Digital Signal Processing

Größe: px
Ab Seite anzeigen:

Download "Digital Signal Processing"

Transkript

1 - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1

2 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese y(t) {} Seite 2

3 Beispiel bei einer Audio Signalverarbeitung Analyse: H(t), H(f) Amplitude, Schwingung, Frequenzband,... Modellieren y(t) {} Musik von mech. Instruments Musik, Töne Eletr. Klavier, Synthesizer,... Synthese y(t) {} Seite 3

4 Abtaster y(t) III(t) System für Abtasten von Signalen Seite 4

5 Spektrum des abgetasteten Signals X(f) Ideale TP Y(f) X(f). III (Tf) f g f g -f A f g - f g f A f g : Grenzfrequenz von f A : Abtastfrequenz, f A 1/ T Seite 5

6 Abtastung von Bandpass Signalen Bild a X(f) f/fo Bild b Y(f) Bild c Y(f) Seite 6

7 Frequenzanalyse mit PN-Diagramm z-ebene Im{z} H(z) j e j 2 πf T e jθ z f 1/T θ f 0, 1/T,...n/T 1 Re{z} H ( z) jθ A( e ) o Amplituden von H(z) f ---> θ --->z --> H(z) Seite 7

8 Frequenzanalyse mit PN-Diagramm - z-ebene f o ϑ / 2πT Im{z} j Nullstelle Beispiel - z j πf T jθ e 2 e f 1/T H ( z) a e z 1 z 0 + z a * e jϑ jϑ 0 ϑ θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, muss Z 0 reell sein oder paarweise konjugiert komplex f o o Seite 8

9 z-ebene H ( z) a Frequenzanalyse mit PN-Diagramm -Polstelle Beispiel - f p ϑ / 2πT e z p 1 1+ az z 1 Im{z} e ϑ jϑ jϑ p j z j πf T jθ e 2 e θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, muss Z p reell sein oder paarweise konjugiert komplex f 1/T f p o Seite 9

10 z-ebene Frequenzanalyse mit PN-Diagramm -Polstelle Beispiel - f p ϑ / 2πT z p 1 H z) 1+ az a Re ( 1 z mit Im{z} a Re jϑ jϑ p ϑ j < 1 z j πf T jθ e 2 e θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, muss Z p reell sein oder paarweise konjugiert komplex f 1/T f p o Seite 10

11 z-ebene 0 Frequenzanalyse mit PN-Diagramm - Beispiel: Allpassfilter - 1 z + a H ( z) 1+ az j Z a Re Z p z e R jϑ * ϑ ; 1 * a Im{z} a z p ϑ < 1 j z j πf T jθ e 2 e θ f 0, 1/T,...n/T 1 f ---> θ --->z --> H(z) Re{z} 1 H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, müssen Z 0, Z p reell sein oder paarweise konjugiert komplex Seite 11 f 1/T f p o

12 z-ebene H ( z) z p,1 Frequenzanalyse mit PN-Diagramm - Beispiel: Filter mit reellen Koeffizienten - z K * p,2 z 0,1 z 0,2 Im{z} ( z z0,1)( z z0,2 ) ( z z )( z z ) und p,1 z 0,1 z * 0,2 p,2 j z j πf T jθ e 2 e z θ f p,0 f 0, 1/T,...n/T p,1 o 1 1 Re{z} z p,1 f ---> θ --->z --> H(z) H ( z) jθ A( e ) Amplituden von H(z) Notes: Beim reellen Filter, deren Koseffiziente reell sind, müssen Z 0, Z p reell sein oder paarweise konjugiert komplex f 1/T f p,2 Seite 12

13 Signalübertragung Abtaster Ideale Tiepass y(t) Theoretische Darstellung Abtaster III (t / T) H TP (f) rect (f/2f max ) Ideale Tiepass y(t) Formfilter Entzerrfilter Übertragung mit zeitdiskreten Signalen Abtaster III (t / T) y(t) S+H y (nt) H TP (f) rect (f/2f max ) Entzerrfilter A /D D / A TP x (t) Übertragung mit digitalen Signalen III (t / T) Seite 13

14 Quantisierungskennlinie X X 3 X 2 X 1 g 0 g 1 g 2 g 3 g 4 X X 0 Q 4 X min g 0 X max g 4 Seite 14

15 Quantisierungskennlinie - Lineare Quantisierung - X X 3 X 2 X 1 g 0 g 1 g 2 g 3 g 4 X X 0 Q 4 X min g 0 X max g 4 Seite 15

16 Digitale Filter und Quantisierer Signal Abtaster x[n] Digital Filter (Formfilter) h[n] y[n] Quantisierer Q y [n] x (t) III (t ) Rekonstruierte Signal X (t) Ideale Tiepass H TP (f) rect (f/2f max ) x [n] X [n] h -1 [n] Digital Filter (Entzerrer) Theoretische Verarbeitung: mit reellen Zahlen y[n] y [n] Reale Verarbeitung: mit endliche Wortlänge in digitale System Seite 16

17 Digitale Signalübertragungssystem -Quellen Codierung- SENDER Abtaster Quantisierer Quellen Codierer Kanal Codierer x[n] Q x [n] Q-CO c[n] K-CO III (t ) EMPFÄNGER Ideelle Kanal Err [n] 0 Err [n] Kanal x (t) Ideale Tiepass x [n] Q-DEC C[n] K-DEC H TP (f) rect (f/2f max ) Quellen Decodierer Seite 17

18 Quellen Codierung - Optimale Codierung - SENDER Abtaster x [n] Q x [n] Binärer Coder w[n] Optimaler Coder C[n] III (t ) EMPFÄNGER Original Daten Codierte Daten Ideeller Kanal x (t) Ideale Tiepass x [n] W*[n] Binärer Decoder Optimaler Decoder C[n] H TP (f) rect (f/2f max ) PCM-CODEC Dekodierte Daten Seite 18

19 Redundanz Reduzierung Codierungs-- verfahren H O : Entscheidungsgehalt Statistische Modell R: Redundanz K m : Mittle Codewortlänge H : Entropie / H V : verbundene Entropie Seite 19

20 Daten Reduzierung Quelle Eigenschaften Empfänger Eigenschaften Statistische Modell Codierungs-- verfahren H O : Entscheidungsgehalt R: Redundanz K m : Mittle Codewortlänge H : Entropie / H V : verbundene Entropie Seite 20

21 SENDER Quellen Codierung - PCM: Pulse Code Modulation - Abtaster Q x[n] Binärer Coder c[n] III (t ) EMPFÄNGER ADC Idealer Kanal x (t) Ideale Tiepass x [n] Binärer Decoder C[n] H TP (f) rect (f/2f max ) DAC PCM Codec: C[n] binäre Zahlen mit festen Wortlänge sind. Seite 21

22 Quellen Codierung - Optimale Codierung - SENDER Abtaster Q x[n] PCM Coder c[n] Huffman Coder C*[n] III (t ) EMPFÄNGER ADC Idealer Kanal x (t) Ideale Tiepass x [n] PCM DeCoder C[n] Huffman DeCoder C*[n] H TP (f) rect (f/2f max ) DAC Seite 22

23 Quellen Codierung -Prädiktion Verfahren - SENDER x (t) Abtaster III (t ) EMPFÄNGER Ideale Tiepass H TP (f) rect (f/2f max ) Quantisierer Q x[n] x[n] x[n-1], x[n-2]... x[n-1], x[n-2]... + Prädiktor + Prädiktor ^s[n] y[n] ^s[n] y[n] - + Coder (*) DeCoder (*) C*[n] (*) : beleibiger Codec, z.b. ein optimale Codec oder PCM Codec Idealer Kanal C*[n] Seite 23

24 Quellen Codierung -DPCM - SENDER x (t) Abtaster III (t ) EMPFÄNGER Ideale Tiepass H TP (f) rect (f/2f max ) x[n] + ^x[n] - xq[n] d[n] Prädiktor Prädiktor Q + ^x[n] dq [n] + + dq[n] + xq[n] Coder (*) DeCoder (*) (*) : beleibiger Codec, z.b. ein optimale Codec C*[n] Idealer Kanal C*[n] Seite 24

Multimedia Systeme. Dr. The Anh Vuong. http: Multimedia Systeme. Dr. The Anh Vuong

Multimedia Systeme. Dr. The Anh Vuong.   http:   Multimedia Systeme. Dr. The Anh Vuong email: av@dr-vuong.de http: www.dr-vuong.de 2001-2006 by, Seite 1 Multimedia-Application Applications Software Networks Authoringssofware, Contentmangement, Imagesprocessing, Viewer, Browser... Network-Architecture,

Mehr

Multimedia Systeme. Dr. The Anh Vuong. http: Multimedia Systeme. Dr.

Multimedia Systeme. Dr. The Anh Vuong.   http:   Multimedia Systeme. Dr. email: vuongtheanh@netscape.net http: www.dr-vuong.de 2001-2006 by, Seite 1 Multimedia-Application Applications Software Networks Authoringssofware, Contentmangement, Imagesprocessing, Viewer, Browser...

Mehr

Adaptive Datenkompression Datenkompression II für Informatik-Student der Johann Wolfgang Goethe-Universität

Adaptive Datenkompression Datenkompression II für Informatik-Student der Johann Wolfgang Goethe-Universität Adaptive II für Informatik-Student der Johann Wolfgang Goethe-Universität Frankfurt am Main I OO O I I I O O O 2001-2005 by, Bielefeld Seite 1 Überblick Digitale Signal Quantisierung herstellen Abtasttheorem

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.

Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr. Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen

Mehr

Johann Wolfgang Goethe Universität, Frankfurt am Main. Datenkompression

Johann Wolfgang Goethe Universität, Frankfurt am Main. Datenkompression ADAPTIVE DATEKOMPRESSIO Vorlesungsskripte, WS 5-6 Johann Wolfgang Goethe Universität, Frankfurt am Main Dr.-Ing. The Anh Vuong für Informatik-Student der Johann Wolfgang Goethe-Universität Frankfurt am

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora -

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister... Matr.Nr:.......................... Erasmus

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Medien- Technik. Digital Audio

Medien- Technik. Digital Audio Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations

Mehr

Nachrichtenübertragung. Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung

Nachrichtenübertragung. Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung Nachrichtenübertragung Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung Übertragungsabschnitte Telekommunikationsnetz Quelle VSt/Switch/Router Verts/Regen VSt/Switch/Router

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Adaptive Differenz-Puls-Code-Modulation (ADPCM) und Lineare, Prädiktive Codierung (LPC)

Adaptive Differenz-Puls-Code-Modulation (ADPCM) und Lineare, Prädiktive Codierung (LPC) Adaptive Dierenz-Puls-Code-Modulation (ADPCM) und Lineare, Prädiktive Codierung (LPC) Ziele Mit diesen rechnerischen und experimentellen Übungen werden die Anwendungen der DPCM mit einer Anpassung der

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Kleine Formelsammlung zu Multimediakommunikation

Kleine Formelsammlung zu Multimediakommunikation Kleine Formelsammlung zu Multimediakommunikation Florian Franzmann 21. Juli 2005 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Ergodizität................................... 2 2 Optik 3 2.1 Weber sches Gesetz...............................

Mehr

Übungsaufgaben zur Vorlesung Quellencodierung

Übungsaufgaben zur Vorlesung Quellencodierung Übungsaufgaben zur Vorlesung Quellencodierung Aufgabe 1: Gegeben seien die Verbundwahrscheinlichkeiten zweier diskreter Zufallsvariablen x und y: P(x, y) x 1 = 1 x 2 = 2 x 3 = 3 y 1 = 1 0.1 0.1 0.1 y 2

Mehr

Digitalisierung II. Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen

Digitalisierung II. Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen Digitalisierung II Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen 19.06.2016 Professor Dr.-Ing. Martin Werner Folie 1 Digitalisierung

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software

Mehr

Digitale Signalverarbeitung sehen, hören und verstehen

Digitale Signalverarbeitung sehen, hören und verstehen Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: hans-guenter.hirsch@hs-niederrhein.de http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

d 1 P N G A L S2 d 2

d 1 P N G A L S2 d 2 Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 6. August 2009 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

Pulse Code Modulation

Pulse Code Modulation Fachbereich Medieninformatik Hochschule Harz Pulse Code Modulation Referat Johannes Bastian 11038 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort...1 1 Analoge Signale als Grundlage von PCM...1

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

7. Digitale Verarbeitung analoger Signale

7. Digitale Verarbeitung analoger Signale University of Applied Science 7. Digitale Verarbeitung analoger Signale Analog-Interface A/D- und D/A-Umsetzung ADU Digital- Rechner DAU Analogsignal x a (t) Analogsignal y a (t) x a (t), y a (t) Digitalsignal

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Einführung in die Nachrichtenübertragung

Einführung in die Nachrichtenübertragung Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 B Signale und Systeme Institute of Telecommunications

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Beispiel: Zeigen Sie, dass H(x) = H 0 = I gilt, wenn alle Zeichen gleichwahrscheinlich sind.

Beispiel: Zeigen Sie, dass H(x) = H 0 = I gilt, wenn alle Zeichen gleichwahrscheinlich sind. 1 2 Im ersten Schritt werden wir uns mit dem Begriff und der Definition der Information beschäftigen. Ferner werden die notwendigen math. Grundlagen zur Quellencodierung gelegt. Behandelt werden Huffman,

Mehr

SPRACHCODIERUNG. Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation

SPRACHCODIERUNG. Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation SPRACHCODIERUNG Mirko Johlke WS 2017/18 ASQ Literaturarbeit- und Präsentation INHALTSVERZEICHNIS 1. Physikalische- und digitale Größen 2. Signal Rausch Abstand 3. Modulationsmethoden 1. PCM: Pulse Code

Mehr

Fachprüfung. Signal- und Systemtheorie

Fachprüfung. Signal- und Systemtheorie Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

Übungen zur Nachrichtenübertragung

Übungen zur Nachrichtenübertragung Karl-Dirk Kammeyer Peter Kienner Mark Petermann Übungen zur Nachrichtenübertragung Übungs- und Aufgabenbuch Mit 107 Abbildungen und 15 Tabellen STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Signale und

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.0 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Grundlagen der digitalen Kommunikationstechnik

Grundlagen der digitalen Kommunikationstechnik Carsten Roppel Grundlagen der digitalen Kommunikationstechnik Übertragungstechnik - Signalverarbeitung - Netze mit 368 Bildern, 42 Tabellen und 62 Beispielen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise Audiotechnik II Digitale Audiotechnik: 5. Tutorium Prof. Dr. Stefan Weinzierl 0.11.01 Musterlösung: 1. November 01, 15:50 1 Dither a) Leiten sie den SNR eines idealen, linearen -bit Wandlers her. Nehmen

Mehr

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2 Kompression Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Folie 2 1 Inhalte Redundanz Channel Encoding Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Lösungen 4.1 Analoge Übertragung mit PCM

Lösungen 4.1 Analoge Übertragung mit PCM J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition:

NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition: NANO III Digital-Analog-Wandler Datenakquisition: Analog-Digital-Wandler Abtastung Prinzip des DAC (DAC = Digital - Analog - Converter) 2 0 R 1 4Bit DAC 1 12/16 2 1 R 1 / 2 8/16 2 2 R 1 / 4 4/16 2 3 R

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Standbildcodierung Dipl.-Ing. Guido Heising Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Barthel 1 Gliederung der Vorlesung Einführung in die Bildcodierung - verlustlose/verlustbehaftete

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

1 Informationsverarbeitung & Wahrscheinlichkeitsrechnung Informationsverarbeitung Wahrscheinlichkeitsrechnung... 2.

1 Informationsverarbeitung & Wahrscheinlichkeitsrechnung Informationsverarbeitung Wahrscheinlichkeitsrechnung... 2. Inhaltsverzeichnis 1 Informationsverarbeitung & Wahrscheinlichkeitsrechnung 2 1.1 Informationsverarbeitung............................. 2 1.2 Wahrscheinlichkeitsrechnung........................... 2 2

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 6. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Letzte Woche: 1.) Erweiterung von Fourier- zu Laplace-Transformation

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. K.D. Kammeyer Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: Zeit: Ort: Umfang: 05. April 2005,

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 6-32

Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 6-32 6. Ton und Klang 6.1 Ton: Physikalische und physiologische Aspekte 6.2 Kompression von Audio-Signalen: MPEG-Audio 6.3 Audio-Datenformate: Übersicht 6.4 Klangerzeugung und MIDI Ludwig-Maximilians-Universität

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Digitales Video. Digitales Video

Digitales Video. Digitales Video Digitales Video Analoges Signal ist durch Bildwandlung weitgehend quantisiert Zeitlich in Einzelbilder und räumlich in Zeilen Beim Einsatz eines CCD-Bildwandlers werden Bildpunkte gebildet Videosignal

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A-Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling DACs Dr.

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 14. März 2006 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name:... Matr.-Nr.:... Unterschrift:...

Mehr

Vorlesung 2 Medizininformatik. Sommersemester 2017

Vorlesung 2 Medizininformatik. Sommersemester 2017 Vorlesung 2 Medizininformatik Zeitplan Medizininformatik () Vorlesung (2 SWS) Montags 8:30-10:00 Übung (1 SWS) 10:15-11:00 1. 24.4 1.5 2. 8.5 3. 15.5 4. 22.5 Computer Architecture Begrüssung, Review: Daten

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Nachrichtentechnik [NAT] Kapitel 1: Einführung. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 1: Einführung. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 1: Einführung Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 1 Einführung 3 1.1 Motivation..................................

Mehr