Symmetrie in Physik und Technik

Größe: px
Ab Seite anzeigen:

Download "Symmetrie in Physik und Technik"

Transkript

1 Symmetrie in Physik und Technik Wolfgang Herfort Wien 21.Mai 2012 Bildung im Resselpark

2 At the deepest level, all we find are symmetries and responses to symmetries. Steven Weinberg (1933-) Dirac Memorial Lecture (1986)

3 Salz

4 Molekülstruktur Salz Chloridionen gelb, Natriumionen rot

5 Fulleren C60... ist das nicht

6 Modell eines C60 Moleküls aus Luftballons

7 C60 Molekül geplättet

8 Max von Laue

9 Benard-Problem schematisch

10 Draufsicht auf Benardzellen

11 Plattentektonik

12 Konvektionszellen auf der Sonne NASA

13 Wo steht die Mathesis? Mathematische Modellierung des Beginns des Prozesses bisher nicht gelungen. Rolle der Gravitation unklar. (Benard Problem): Boussinesque Strömungsgleichungen keine Möglichkeit lokale Zufälligkeiten der Strömung auszudrücken wegen Kontinuumshypothese. Statistische Mechanik nicht einbringbar. Zulässige Funktionen willkürlich an die Natur angepasst doppeltperiodisch! Danach erzeugt Computersimulation spezielle Ornamente (Kristallgitter). Erhöhen der Reinoldszahl unterschiedliche Muster am Ende Chaos. In jedem Fall mathematische Beschreibung von 3D- Ornamenten nötig.

14 Was ist eine Symmetrie (im Sinne der mathematischen Physik)? (Gruppenwirkung und (dis)kontinuierliche Symmetrien). Erklärung anhand von 9

15 1-dimensional: Perlenreihe Punktgruppe trivial Graph:... Graph/Translationen Punktgruppe: {1}. Symmetriegruppe Z. Graph/Symmetrien: s.o. Bild :

16 1-dimensional: Perlenreihe Punktgruppe mit 2 Elementen Graph:... Graph/Translationen: Punktgruppe: C 2 Symmetriegruppe: D Graph/Symmetrien: Bild

17 Äquivalenz von Symmetriegruppen (Grundidee) φ g φ(g) φ

18 Äquivalenz von Symmetriegruppen (Formel) Koordinatenraum V := IR n hier n = 1, 2, 3 Affine Transformation v Av + b Affine Gruppe A invertierbar Translationen A die Einheitsmatrix, also v v + b Rotationen v Av mit A orthogonal φ : (G, V ) (H, V ) φ g(v) = φ(g) φ(v), φ : G H Gruppenisomorphismus φ : V V regulär affin φ(g) = φ g φ 1

19 Kristallographische Bedingung φ = Vielfache von 60 o bzw. 90 o.

20 Kristallographische Bedingung: Beweis Gitterbasis b i, i = 1, 2 bzw. 1, 2, 3 Z-Linearkombination Matrixform Drehung g gb i = n j=1 b jz ji gb = BZ bzw B 1 gb = Z spur(g) = spur(z) = 2 cos φ (2D), bzw. 2 cos φ + 1 (3D) ganzzahlig Drehwinkel φ Vielfache von 60 o bzw. 90 o.

21 3-dimensionale Kristallgittergruppen Jede Kristallgittergruppe ist Erweiterung eines Gitters mit einer der 7 Punktgruppen (= Kristallklassen); 230 inäquivalente Gruppen kommen zustande. 48 kubisch 24 hexagonal 16 tetragonal 12 trigonal 8 orthorhombisch 4 monoklin 2 triklin

22 Symmetrie kann Distanzen und Flächen minimieren Reflexionsgesetz für Licht de Maupertuisches Prinzip Reguläres Vieleck

23 Symmetrie kann Wirkungsintegral minimieren Eingespannte Saite in Ruhelage minimiert J(u) := 1 0 ( 1 2 u 2 u) dx 0 u 1 x u(x) Durchhang vertikal gemessen 1 2 u 2 infinitesimale Verformungsenergie u geleistete Arbeit durch Belastung. Behauptung: Lösung u ist bezüglich 1 2 spiegelsymmetrisch.

24 Beweis: Variationsproblem J(u) := 1 0 ( 1 2 u 2 u) dx Min u(0) = u(1) = 0. Eulergleichung 1 (u ) = 0, u(0) = u(1) = 0. Lösung Symmetrie prüfen: u(x) = 1 2x(1 x). u( 1 2 x) = 1 2 ( 1 2 x)( x) u( x) = 1 2 ( x)( 1 2 x).

25 Symmetrie bei Nachbeulverhalten

26 Symmetrie bei Nachbeulverhalten U of Bath

27 Nachbeulverhalten im Experiment U of Bath

28 3-zählige Symmetrie DGL-Gestalt Phasenbild von ż = a 0 + a 1 z + a 2 z 2 + a 3 z 3 + a 4 z 4 erlaubt Rotation um 120 o. Frage: a i =?

29 Antwort(findung) falls Lösungen z(t) 0 nahe bei 0 ζ 3.te Einheitswurzel. Mit z auch ζz Lösung: (ζz) = a 0 + a 1 ζz + a 2 ζ 2 z 2 + a 3 z 3 + ζa 4 z 4 Weil (ζz) = ζż und ż = a 0 + a 1 z + a 2 z 2 + a 3 z 3 + a 4 z 4 : ζ(a 0 +a 1 z +a 2 z 2 +a 3 z 3 +a 4 z 4 ) = a 0 +a 1 ζz +a 2 ζ 2 z 2 +a 3 z 3 +ζa 4 z 4, alles auf die linke Seite bringen und Kürzen durch ζ 1: a 0 ζa 2 z 2 + a 3 z 3 = 0. z 0 ergibt a 0 = 0. Deshalb (a 0 = 0 einsetzen, z 2 Kürzen) ζa 2 + a 3 z = 0 Antwort: ż = a 1 z + a 4 z 4.

30 Satz von Emmy Noether in Dimension 1 Ist (t(s), x(t(s), s), ẋ(t(s), s)) eine 1-Parametergruppe (bezgl. s) und besteht für die Lagrangefunktion L(t, x, ẋ) die Gleichung δl = K, so ist Q := Lẋẋ K eine Invariante der Bewegung.

31 Erhaltungssätze x(t) Ort zum Zeitpunkt t auf der x-achse L(t, x, ẋ) = 1 2 mẋ 2 V (x) Lagrangefunktion für Teilchen im Potentialfeld x(t(s), s) = x(t + s) x(t(s), s) = x(t) + s δx = ẋ, δl = V (x)ẋ + mẍ = L Q = mẋ 2 L = 1 2 mẋ 2 + V (x) Q = Gesamtenergie Sei V = αx linear. Dann δl = α = K mit K = αt Q = mẋ αt ist Erhaltungsgröße. Ist α = 0, so ist mẋ der Impuls.

32 Springender Knoten a jumping knot of J. Langer, which exhibits self-contact but which is far

33 Seifenblase Minimalfläche

34 Seifenblase Minimalfläche 2

35 Seifenblase unter dem Mikroskop

36 Seifenblase und Kugel

37 Friedmann Minimalfläche

38 Costas Minimalfläche

39 Costas Minimalfläche aus Schnee

40 Raumformenproblem und Kosmologie Beobachtung von Spiegelbildern einzelner Galaxien. Licht kommt auf verschiedenen Bahnen zu uns. Homogenität bezüglich gewisser kontinuierlicher Transformationen im Raum-/Zeitbereich geben Anlaß, sich den Raum als kompakte orientierbare Mannigfaltigkeit vorzustellen, die bezüglich der Raumzeit eine gewisse Dynamik durchmacht (Expansion des Universums). Raumformenproblem: Mannigfaltigkeit mit Metrik, vollständig ohne Löcher, d.i. einfach zusammenhängend. Beispiele sind Symmetrische Räume, also Gruppen modulo einer kokompakten Untergruppe. Allereinfachst: SO(3)/SO(2) = S 2. IR n /G mit G kristallographische Gruppe. Milnor (1973) & Friedmann (1986) haben die Homotopietypen der 4-dimensionalen orientierbaren einfach zusammenhängenden Mannigfaltigkeiten klassifiziert.

41 Danke für Ihre Aufmerksamkeit

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Sind Lie Gruppen eine geeignete Therapie für Menschen mit Schlafstörungen? Are lie groups a suitable therapy for patients with sleeping disorders?

Sind Lie Gruppen eine geeignete Therapie für Menschen mit Schlafstörungen? Are lie groups a suitable therapy for patients with sleeping disorders? 1/12 Sind Lie Gruppen eine geeignete Therapie für Menschen mit Schlafstörungen? Are lie groups a suitable therapy for patients with sleeping disorders? Wolfgang Ring Institut für Mathematik, Universität

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

Hexagonal dichtest gepackte Struktur

Hexagonal dichtest gepackte Struktur Hexagonal dichtest gepackte Struktur Auch diese Struktur ist sehr wichtig, da sie von sehr vielen Systemen angenommen wird (kein Bravaisgitter). Das einfach hexagonale Bravais-Gitter (in 3-dim): zwei-dim:

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 3: Lagrange-Formalismus, Systeme von Schwingungen gehalten von: Markus Krottenmüller & Markus

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 4

Kristallstruktur und Mikrostruktur Teil I Vorlesung 4 Kristallstruktur und Mikrostruktur Teil I Vorlesung 4 Symmetrieoperationen - Zusammenfassung Fixed Point No fixed Point Drehachsen Translationen keine Translationen Drehinversionsachsen Schraubenachsen

Mehr

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2012 Christoph Wölper Christoph Wölper christoph.woelper@uni-due.de http://www.uni-due.de/~adb297b Vorlesungs-Script unter: http://www.uni-due.de/~adb297b/ss2012/strukturmethoden_vorlesung.pdf

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 6

Kristallstruktur und Mikrostruktur Teil I Vorlesung 6 Kristallstruktur und Mikrostruktur Teil I Vorlesung 6 Teil I: Zotov 1 Koordinatensysteme, Das Raumgitter, Das reziproke Gitter, Der Metrik-Tensor 2 Abstrakte Gruppen, Symmetrieoperationen, Punktsymmetrie

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht.

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 2: ǫ Tensor [6] Gegeben sind die Vektoren a =

Mehr

Drehachse und Drehwinkel

Drehachse und Drehwinkel Drehachse und Drehwinkel Jede Drehung Q im R 3 besitzt eine Drehachse, d.h. lässt einen Einheitsvektor u invariant, und entspricht einer ebenen Drehung um einen Winkel ϕ in der zu u orthogonalen Ebene.

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt Kosmologisches Standardmodell Übersicht Einführung und kosmologisches Prinzip ART und Metriken Robertson-Walker-Metrik und

Mehr

Symmetrie und Erhaltungsgröße

Symmetrie und Erhaltungsgröße Symmetrie und Erhaltungsgröße Emmy Noethers Bedeutung für die Physik von T. Fließbach 1. Zur Person Emmy Noether 2. Symmetrie und Erhaltungsgröße Symmetrie Erhaltungsgröße Zusammenhang Keplerproblem 3.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Das Konzept der Raumzeit-Krümmung

Das Konzept der Raumzeit-Krümmung Das Konzept der Raumzeit-Krümmung Franz Embacher Fakultät für Physik der Universität Wien Vortrag auf der Jahrestagung der Wiener Arbeitsgemeinschaft für Astronomie Wien, 14. November 2015 Das Konzept

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Symmetrie. Wiederholung in der Geometrie. Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung. Martin Huber

Symmetrie. Wiederholung in der Geometrie. Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung. Martin Huber Symmetrie Wiederholung in der Geometrie Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung Martin Huber Symmetrie Wiederholung in der Geometrie Ablauf 1. Wiederholung in der Mathematik

Mehr

1 Liesche Gruppen: Grundlegendes und Beispiele

1 Liesche Gruppen: Grundlegendes und Beispiele 1 Liesche Gruppen: Grundlegendes und Beispiele In dieser Vorlesung verstehen wir unter einer differenzierbaren Mannigfaltigkeit einen Hausdorff- Raum mit abzählbarer Basis und mit einem maximalen C -Atlas.

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013

Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Grundlagen-Vertiefung PW3 Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Kristalle besitzen einen geordneten und periodischen Gitteraufbau. Die überwiegende Mehrzahl der anorganischen Festkörper

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können: Festk234 37 11/11/22 2.9. Drehungen und Drehinversionen Bereits kennen gelernt: Translationssymmetrie. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Flache homogene Räume in der pseudo-riemannschen Geometrie

Flache homogene Räume in der pseudo-riemannschen Geometrie Flache homogene Räume in der pseudo-riemannschen Geometrie Wolfgang Globke School of Mathematical Sciences Oberseminar Differentialgeometrie Christian-Albrechts-Universität zu Kiel 1 I Pseudo-Riemannsche

Mehr

O ist gegenüber C 2. invariant. Allgemein bezeichnet man mit C n. ist symmetrisch gegenüber, das JCl Ion gegenüber C 4

O ist gegenüber C 2. invariant. Allgemein bezeichnet man mit C n. ist symmetrisch gegenüber, das JCl Ion gegenüber C 4 107 KAPITEL J Symmetrien 1. Einleitung a) Warum Symmetriebetrachtungen? Je komplizierter die Probleme, desto mehr spielen Symmetriebetrachtungen eine Rolle. Die Symmetriebetrachtungen in der Molekülphysik

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 5 Quadriken Polarität Transformationen Klassifikation von Quadriken Geraden in Regelquadriken Die kubische Wendelinie (twisted

Mehr

Grundlagen der Chemie Ionenradien

Grundlagen der Chemie Ionenradien Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte

Mehr

Definition der Ordnung eines Elementes einer Gruppe und Definition der Gruppenordnung mit Beispielen. Groups and Symmetry S Beispiel (iii)

Definition der Ordnung eines Elementes einer Gruppe und Definition der Gruppenordnung mit Beispielen. Groups and Symmetry S Beispiel (iii) 1 Diedergruppe 1. Vortrag: Groups and Symmetry S. 15-18 Definition Beispiel D 3 : Gruppentafel Definition der Ordnung eines Elementes einer Gruppe und Definition der Gruppenordnung mit Beispielen Untergruppen

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

1.3 Wichtige Beispiele von Gittern

1.3 Wichtige Beispiele von Gittern Gitter und Codes c Rudolf Scharlau 20. April 2009 10 1.3 Wichtige Beispiele von Gittern Wir besprechen zunächst ein wichtiges, nämlich in mehrfacher Hinsicht optimales Gitter in der Dimension 2. Beispiel

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Klassische Theoretische Physik II

Klassische Theoretische Physik II Institut für Theoretische Teilchenphysik Prof. Dr. U. Nierste, Dr. R. Ziegler, Simon Kast https://www.ttp.kit.edu/courses/ss2017/theob/start Klassische Theoretische Physik II Erste Klausur Sommersemester

Mehr

Ritz-Galerkin-Verfahren Courant Element

Ritz-Galerkin-Verfahren Courant Element Ritz-alerkin-Verfahren Courant Element Moritz Scherrmann LMU München Zillertal am 09.01.2015 Moritz Scherrmann Ritz-alerkin-Verfahren Courant Element 1/15 Erinnerung Sei R n beschränktes ebiet, f C 0 ()

Mehr

Kapitel II Lineare Algebra und analytische Geometrie Stand 9. Januar 2011

Kapitel II Lineare Algebra und analytische Geometrie Stand 9. Januar 2011 Kapitel II Lineare Algebra und analytische Geometrie Stand 9 Januar 011 7 Bewegungen Wir betrachten jetzt Affinitäten in n unter Einbeziehung der Abstandsmessung Die Abstandsmessung in n beruht auf einem

Mehr

Lagrangesche Mechanik. Ari Wugalter 22. September 2009

Lagrangesche Mechanik. Ari Wugalter 22. September 2009 Lagrangesche Mechanik. September 009 Teil II. Lagrangesche Mechanik. Einführung in die Lagrange-Regeln.Art.. Generalisierte Koordinaten, Freiheitsgrade und Zwangsbedingungen In der Newtonschen Mechanik

Mehr

2.5 Diskrete Bewegungsgruppen I: die Punktgruppe,

2.5 Diskrete Bewegungsgruppen I: die Punktgruppe, Diskrete Geometrie (Version 3) 20. November 2011 c Rudolf Scharlau 133 2.5 Diskrete Bewegungsgruppen I: die Punktgruppe, Friesgruppen In diesem Abschnitt ist wie bisher ein euklidischer (Vektor-)Raum E

