so i eier Reihe geordet werde, dss jedes Pr behbrter Ziffer eie Zhl ergibt, die ei Produkt zweier eistelliger

Mehr

Entstehen soll eine unendliche trigonometrische Reihe der Form n

Entstehen soll eine unendliche trigonometrische Reihe der Form n utoriu Mthe M Fourier Reihe & Fourier rsfortio. Fourier Reihe Die Fourier Reihe ist für die Medietechi ud speziell die Nchrichtetechi eie der wichtigste Eleete. Ds hägt dit zuse, dss sie es eröglicht,

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang. Aiturprüfug Bde-Württemerg: Mthemtishe Merkhilfe,. Auflge (7) S. /8 Eee Figure Dreiek Fläheihlt: A g hg gleihshekliges Dreiek Midestes zwei Seite sid gleih lg. gleihseitiges Dreiek Alle drei Seite sid

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Die natürlichen, ganzen und rationalen Zahlen

Die natürlichen, ganzen und rationalen Zahlen ie atürliche, gaze ud ratioale Zahle Ihaltsverzeichis.1 ieatürlichezahle... 11. iegazezahle... 15.3 ieratioalezahle... 15.4 Aufgabe... 17 ie Zahleege N, Z, Q ud R der atürliche, gaze, ratioale ud reelle

Mehr

Zahlbereiche. Algebra. Geometrie, Stereometrie. Sachrechnen. Daten und Zufall. Sonstiges. Schriftliche Arbeiten

Zahlbereiche. Algebra. Geometrie, Stereometrie. Sachrechnen. Daten und Zufall. Sonstiges. Schriftliche Arbeiten RS Üerlige, Stru A B Zhlereihe. Gze Zhle. Rtiole Zhle. Poteze (große/kleie Zhle, Potezgesetze) 4. Wurzel, reelle Zhle Alger. Terme. Biomishe Formel. Liere Gleihuge 4. Liere Gleihugssysteme 5. Qudrtishe

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr