Digital Signal Processing
|
|
|
- Gabriel Feld
- vor 9 Jahren
- Abrufe
Transkript
1 - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1
2 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese y(t) {} Seite 2
3 Beispiel bei einer Audio Signalverarbeitung Analyse: H(t), H(f) Amplitude, Schwingung, Frequenzband,... Modellieren y(t) {} Musik von mech. Instruments Musik, Töne Eletr. Klavier, Synthesizer,... Synthese y(t) {} Seite 3
4 Abtaster y(t) III(t) System für Abtasten von Signalen Seite 4
5 Spektrum des abgetasteten Signals X(f) Ideale TP Y(f) X(f). III (Tf) f g f g -f A f g - f g f A f g : Grenzfrequenz von f A : Abtastfrequenz, f A 1/ T Seite 5
6 Abtastung von Bandpass Signalen Bild a X(f) f/fo Bild b Y(f) Bild c Y(f) Seite 6
7 Frequenzanalyse mit PN-Diagramm z-ebene Im{z} H(z) j e j 2 πf T e jθ z f 1/T θ f 0, 1/T,...n/T 1 Re{z} H ( z) jθ A( e ) o Amplituden von H(z) f ---> θ --->z --> H(z) Seite 7
8 Frequenzanalyse mit PN-Diagramm - z-ebene f o ϑ / 2πT Im{z} j Nullstelle Beispiel - z j πf T jθ e 2 e f 1/T H ( z) a e z 1 z 0 + z a * e jϑ jϑ 0 ϑ θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, muss Z 0 reell sein oder paarweise konjugiert komplex f o o Seite 8
9 z-ebene H ( z) a Frequenzanalyse mit PN-Diagramm -Polstelle Beispiel - f p ϑ / 2πT e z p 1 1+ az z 1 Im{z} e ϑ jϑ jϑ p j z j πf T jθ e 2 e θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, muss Z p reell sein oder paarweise konjugiert komplex f 1/T f p o Seite 9
10 z-ebene Frequenzanalyse mit PN-Diagramm -Polstelle Beispiel - f p ϑ / 2πT z p 1 H z) 1+ az a Re ( 1 z mit Im{z} a Re jϑ jϑ p ϑ j < 1 z j πf T jθ e 2 e θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, muss Z p reell sein oder paarweise konjugiert komplex f 1/T f p o Seite 10
11 z-ebene 0 Frequenzanalyse mit PN-Diagramm - Beispiel: Allpassfilter - 1 z + a H ( z) 1+ az j Z a Re Z p z e R jϑ * ϑ ; 1 * a Im{z} a z p ϑ < 1 j z j πf T jθ e 2 e θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} 1 H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, müssen Z 0, Z p reell sein oder paarweise konjugiert komplex Seite 11 f 1/T f p o
12 z-ebene H ( z) z p,1 Frequenzanalyse mit PN-Diagramm - Beispiel: Filter mit reellen Koeffizienten - z K * p,2 z 0,1 z 0,2 Im{z} ( z z0,1)( z z0,2 ) ( z z )( z z ) und p,1 z 0,1 z * 0,2 p,2 j z j πf T jθ e 2 e z θ f p,0 f 0, 1/T,...n/T p,1 o 1 1 Re{z} z p,1 f ---> θ --->z --> H(z) H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, müssen Z 0, Z p reell sein oder paarweise konjugiert komplex f 1/T f p,2 Seite 12
13 Signalübertragung Abtaster Ideale Tiepass y(t) Theoretische Darstellung Abtaster III (t / T) H TP (f) rect (f/2f max ) Ideale Tiepass y(t) Formfilter Entzerrfilter Übertragung mit zeitdiskreten Signalen Abtaster III (t / T) y(t) S+H y (nt) H TP (f) rect (f/2f max ) Entzerrfilter A /D D / A TP x (t) Übertragung mit digitalen Signalen III (t / T) Seite 13
14 Quantisierungskennlinie X X 3 X 2 X 1 g 0 g 1 g 2 g 3 g 4 X X 0 Q 4 X min g 0 X max g 4 Seite 14
15 Quantisierungskennlinie - Lineare Quantisierung - X X 3 X 2 X 1 g 0 g 1 g 2 g 3 g 4 X X 0 Q 4 X min g 0 X max g 4 Seite 15
16 Digitale Filter und Quantisierer Signal Abtaster x[n] Digital Filter (Formfilter) h[n] y[n] Quantisierer Q y [n] x (t) III (t ) Rekonstruierte Signal X (t) Ideale Tiepass H TP (f) rect (f/2f max ) x [n] X [n] h -1 [n] Digital Filter (Entzerrer) Theoretische Verarbeitung: mit reellen Zahlen y[n] y [n] Reale Verarbeitung: mit endliche Wortlänge in digitale System Seite 16
17 Digitale Signalübertragungssystem -Quellen Codierung- SENDER Abtaster Quantisierer Quellen Codierer Kanal Codierer x[n] Q x [n] Q-CO c[n] K-CO III (t ) EMPFÄNGER Ideelle Kanal Err [n] 0 Err [n] Kanal x (t) Ideale Tiepass x [n] Q-DEC C[n] K-DEC H TP (f) rect (f/2f max ) Quellen Decodierer Seite 17
18 Quellen Codierung - Optimale Codierung - SENDER Abtaster x [n] Q x [n] Binärer Coder w[n] Optimaler Coder C[n] III (t ) EMPFÄNGER Original Daten Codierte Daten Ideeller Kanal x (t) Ideale Tiepass x [n] W*[n] Binärer Decoder Optimaler Decoder C[n] H TP (f) rect (f/2f max ) PCM-CODEC Dekodierte Daten Seite 18
19 Redundanz Reduzierung Codierungs-- verfahren H O : Entscheidungsgehalt Statistische Modell R: Redundanz K m : Mittle Codewortlänge H : Entropie / H V : verbundene Entropie Seite 19
20 Daten Reduzierung Quelle Eigenschaften Empfänger Eigenschaften Statistische Modell Codierungs-- verfahren H O : Entscheidungsgehalt R: Redundanz K m : Mittle Codewortlänge H : Entropie / H V : verbundene Entropie Seite 20
21 SENDER Quellen Codierung - PCM: Pulse Code Modulation - Abtaster Q x[n] Binärer Coder c[n] III (t ) EMPFÄNGER ADC Idealer Kanal x (t) Ideale Tiepass x [n] Binärer Decoder C[n] H TP (f) rect (f/2f max ) DAC PCM Codec: C[n] binäre Zahlen mit festen Wortlänge sind. Seite 21
22 Quellen Codierung - Optimale Codierung - SENDER Abtaster Q x[n] PCM Coder c[n] Huffman Coder C*[n] III (t ) EMPFÄNGER ADC Idealer Kanal x (t) Ideale Tiepass x [n] PCM DeCoder C[n] Huffman DeCoder C*[n] H TP (f) rect (f/2f max ) DAC Seite 22
23 Quellen Codierung -Prädiktion Verfahren - SENDER x (t) Abtaster III (t ) EMPFÄNGER Ideale Tiepass H TP (f) rect (f/2f max ) Quantisierer Q x[n] x[n] x[n-1], x[n-2]... x[n-1], x[n-2]... + Prädiktor + Prädiktor ^s[n] y[n] ^s[n] y[n] - + Coder (*) DeCoder (*) C*[n] (*) : beleibiger Codec, z.b. ein optimale Codec oder PCM Codec Idealer Kanal C*[n] Seite 23
24 Quellen Codierung -DPCM - SENDER x (t) Abtaster III (t ) EMPFÄNGER Ideale Tiepass H TP (f) rect (f/2f max ) x[n] + ^x[n] - xq[n] d[n] Prädiktor Prädiktor Q + ^x[n] dq [n] + + dq[n] + xq[n] Coder (*) DeCoder (*) (*) : beleibiger Codec, z.b. ein optimale Codec C*[n] Idealer Kanal C*[n] Seite 24
(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)
Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges
Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.
Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen
Johann Wolfgang Goethe Universität, Frankfurt am Main. Datenkompression
ADAPTIVE DATEKOMPRESSIO Vorlesungsskripte, WS 5-6 Johann Wolfgang Goethe Universität, Frankfurt am Main Dr.-Ing. The Anh Vuong für Informatik-Student der Johann Wolfgang Goethe-Universität Frankfurt am
Puls-Code-Modulation. Thema: PCM. Ziele
Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden
Aufgabe 1 (20 Punkte)
Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.
Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:
ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750
Aufgabe 1 - Pegelrechnung und LTI-Systeme
KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora -
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister... Matr.Nr:.......................... Erasmus
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Medien- Technik. Digital Audio
Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations
Nachrichtenübertragung. Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung
Nachrichtenübertragung Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung Übertragungsabschnitte Telekommunikationsnetz Quelle VSt/Switch/Router Verts/Regen VSt/Switch/Router
ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.
ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00
Adaptive Differenz-Puls-Code-Modulation (ADPCM) und Lineare, Prädiktive Codierung (LPC)
Adaptive Dierenz-Puls-Code-Modulation (ADPCM) und Lineare, Prädiktive Codierung (LPC) Ziele Mit diesen rechnerischen und experimentellen Übungen werden die Anwendungen der DPCM mit einer Anpassung der
Zeitdiskrete Signalverarbeitung
Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................
Übungsaufgaben zur Vorlesung Quellencodierung
Übungsaufgaben zur Vorlesung Quellencodierung Aufgabe 1: Gegeben seien die Verbundwahrscheinlichkeiten zweier diskreter Zufallsvariablen x und y: P(x, y) x 1 = 1 x 2 = 2 x 3 = 3 y 1 = 1 0.1 0.1 0.1 y 2
Digitalisierung II. Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen
Digitalisierung II Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen 19.06.2016 Professor Dr.-Ing. Martin Werner Folie 1 Digitalisierung
Digitale Signalverarbeitung auf FPGAs
Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich
Warum z-transformation?
-Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von
Grundlagen der Nachrichtentechnik
Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.
Signale und Systeme. A1 A2 A3 Summe
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?
Übungsaufgaben Digitale Signalverarbeitung
Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen
Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.
Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.
Zusammenfassung der 1. Vorlesung
Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox
Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse
Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software
Digitale Signalverarbeitung sehen, hören und verstehen
Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: [email protected] http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung
Musterlösung zur Klausur Signale und Systeme
Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter
4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge
Signale, Transformationen
Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =
Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER
Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden
d 1 P N G A L S2 d 2
Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008
Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)
Fachprüfung. Nachrichtencodierung
Fachprüfung Nachrichtencodierung 6. August 2009 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:
Pulse Code Modulation
Fachbereich Medieninformatik Hochschule Harz Pulse Code Modulation Referat Johannes Bastian 11038 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort...1 1 Analoge Signale als Grundlage von PCM...1
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf
2. Digitale Codierung und Übertragung
2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien
7. Digitale Verarbeitung analoger Signale
University of Applied Science 7. Digitale Verarbeitung analoger Signale Analog-Interface A/D- und D/A-Umsetzung ADU Digital- Rechner DAU Analogsignal x a (t) Analogsignal y a (t) x a (t), y a (t) Digitalsignal
Einführung in die Nachrichtenübertragung
Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................
9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main
9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche
Vorteile digitaler Filter
Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)
Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004
4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge
filter Filter Ziele Parameter Entwurf
1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:
Beispiel: Zeigen Sie, dass H(x) = H 0 = I gilt, wenn alle Zeichen gleichwahrscheinlich sind.
1 2 Im ersten Schritt werden wir uns mit dem Begriff und der Definition der Information beschäftigen. Ferner werden die notwendigen math. Grundlagen zur Quellencodierung gelegt. Behandelt werden Huffman,
SPRACHCODIERUNG. Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation
SPRACHCODIERUNG Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation INHALTSVERZEICHNIS 1. Physikalische- und digitale Größen 2. Signal Rausch Abstand 3. Modulationsmethoden 1. PCM: Pulse Code
Fachprüfung. Signal- und Systemtheorie
Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:
Übungen zur Nachrichtenübertragung
Karl-Dirk Kammeyer Peter Kienner Mark Petermann Übungen zur Nachrichtenübertragung Übungs- und Aufgabenbuch Mit 107 Abbildungen und 15 Tabellen STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Signale und
und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.
Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei
Diskrete Folgen, z-ebene, einfache digitale Filter
apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches
Grundlagen der digitalen Kommunikationstechnik
Carsten Roppel Grundlagen der digitalen Kommunikationstechnik Übertragungstechnik - Signalverarbeitung - Netze mit 368 Bildern, 42 Tabellen und 62 Beispielen Fachbuchverlag Leipzig im Carl Hanser Verlag
SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:
/5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=
Prof. Dr. Stefan Weinzierl SNR V = P signal P noise
Audiotechnik II Digitale Audiotechnik: 5. Tutorium Prof. Dr. Stefan Weinzierl 0.11.01 Musterlösung: 1. November 01, 15:50 1 Dither a) Leiten sie den SNR eines idealen, linearen -bit Wandlers her. Nehmen
Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2
Kompression Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Folie 2 1 Inhalte Redundanz Channel Encoding Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
Lösungen 4.1 Analoge Übertragung mit PCM
J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-
2. Digitale Codierung und Übertragung
2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition:
NANO III Digital-Analog-Wandler Datenakquisition: Analog-Digital-Wandler Abtastung Prinzip des DAC (DAC = Digital - Analog - Converter) 2 0 R 1 4Bit DAC 1 12/16 2 1 R 1 / 2 8/16 2 2 R 1 / 4 4/16 2 3 R
Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]
Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) [email protected]
Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.
Standbildcodierung Dipl.-Ing. Guido Heising Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Barthel 1 Gliederung der Vorlesung Einführung in die Bildcodierung - verlustlose/verlustbehaftete
Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:
Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET
Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2
Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt
1 Informationsverarbeitung & Wahrscheinlichkeitsrechnung Informationsverarbeitung Wahrscheinlichkeitsrechnung... 2.
Inhaltsverzeichnis 1 Informationsverarbeitung & Wahrscheinlichkeitsrechnung 2 1.1 Informationsverarbeitung............................. 2 1.2 Wahrscheinlichkeitsrechnung........................... 2 2
Abschlussprüfung Nachrichtentechnik 03. August 2015
Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
Grundlagen der Nachrichtentechnik
Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. K.D. Kammeyer Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: Zeit: Ort: Umfang: 05. April 2005,
Modulationsverfahren
Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:
Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 6-32
6. Ton und Klang 6.1 Ton: Physikalische und physiologische Aspekte 6.2 Kompression von Audio-Signalen: MPEG-Audio 6.3 Audio-Datenformate: Übersicht 6.4 Klangerzeugung und MIDI Ludwig-Maximilians-Universität
Seminar Digitale Signalverarbeitung Thema: Digitale Filter
Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind
Musterlösung zur Aufgabe A1.1
Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
Digitales Video. Digitales Video
Digitales Video Analoges Signal ist durch Bildwandlung weitgehend quantisiert Zeitlich in Einzelbilder und räumlich in Zeilen Beim Einsatz eines CCD-Bildwandlers werden Bildpunkte gebildet Videosignal
Digitale Signalverarbeitung auf FPGAs
Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A-Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling DACs Dr.
Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.
442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name
Vorlesung 2 Medizininformatik. Sommersemester 2017
Vorlesung 2 Medizininformatik Zeitplan Medizininformatik () Vorlesung (2 SWS) Montags 8:30-10:00 Übung (1 SWS) 10:15-11:00 1. 24.4 1.5 2. 8.5 3. 15.5 4. 22.5 Computer Architecture Begrüssung, Review: Daten
Lineare zeitinvariante Systeme
Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung
Nachrichtentechnik [NAT] Kapitel 1: Einführung. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 1: Einführung Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 1 Einführung 3 1.1 Motivation..................................
