Inhalt der Vorlesung A1

Größe: px
Ab Seite anzeigen:

Download "Inhalt der Vorlesung A1"

Transkript

1 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung von Teilchenbewegung Kinemaik: Quaniaive Erfassung Dynamik: Ursachen der Bewegung Energie, Arbei + Leisung Erhalungssäze: Impuls+Energieerhalung Drehbewegung Schwingungen, harmonischer Oszillaor B. Teilchensyseme 1

2 Der Aufbau eines Aoms Elemenareilchen, z.b. Elekron: besiz Masse m besiz keine Ausdehnung

3 1. Beschreibung von Bewegung Konzep des Massenpunks: Die Bewegung eines ausgedehnen, makroskopischen Körpers der Masse m im Raum kann so beschrieben werden, dass seine Masse als in einem Punk (späer: Schwerpunk) konzenrier gedach wird. Unser Raum und seine Srukur 3-dimensionaler Raum Vekorraum Punkraum Beziehung zwischen Punken im Raum wird durch Vekor eindeuig fesgeleg! 3

4 Physikalische Größen, die durch Särke und Richung beschrieben werden, nenn man Vekoren. Wahl eines Koordinaensysems eindeuige Feslegung eines Bezugssysems: Wahl eines Bezugspunks O Wahl von gericheen Orienierungslinien im Raum Posiion: Vekor von A zu B Massenpunk Vekor A AB B Verschiebung karesische Koordinaen z x r y, z ( x, y z) Der Vekor wird durch Angabe der Koordinaen x, y, z quaniaiv besimm. x r y 4

5 . Kinemaik In der Kinemaik wird versuch, einen Bewegungsvorgang quaniaiv zu erfassen. Dabei wird nich nach den Ursachen der Bewegung gefrag. zunächs: Beschränkung auf eindimensionale Bewegungen in der Praxis erreichbar durch geeignee Einschränkungen im Bewegungsablauf des Körpers. Beobachung: Bahnkurve x() Abhängigkei des Ores des Massenpunks von der Zei Charakerisische Größe: Annahme: gleichförmige Bewegung Ha ein Körper eine konsane Geschwindigkei, dann wird ihr Wer durch den Quoienen angegeben, oder symbolisch Geschwindigkei Geschwindigkei v s Weg Zei m s 5

6 . Kinemaik Da neben dem Berag auch die Richung wichig is, is die Geschwindigkei ein Vekor: v s x v x Jez wird allgemein der Fall einer beliebigen nich-konsanen Geschwindigkei behandel: 6

7 Der Or x veränder sich mi der Zei, x is also eine Funkion der Zei: x() Bei nich konsaner Geschwindigkei ergib sich im Weg-Zei-Diagramm eine beliebige Funkion: Bei konsaner Geschwindigkei ergib sich im Weg-Zei-Diagramm eine Gerade: x() x Geschwindigkei: v x Bahnkurve Definiion der momenanen zur Zei vorhandenen Geschwindigkei v(): v( ) lim x v Durchschnis- Geschwindigkei x( ) dx d x m s 7

8 Umgekehr kann man aus dem Verlauf der Geschwindigkei v() auch die Bahn berechnen. dx v ( ) dx v ( ) d x ( ) dx v ( ) d + C d Sei die Geschwindigkei konsan, also v() v cons., dann folg x( ) v d + C Wenn der Körper zum Zeipunk v d + C v + C am Or x() x war, dann folg sofor C x x ( ) v + x 8

9 Änder sich die Geschwindigkei v() mi der Zei, so biee sich eine weiere Größe zur Charakerisierung der Bewegung an, die Beschleunigung. Definiion der momenanen Beschleunigung in einer Dimension: dv d x m a( ) x d d s Aus der Beschleunigung können auch wieder rückwärs die Geschwindigkei und der Or berechne werden: v( ) a( τ + v τ1 τ ) d x( ) v( τ ) dτ + x a( ) d d 1 + v + x τ τ τ Die Anfangswere zur Zei sind: x und v Durch Angabe der Beschleunigung und der beiden Anfangsbedingungen is das Problem eindeuig fesgeleg! 9

10 Beispiel: Der senkreche Fall Auf der Erdoberfläche wirk die konsane Beschleunigung a m a g 9,81 s Nach 5s freier Fall is die Geschwindigkei (am Anfang is: v m/s): v a dτ a dτ g 49.5 m s und der zurückgelege Weg x : x τ1 1 a dτ dτ aτ1 dτ1 g 1.6 m 1

11 Versuch 1: Wurfparabel mi Wassersrahl Der Wassersrahl ri aus einer Düse horizonal mi einer Anfangsgeschwindigkei v aus, die konsan bleib, so daß der Weg linear mi der Zei zunimm: x v Verikal wirk die Graviaion, also is der Weg proporional zur Zei: z x Wassersrahl z z 1 g Beide unabhängigen Bewegungen zusammen ergeben die Wurfparabel. 11

12 Heben wir nun die Beschränkung auf eindimensionale Bewegungen auf! Im dreidimensionalen Raum haben wir den Orsvekor: x( ) r ( ) y( ) z( ) r () Bahnkurve 1

13 Die Durchschnisgeschwindigkei is wieder und die momenane Geschwindigkei: Die Ableiung eines Vekors erfolg durch Ableiung seiner Komponenen. v dr ( ) d r ( ) x v x ( ) y ( ) z ( ) v v v x y z Der Geschwindigkeisvekor v () lieg angenial zur Bahnkurve r (), also v v e Einheisvekor in Richung der Tangene e Der Berag der Geschwindigkei is dann gegeben durch v x + y + z ds d Die Beschleunigung is wieder die Änderung der Geschwindigkei pro Zei, jez aber als Vekor: a v dv d v v v x y z x y z 13

14 Beispiel: Der schiefe Wurf a a g g 9.81 m s v Die Inegraion eines Vekors erfolg durch Inegraion der Komponenen. a dτ + Die Geschwindigkei is dann In Komponenen ergib sich daher: v v + v g v a vx, vy, g + v + v z, 14

15 PHYSIK A WS 13/14 WS 14/15 15 Nochmalige Inegraion liefer den zeiabhängigen Orsvekor + d v r r ) ( ) ( τ τ τ τ d v g v v z y x r z y x + +,,, ) ( ,,, 1 ) ( ) ( ) ( ) ( z v g y v x v z y x r z y x In Komponenenschreibweise ergib sich dann für den Orsvekor erneu: Die Bewegungen enlang unerschiedlicher Raunrichungen laufen unabhängig voneinander ab!

16 Beispiel: z h v α α b b x In einem Brunnen sind zwei Wasserdüsen im Absand von b 8. m monier und um jeweils den Winkel α 7 geneig. Aus den Düsen ri das Wasser mi der Anfangsgeschwindigkei von v 1 m/s. In der Mie kreuzen sich die Wassersrahlen in einer Höhe h. Wie groß is diese Höhe h? 16

17 v Die Anfangsgeschwindigkei is in vekorieller Schreibweise v v cosα 3.4 v v x y z v sinα Die Zei, die das Wasser von der Düse bis zum Kreuzungspunk brauch, is b v x, Die Anfangskoordinaen des Wassersrahls sind r s m s Dann is der Bahnvekor im Kreuzungspunk r ( ) 1 v g x, + v z, 4.. m 4.81 Mi s ergib sich für den Kreuzungspunk der Wassersrahlen die Höhe h 4.81 m. 17

18 Versuch : Affenschuß Die Kanone wird in gerader Linie mi einem Lasersrahl auf das Plüschier ausgeriche. Beim Schuß fäll das Tier aber auch die Gummikugel und zwar um dieselbe Srecke. Kanone Laser Flugbahn der Kugel Fallweg des Tieres Ergebnis: Das Plüschier wird geroffen! 18

19 Beispiel : Gleichförmige Kreisbewegung r () r () Der zeiabhängige Orsvekor is dann cos( ω ) r ( ) ρ sin( ω ) Geschwindigkei Winkelgeschwindigkei : ω π f v( ) v r ( ) ρ v( ) sin( ω ) ω cos( ω ) ρ ω cons. Periode : T 1 f π ω Die Frequenz f gib die Anzahl der Umläufe pro Sekunde an. 19

20 Die Kreisbeschleunigung is a r ( ) cos( ω ) ρω sin( ω ) r () Die Kreisbeschleunigung seh senkrech auf der Geschwindigkei, sie weis immer zum Kreismielpunk (Zenripealbeschleunigung). Weierhin folg, daß die Kreisbeschleunigung proporional zum Quadra der Winkelgeschwindigkei is: a ρ ω ω

21 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung von Teilchenbewegung Kinemaik: Quaniaive Erfassung Dynamik: Ursachen der Bewegung Energie, Arbei + Leisung Erhalungssäze: Impuls+Energieerhalung Drehbewegung Schwingungen, harmonischer Oszillaor B. Teilchensyseme 1

22 .3 Dynamik In der Dynamik werden die Ursachen der Bewegung hinerfrag. Vor allem bei der Behandlung von Soßprozessen is zur Charakerisierung des Einflusses eines Soßparners die Angabe von Masse und Geschwindigkei erforderlich Kombinaion zu einer neuen Größe Impuls p( ) p p p x y z ( ) ( ) ( ) mv ( ) v mv v x y z ( ) ( ) ( )

23 Dynamik wird ausgelös durch Wirkung von Kräfen. Beispiel: m S Ihre Einhei is: 1 kg m s - Newon 1 N Gewichskraf schwere Masse F ms g Dimension: Masse Länge / Zei F 1 F ges Kräfe sind Vekoren. Es gil das Superposiionsprinzip F F ges F 1 + F Oder allgemein F ges F 1 + F + + N F N F i i 1 3

24 Sir Isaac Newon Geboren: in Lincolnshire : Triniy College, Cambridge 1669: Ernennung zum Professor in Cambridge : Direkor des saalichen Münzames in London : Vorsiz der Royal Sociey Gesorben: in Kensingon, London

25 Principia:

26 Die PHYSIK drei Newon schen A WS 13/14 14/15 Axiome 6

27 Wesminser Abbey hp:// 7

28 .3.5 Die Newon schen Geseze Die Voraussezungen für die Güligkei der Newon schen Geseze sind durch Allagserfahrungen gegeben. z r() y m Die Zei is absolu und unveränderlich und häng nich von der Bewegung und dem Or ab. Es gib einen sog. absoluen Raum, d.h. ein absolu ruhendes Sysem, in dem alle Bewegungsabläufe safinden. Die Eigenschaf Masse eines Körpers is unabhängig vom Bewegungszusand. x 8

29 Die Newon schen Geseze 1. Gesez: Trägheisprinzip Ein Körper bleib in einem Inerialsysem in geradlinig gleichförmiger Bewegung, wenn keine Kraf auf ihn wirk. dv F a d. Gesez: Akionsprinzip Die zeiliche Änderung des Impulses is proporional zur äußeren Kraf, die auf den Körper wirk. Impuls: Kraf : p mv dp F d d( mv) d Falls die Masse m unabhängig von der Bewegung is, dann gil: F m a mv m r Kraf Masse Beschleunigung 3. Gesez: Reakionsprinzip Bei Wechselwirkung zweier Körper is die Kraf, die auf den ersen Körper wirk, umgekehr gleich der Kraf, die der zweie auf den ersen ausüb. acio reacio F F 1 F F 1 9

30 Diskussion der Newonschen Geseze 1. Newonsches Axiom: geradlinig v cons. gleichförmig Galileo Galilei Veranschaulichung, dass v cons. eine kräfefreie Bewegung bedeue. 3

31 1. Newonsches Axiom: v v cons., a Ein Sysem, in dem das 1. Newonsche Axiom gil, heiß Inerialsysem. Dabei wird nich zwischen Bezugssysemen mi v und v cons. unerschieden. 31

32 1. Newonsches Axiom: v cons. a 3

33 mcons. Newonsches Axiom F F m a mv m r Das. Newonsche Axiom ha mehrere Bedeuungen. Es kann als Definiion für die Kraf angesehen werden, so wie wir das hier gean haben. Darüber hinaus kann es als Definiion der (rägen) Masse dienen, falls mcons. Dann is die Masse das Verhälnis aus der Kraf F und der durch sie verursachen Beschleunigung a, d.h. m F / a. Die Masse is somi ein Maß für den Widersand, mi dem ein Körper der Veränderung seiner Geschwindigkei engegenwirk (Träghei). Bemerkungen: 1). Newonsches Axiom is Besimmungsgleichung für Bahnkurve. r a F( r, r, ) m dp d d( mv) d zweimalige Inegraion ergib ) Das. Newonsche Axiom beinhale 1. Axiom, da im Fall v cons. (und mcons.) sofor F folg. 33 r ()

34 Hinweis auf Erhalungsgrößen: Berachung des freien Teilchens 1. Konsequenz: m v cons. F d( mv) d vekorielle Beziehung. Konsequenz: Berachung in einer Dimension mx Muliplikaion mi Geschwindigkei mxx d d 1 m x d d 1 ( ) x m 1 m x cons. kineische Energie 34

35 . Newonsches Axiom F dp d mcons. d( mv) d m a mv m r Definiion der Masse: m Widersand eines Körpers gegenüber einer Geschwindigkeisänderung F F m a m 1 1 a m m 1 a a 1 Relaive Messung von Massen durch Vergleich der relaiven Beschleunigungen. Vorsich: Masse Gewich Gewichskraf!! Masse is eine skalare Größe, Gewich is eine vekorielle Größe! Die Masse is unabhängig davon, wo sich ein Körper befinde, im Gegensaz zur Gewichskraf. 35

36 . Newonsches Axiom Gewichskraf: Nahe der Erdoberfläche fallen alle Körper gleich schnell mi der Erdbeschleunigung g. g häng auf der Erde vom Or ab, im Miel is g 9.81m/s. Nur am selben Or gil daher: gcons. Gewichskraf (schwere) Masse Messung von Massen durch Gewichskräfe! äquivalene Verwendung der Begriffe! auf dem Mond gil jedoch: 1 g Mond g Die Ausrüsung des Asronauen Erde 6 mcons. is leicher auf dem Mond. ABER: Sie is nich leicher zu beschleunigen! 36

37 . Newonsches Axiom: Urkilogramm Deusches Normal: Bei der PTB in Braunschweig Masse: m(p 9. Ir 1. ) 1... kg Höhe Zylinder: h 39. mm Durchmesser: d 39. mm Diche: 1.5 g/cm 3 Wird alle 1 Jahre mi dem Pariser Urkilogramm verglichen!!! Ziel: Zurückführung auf bessere Größen. 37

38 3. Newonsches Axiom: Kräfe reen immer in Paaren auf. Beispiel: Freier Fall auf der Erdoberfläche Die Erde wird von der Masse m mi der Kraf G angezogen. mg m G G Masse m wird von der Erde mi der Kraf G angezogen. mg mg G mg 38

39 3. Newonsches Axiom: Kraf & Gegenkraf greifen an unerschiedlichen Körpern an!! 39

40 3. Newonsches Axiom: Pferdelogik: Das Pferd denk: Es gil sowieso acioreacio, d.h. wenn ich mich anfange zu bewegen, dann enseh sofor eine gleich große Gegenkraf, die die Bewegung verhinder! 4

41 Kräfe - Übersich über die verschiedenen Aren von Kräfen 41

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die orgesehenen Themenbereiche. Teilchen A. Einelne Teilchen Beschreibung on

Mehr

Mechanik. 1 Kinematik

Mechanik. 1 Kinematik Mechanik Kinemaik - Beschreibung der Bewegung eines Körpers durch Or, Geschwindigkei und Beschleunigung - Körper wird als Punkmasse (PM) beschrieben.. Modell der Punkmasse und Koordinaensseme (KS) Def.

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Mathematik für Physiker I

Mathematik für Physiker I Mahemaik für Physiker I Themenübersich Michael Junk Raum G 47 Beispiel Bewegung 4 Verfolger Esefania Jeder beweg sich mi feser Geschwindigkei immer in Richung zum Vorgänger Dieer B. Paparaz Verona Auf

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

(2) Kinematik. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(2) Kinematik. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU () Kinemaik Vorlesung Animaion und Simulaion S. Müller KOBLENZ LANDAU Wiederholung I roblem (ersmal): Kamerainerpolaion Augpunk und Blickrichung Gue Wahl: Hermie-Splines Definiion von Keyframes Knoenpunk

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A WS 013/14 014/15 Inhal der Vorlesung A1. Teilhen A. Einzelne Teilhen Beshreibung von Teilhenbewegung Kinemaik: Quaniaive Erfassung Dynamik: Ursahen der Bewegung Kräfe Arbei + Leisung, Energie

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

Synopse der Vorlesung Physik I. Alexander Piel WS 2011/12

Synopse der Vorlesung Physik I. Alexander Piel WS 2011/12 Synopse der Vorlesung Physik I Aleander Piel WS 11/1 Disclaimer Die nachfolgenden Zusammensellungen und Kommenare sollen die Measrukur des Vorlesungssoffes erdeulichen sowie Begriffe und Mehoden ordnen.

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

II. Kinematik gradliniger Bewegungen

II. Kinematik gradliniger Bewegungen II. Kinemaik gradliniger Bewegungen Kinemaik, von dem griechischen Verb kineo = ich bewege, nenn man den grundlegenden Zweig der Mechanik, der den zeilichen Ablauf einer Bewegung im Raum durch mahemaische

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynamik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 8. März Aufgabe (9 Punke) Ein Zahnrad 3 wird über eine Sange on einem Kolben 5 angerieben. Dieses Zahnrad greif in

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Physikaufgabe 104. arccos 1 2.

Physikaufgabe 104. arccos 1 2. Home Sarseie Impressum Konak Gäsebuch Aufgabe: Zeigen Sie an einem Beispiel, daß die Naurgeseze universell sind, d.h. unabhängig vom gewählen Bezugssysem gelen. Zeigen Sie ferner, daß die Raumkrümmung

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Die mit soviel Muhe und mathematischem Aufwand denierten kinematischen Grossen Ort ~r,

Die mit soviel Muhe und mathematischem Aufwand denierten kinematischen Grossen Ort ~r, 2.5 Die fundamenalen Geseze der Mechanik 2.5.1 Einleiung Die mi soviel Muhe und mahemaischem Aufwand denieren kinemaischen Grossen Or ~r, Geschwindigkei ~v und Beschleunigung ~a beschreiben den Bewegungsablauf

Mehr

Elektrodynamik II - Wechselstromkreise

Elektrodynamik II - Wechselstromkreise Physik A VL36 (18.1.13 Elekrodynamik II - Wechselspannung und Wechselsrom Wechselspnnung durch Indukion Drehsrom Schalungen mi Wechselsrom Kirchhoff sche h egeln Maschenregel bei Indukiviäen und Kapaziäen

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Ein Ball wird unter einem Winkel α mit einer Anfangsgeschwindigkeit v 0. = 35 m/s vom Boden über eine Mauer der Höhe H = 10 m geworfen.

Ein Ball wird unter einem Winkel α mit einer Anfangsgeschwindigkeit v 0. = 35 m/s vom Boden über eine Mauer der Höhe H = 10 m geworfen. Webinar: Dynamik Thema: Kinemaik eines Massenpunkes Aufabe: Schiefer Wurf Ein Ball wird uner einem Winkel α mi einer Anfanseschwindikei = 35 m/s vom Boden über eine Mauer der Höhe H = 10 m eworfen. H α

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

5c Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1

5c Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1 5c ynaik Aniaion foows he aws of physics uness i is funnier oherwise. 1 Zusaenfassung Newon 1+2 Grundegende Geseze der kassischen Mechanik werden durch die Newonschen Geseze beschrieben Trägheisprinzip,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Schwingungen. 1 Schwingung als periodischer Vorgang

Schwingungen. 1 Schwingung als periodischer Vorgang -I.D1- D Schwingungen 1 Schwingung als periodischer Vorgang 1.1 Definiion Voraussezungen für das Ensehen einer mechanischen Schwingung sind eine zur Gleichgewichslage gerichee rückreibende Kraf und die

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A WS 03/4 Inhal der Vorlesung A. Teilhen A. Einzelne Teilhen Beshreibung on Teilhenbewegung Kinemaik: Quaniaie Erfassung Dynamik: Ursahen der Bewegung Kräfe Arbei + Leisung, Energie Erhalungssäze:

Mehr

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse Kapiel Modellierung Durch Modellierung beschreib man Vorgänge aus der Naur sowie indusrielle Prozesse mi mahemaischen Werkzeugen, zum Beispiel Gleichungen oder Ungleichungen. Modellierung geschieh durch

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Abiurprüfung Mahemaik 007 Baden-Würemberg (ohne CAS) Pflicheil - Aufgaben Aufgabe : ( VP) Bilden Sie die erse Ableiung der Funkion f mi f () + = ( sin ). Aufgabe : ( VP) ln Berechnen Sie das Inegral e

Mehr

Hochschule Bremen Technische Physik (Kapitel 1) / Prof. Dr.-Ing. Dieter Kraus 1. Unter Naturwissenschaft versteht man

Hochschule Bremen Technische Physik (Kapitel 1) / Prof. Dr.-Ing. Dieter Kraus 1. Unter Naturwissenschaft versteht man . Einführung Aus der Neugierde des Menschen enwickele sich das Ineresse die ihn umgebende Wel zu ersehen. Um die Vielfal der Beobachungen (Ereignisse) zu ordnen haben sich unerschiedliche Herangehensweisen

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

2 Kinematik der Massenpunkte

2 Kinematik der Massenpunkte 4 Kinemaik der Massenpunke Die Kinemaik is die Lehre on den Bewegungen der Körper (Griechisch: Kinema Bewegung). Dabei werden die Ursachen der Bewegungen, d.h. die beeiligen Kräfe, und die Wirkungen der

Mehr

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt.

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt. 16 2.3 Sprungfunkion, Rampenfunkion Delafunkion Diese 3 Signale haben als Anregungssignale am Eingang eines Sysems besondere Bedeuung für die lineare Sysemheorie erlang. Sprungfunkion: ( σ ( ), 1( ) )

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II

Aufgabe 1 (7 Punkte) Prüfungsklausur Technische Mechanik II echn. Mechanik & Fahrzeugdynaik M II Prof. Dr.-Ing. habil. Hon. Prof. (NUS) D. Besle 7. März 05 Aufgabe (7 Punke) Das Rad (Radius r ) roll i der Winkelgeschwindigkei. I Punk A (Absand r / o Mielpunk) is

Mehr

Numerische Behandlung von gewöhnlichen Differentialgleichungen Eine Einführung. Universität Hamburg SoSe07. K. Taubert

Numerische Behandlung von gewöhnlichen Differentialgleichungen Eine Einführung. Universität Hamburg SoSe07. K. Taubert Numerische Behandlung von gewöhnlichen Differenialgleichungen Eine Einführung Universiä Hamburg SoSe7 K. Tauber Besondere Aufgaben 6 UNSTETIGE-, SYMPLEKTISCHE- und ALGEBRO-DIFFERENTIALGLEICHUNGEN 6.1 Einführung

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Ladung (7. Klasse) - -

Ladung (7. Klasse) - - Elekrischer Leier Einfacher elekrischer Srmkreis Pluspl Minuspl Ammdell Amkern mi Prnen und Neurnen Ladung (7. Klasse) Es gib zwei Aren vn Ladung: psiiv und negaiv Srmsärke (7. Klasse) Frmelbuchsabe: I

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Lösungsblatt 8 zur Experimentalphysik I

Lösungsblatt 8 zur Experimentalphysik I ösungsbla 8 zur xperimenalphysik I Sommersemeser 04 - Übungsbla 8 Aufgabe 8. eopolds ifaßsäule (Präsenzaufgabe) Der Künsler eopold Müßig möche für sein neuses Projek zwei drehbare ifaßsäulen aus Beon (ρ

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: inegral.ex,v 1.12 2015/10/26 13:46:09 hk Exp $ 1 Inegrale von Funkionen in mehreren Variablen 1.1 Das Rieman Inegral im R n Im lezen Semeser wurde die Differenialrechnung auf Funkionen f(x 1,...,

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Physik für Wirtschaftsingenieure

Physik für Wirtschaftsingenieure Phsik fü Wischafsingenieue Chisophe Diemaie, Mahias Mändl ISBN 3-446-373-8 Lesepobe Weiee Infomaionen ode Besellungen une hp://www.hanse.de/3-446-373-8 sowie im Buchhandel Mechanik Bild. Bewegung eines

Mehr

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg) Lösung Abiurprüfung 2 Grundkurs (Baden-Würemberg) Analysis, Aufgabe I.1. a) ( x) = 1 [( x)3 9 ( x)]= 1 ( x3 + 9x)= 1 ( x3 9x) = ( x) Somi is (x ) punksymmerisch zum Ursprung. ( x) = 1 (x3 9x)= x(x 2 9)=

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr

Notizen zur Vorlesung über Kurven

Notizen zur Vorlesung über Kurven Noizen zur Vorlesung über Kurven Michel Krow, TU-Berlin krow@mh.tu-berlin.de November 6, 9 Definiion: Eine prmerisiere Kurve is eine seige Abbildung x : R I R n, wobei I ein (offenes, hlboffenes oder bgeschlossenes)

Mehr

Kapitel II Bewegungen und Kräfte

Kapitel II Bewegungen und Kräfte Kapiel II Bewegungen und Kräfe 3. Translaion und Roaion... 27 4. Soßprozesse... 35 5. Harmonische Schwingungen... 41 6. Gekoppele Schwingungen... 52 7. Gedämpfe und erzwungene Schwingungen... 59 8. Trägheismomen...

Mehr

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung KW /15 Prof. Dr. R. Reifarh, Dr. J. Glorius Übungen zur Experimenalphysik II Aufgabenbla 3 - Lösung Aufgabe 1: a) Die Laung q im Volumen V beräg: q = ρ(r) V = ρ(r)4πr r = 4πAr 3 r Für ie Laung Q erhalen

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Friedhelm Kuypers Physik får Ingenieure und Naturwissenschaftler

Friedhelm Kuypers Physik får Ingenieure und Naturwissenschaftler Friedhelm Kuypers Physik får Ingenieure und Naurwissenschafler Beachen Sie bie auch weiere ineressane Tiel zu diesem Thema Thomsen, C. Physik får Ingenieure får Dummies 011 ISBN: 978-3-57-706-8 Råsch,

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

3. Dynamik. 3.1 Axiome. 3.2 Schwere und träge Masse. umgeformt: Ursachen der Bewegung: Kräfte. Die Einheit der Kraft ist Newton: [N] = [kg m/s 2 ]

3. Dynamik. 3.1 Axiome. 3.2 Schwere und träge Masse. umgeformt: Ursachen der Bewegung: Kräfte. Die Einheit der Kraft ist Newton: [N] = [kg m/s 2 ] 3. Dnaik Ursachen der Bewegung: Kräfe 19 ugefor: = a 3.1 Axioe 1. Trägheisrinzi (lex ria) lex ria aus den Princiia von Isaac Newon, London 1687. Vor Newon (1643-177) auch schon forulier von Galilei Galileo

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

Lösungen der Übungsaufgaben TM II Dynamik

Lösungen der Übungsaufgaben TM II Dynamik L Lösungen der Übungsaufgaben TM II Dynamik Einleiung und Grundlagen Aufgabe a) ẋ() A cos B sin, ẋ. () A 2 sin B 2 cos 2 x() b) ẋ() C sin, ẋ. () C 2 cos 2 x() c) ẋ Ce cos Ce sin, ẋ. Ce 2 2 cos 2 sin d)

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen Physik A VL1 (7.11.1) Schwingngen g nd Wellen II Wellen, Gedämpfe Schwingngen Wellen Gedämpfe Schwingngen schwache Dämpfng aperiodischer Grenzfall Kriechfall 1 Ei Erinnerng: Beschreibng von Schwingngen

Mehr

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil)

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil) nur für den inernen Gebrauch Beispiel für eine mündliche Abiurprüfung im Fach Physik MündlicheAbiurprüfung Seie 1 von 6 Hilfsmiel: Zugelassener Taschenrechner, Wörerbuch der deuschen Rechschreibung. 1

Mehr

Sinus und Cosinus im rechtwinkligen Dreieck ( )

Sinus und Cosinus im rechtwinkligen Dreieck ( ) Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen

Mehr