Mehr

LIE GRUPPEN EMANUEL SCHEIDEGGER

LIE GRUPPEN EMANUEL SCHEIDEGGER LIE GRUPPEN EMANUEL SCHEIDEGGER Zusammenfassung. Definition einer Lie-Gruppe, Beispiele, invariante Vektorfelder, Lie-Klammer, Lie-Algebra (einer Lie-Gruppe), 1. Definition und erste Beispiele Wir beginnen

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

P 2 - Piezoelektrizität

P 2 - Piezoelektrizität 56 P2 Piezoelektrizität P 2 - Piezoelektrizität Ein Kristall, dessen Punktgruppe (Kristallklasse) kein Symmetriezentrum (Z) aufweist, kann prinzipiell piezoelektrisch sein Das heißt, der auf den Kristall

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

Kristallographie I. Inhalt von Kapitel 3

Kristallographie I. Inhalt von Kapitel 3 62 Kristallographie I Inhalt von Kapitel 3 3 Der Kristall als Diskontinuum... 63 3.1 Zweidimensionale Raumgruppen... 63 3.1.1 Elementarmaschen... 63 3.1.2 Die zweidimensionalen Punkt- und Raumgruppen...

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 3. Mai 00 Stabilizers von Atomen Ein Operator

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ).

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ). PD Dr. S. Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 5 WS 8/9.. 8. Strecke auf Zylinder. Bestimmen Sie die kürzeste Verbindung zwischen zwei Punkten auf Pkt.) dem Zylinder.

Mehr

Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand

Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand Beispiel 1: Difluoramin M. F. Klapdor, H. Willner, W. Poll, D. Mootz, Angew. Chem. 1996, 108, 336. Gitterpunkt, Gitter, Elementarzelle, Gitterkonstanten,

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

Hauptseminar: Kosmologie

Hauptseminar: Kosmologie Hauptseminar: Kosmologie Metrik des homogenen und isotropen Raumes Steffen Keßler Universität Stuttgart Hauptseminar: Kosmologie p. 1/41 Das kosmologische Prinzip Kosmologisches Prinzip: Hauptseminar:

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

Elemente der Gruppentheorie

Elemente der Gruppentheorie Elemente der Gruppentheorie Tobias Sudmann 06.11.2006 Rolle der Gruppentheorie in der Physik abstraktes mathematisches Modell Symmetriebegriff historisch: Harmonievorstellung bei Plato, Pythagoras, Kepler,...

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Schneeflocken Ein mathematisches Winterwunder. Martin Köhler Science Café Hamburg, 14. Dezember 2016

Schneeflocken Ein mathematisches Winterwunder. Martin Köhler Science Café Hamburg, 14. Dezember 2016 Schneeflocken Ein mathematisches Winterwunder Martin Köhler Science Café Hamburg, 14. Dezember 2016 Gliederung > Was sind Schneeflocken? > Schneeflocken und Symmetrie > Wie bilden sich Schnee? > Schneeflocken

Mehr

Was sagen uns Schleifen über Quantengravitation?

Was sagen uns Schleifen über Quantengravitation? Was sagen uns Schleifen über Quantengravitation? für: Auf der Suche nach der Weltformel Tim Koslowski Perimeter Institute for Theoretical Physics Waterloo, Ontario Waldhof, 4. Juli 2010 Tim Koslowski (Perimeter

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

2. Struktur von Festkörpern

2. Struktur von Festkörpern . Struktur von Festkörpern Energie-Minimum wird erreicht, wenn jedes Atom möglichst dieselbe Umgebung hat Periodische Anordnung von Atomen. Periodische Anordnung erleichtert theoretische Beschreibung erheblich.

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Klausursammlung Grundlagen der Mechanik und Elektrodynamik

Klausursammlung Grundlagen der Mechanik und Elektrodynamik Klausursammlung Grundlagen der Mechanik und Elektrodynamik Fachschaft Physik Stand: Mai 27 Liebe Physik-Studis, hier haltet ihr die Klausursammlung für das Modul Grundlagen der Mechanik und Elektrodynamik

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr