Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2

Größe: px
Ab Seite anzeigen:

Download "Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2"

Transkript

1 Das Delta-Potential Quantenmecanik Projekt Gruppe PLANCK Anton Hörl Tomas Kloiber Bernd Kollmann Miriam Mutici Jakob Scwarz Max Planck ( )

2 4.4 Delta-Potential Ist die räumlice Ausdenung eines Potentials klein, kann es möglicerweise durc ein Delta-Potential der Form V ( x = V δ ( x ) (4.4.1) ersetzt werden Matematisce Grundlagen Definition: Funktional Eine Abbildung aus einem Funktionenraum in die komplexen Zalen wird Funktional genannt. Φ : f a Φ[ f ] (4.4.) Ein Beispiel ierfür ist z. B. das Skalarprodukt, welces zwei Vektoren eine Zal zuordnet. Definition: Distribution Ein stetiges, lineares Funktional auf dem Testfunktionenraum wird Distribution genannt. (Testfunktionenraum: z. B. C ( ) ) Ω Die Delta-Distribution (auc Dirac-Delta genannt) entsprict solc einem Konstrukt δ x [ f ] = dx f ( δ ( x x ) = f ( x ) (4.4.3) Formal wird sie wie folgt definiert: b f ( x a < x < ) b dx f ( δ ( x x ) (4.4.4) sonst a Vorstellbar ist die Delta-Distribution als Grenzfall einer Funktionenfolge deren Integral über die gesamte reelle Acse gleic bleibt, obwol eine Spitze immer ausgeprägter wird. - -

3 Ein Beispiel für solc eine Funktionenfolge ist 1 x f ε ( = exp für ε (4.4.5) επ ε Das Integral über f ε ( ist unabängig von ε immer f ε (x für drei versciedene Werte von ε (1, 1/1 und 1/1). Abb : ) Für ε wird die Spitze unendlic oc und beliebig scmal, bei konstantem Wert des Integrals von 1. In Abbildung ist dargestellt, wie die Delta-Distribution als lim f ε ( ε definiert ist. Weiterfürende Informationen zu Funktionalen, Distributionen und der Delta-Distribution siee [] Beandlung in der Scrödingergleicung Um die Wellenfunktionen eines Teilcens in einem Potential mit einer bzw. mereren Delta-Distributionen zu finden, muss die Scrödingergleicung gelöst werden. (Allgemeines zur Scrödingergleicung siee [4] bzw. Kapitel 3.1 und 3.) Die eindimensionale, stationäre Scrödingergleicung at im Fall eines Delta-Potentials die Form d Vδ ( x x ) ϕ( = Eϕ( m dx (4.4.6) Da die Delta-Distribution formal nur unter dem Integral definiert ist, wird die gesamte Scrödingergleicung über einen kleinen Bereic von ε bis ε integriert (matematisc exakter lassen sic die folgenden Bedingungen aus dem Hauptsatz der Differential- und Integralrecnung erleiten)

4 Hierzu wird x = gesetzt. (Die Verallgemeinerung auf beliebiges x ist trivial; x muss sic zwiscen ε und ε befinden.) ε d lim dx V δ ( ϕ( = Eϕ( m dx ε ε (4.4.7) Die recte Seite ergibt lim ε ε ε dx Eϕ( = lim E ε ε ε dx ϕ( lim Eεϕ( x = ) = ε (4.4.8) Die durcgefürte Näerung ist umso besser je kleiner ε ist. Im ier betracteten Grenzfall ε erält man. Die linke Seite ergibt lim ε m = lim ε m = m ( ϕ ( ε ) ϕ ( ε )) V ( ϕ ( ε ) ϕ ( ε )) ( ϕ ( ) ϕ ( )) V ϕ() dx δ ( ϕ( = Vϕ() = ε ε (4.4.9) wobei bzw. rects- bzw. linksseitiger Grenzwert an der Stelle x = bedeutet. Somit ergibt sic m ( ϕ ( ) ϕ ( )) V ϕ() = (4.4.1) bzw. m ϕ ( ) = ϕ ( ) V ϕ () (4.4.11) ϕ at also einen Sprung an der Stelle x. Dieser Sprung fürt zu einer Delta-Distribution in ϕ, welce gerade diejenige des Potentials in (4.4.6) kompensiert. Weiters bedeutet ein Sprung in ϕ, dass ϕ stetig ist, - 4 -

5 ϕ ( ) = ϕ( ) (4.4.1) was ja eine Bedingung an ϕ ist. Die Gleicungen (4.4.11) und (4.4.1) stellen die Übergangsbedingungen für die Wellenfunktion bzw. deren Ableitung an der Stelle der Delta- Distribution dar. Somit sind nun alle Informationen bekannt, um Potentiale mit Delta-Distributionen zu beandeln Beispiel Das Delta-Potential wird nun anand eines einfacen Beispiels diskutiert. Hierfür wurde, aus weiter unten ersictlicen Gründen, ein attraktives Delta-Potential gewält. Attraktives Delta-Potential Sei E < und V ( = Vδ ( mit V. < V ( x Abb. 4.4.: Skizze des attraktiven Delta-Potentials an der Stelle x =. Die Scrödingergleicung ergibt sic zu d Vδ ( ϕ( = Eϕ( m dx (4.4.13) Es folgt eine getrennte Beandlung der Bereice x < sowie x > und im Anscluss die Anpassung der eraltenen Lösung an die Übergangsbedingungen an der Stelle x =. In diesen Bereicen lässt sic me die Scrödingergleicung mit Hilfe von κ = umscreiben in - 5 -

6 d dx ϕ ( = κϕ( (4.4.14) Die Lösungen ierzu lauten κx κx A1e B1e x < ϕ ( = κx κx (4.4.15) Ae Be x > Wobei wegen der Bedingungen ϕ ( x ± (4.4.16) die Konstanten A und B 1 verscwinden müssen. Damit verringert sic das Problem auf κx A1 e x < ϕ ( = κx (4.4.17) Be x > Weiters muss die Stetigkeitsbedingung ϕ ( ) = ϕ( ) erfüllt sein, wofür A 1 = B A gelten muss. Die unter 4.4. ergeleitete Bedingung für ϕ an der Stelle x = lautet Hieraus erält man mit m m ϕ ( ) ϕ ( ) = Vϕ() = V A (4.4.18) ϕ () = Aκ ϕ () = Aκ (4.4.19) wobei ϕ () bzw. ϕ () die Wellenfunktionen für x < bzw. für x > jeweils an der Stelle x = bezeicnen, durc Einsetzen in Gleicung (4.4.18) mv κ = > (4.4.) Für pysikalisce Lösungen muss κ > und damit V (wie es in diesem Beispiel onein der Fall ist) sein. Gebundene Lösungen gibt es daer nur im attraktiven Delta-Potential. Mit der gewälten Substitution für < - 6 -

7 E und Gleicung (4.4.) erält man genau eine gebundene Lösung mit dem diskreten Energieeigenwert E κ V m = = m (4.4.1) Die Normierungsbedingung lautet dx ϕ ( = 1 (4.4.) Hieraus erält man für die Normierungskonstante mv A = mv = κ = (4.4.3) Die Eigenfunktion für den gebunden Zustand mit der Energie E (Gleicung (4.4.1)) ergibt sic letztendlic zu m V mv ( = e x ϕ (4.4.4) κ. Abb : Grafisce Darstellung der Wellenfunktion (4.4.4) für = 1 Zu erkennen ist der Sprung von ϕ an der Stelle x =

8 Bemerkungen Streulösungen ( E > ) existieren unabängig vom Vorzeicen von V. Der Hamiltonoperator mit einem Delta-Potential ist ein Beispiel für einen Operator, der sowol diskrete, als auc kontinuierlice Eigenwerte (für Streulösungen) at. Diskrete Lösungen sind lokalisiert, Streulösungen dagegen nict. Für weitere Beispiele siee z. B. [4] bzw. [7] Anwendung Anwendung findet die Näerung eines realen Potentials durc ein Delta- Potential z. B. in der Modellierung eines Festkörpers durc das Kronig- Penney-Modell. Das folgende Kapitel dient in erster Linie der überblicksmäßigen Darstellung einer möglicen Anwendung; es wird nict näer auf Details eingegangen. Für einen detaillierteren Überblick und insbesondere näere Informationen zum Bloc scen Teorem siee [6]. Kronig-Penney-Modell Beim diesem Modell (nac Ralp Kronig und William Penney) andelt es sic um ein einfaces Modell der Festkörperpysik, das das Veralten von Valenzelektronen in kristallinen Festkörpern erklärt. Aus im ergibt sic eine Bandstruktur der Energie, wie sie änlic auc in der Natur auftritt, zum Beispiel bei Metallen und Halbleitern. -a -a a a 3a x Abb : Potential des Kronig-Penney-Modells mit periodiscen Delta-Potentialen. Für ein einzelnes unabängiges Elektron, welces ein periodisces Delta- Potential an der Position der Atome spürt, kann die zeitunabängige Scrödingergleicung gelöst werden. Das Potential lautet in diesem Fall - 8 -

9 n= V ( = D δ ( x na) (4.4.5) Wobei das Potential als repulsiv oder attraktiv angenommen werden kann. Analog zum Beispiel unter spürt das Elektron zwiscen den Atomen (ier eben durc Delta-Potentiale angenäert) keine Kraft und die Wellenfunktion kann dort als ( x na) A e ikx ikx ϕ = n n mit B e n und für < x < a (4.4.6) me mit k = angesetzt werden. Eigentlic wären jetzt unendlic viele Konstanten A n und B n zu bestimmen. Aufgrund des Bloc scen Teorems weiß man aber, dass man die Eigenfunktionen des Hamiltonoperators nac der Gitterwellenzal q klassifizieren kann, sodass iqna ϕ ( x na) = e ϕ( (4.4.7) gilt. In diesen Eigenfunktionen untersceidet sic somit die Wellenfunktion in jedem Intervall nur um einen bekannten Pasenfaktor von der Wellenfunktion im Intervall < x < a. Deswegen bleiben nur die zwei Konstanten A und B zu bestimmen. Die Stetigkeitsbedingungen z. B. bei x = a reicen dann aus, um die Konstanten in Abängigkeit von k und q festzulegen. Dies fürt zu folgenden Ansclussbedingungen ϕ ( ϕ (4.4.8) x a ) = ( x= x ) x= a und ϕ m ( x a) x= ϕ ( x= a = Dϕ( x a) x= (4.4.9) woraus sic folgendes Gleicungssystem ergibt I : II : Ae ia( k q) Be ik( A B Ae ia( k q) ia( kq) = A B Be ia( k q) ) = m D( A B) (4.4.3) - 9 -

10 welces nur dann eine nicttriviale Lösung besitzt, wenn die entsprecende Determinante der Koeffizientenmatrix verscwindet, woraus folgt md cos( qa) cos( ka) sin( ka) = k (4.4.31) woraus wiederum folgende Bedingung für ka und damit für gewonnen werden kann k E = m md cos( ka) sin( ka) 1 k (4.4.3) Es gibt daer erlaubte und verbotene Energiebereice, so wie in realen Festkörpern. Zu jeder Wellenzal q gibt es unendlic viele diskrete Lösungen für k. Als Funktion von q aben sie die Form von Energiebändern. Abb : cos(qa) als Funktion von ( ka) E für Da = 1. Es sind nur diejenigen Energien möglic, für die cos(qa ) zwiscen 1 und 1 liegt. Als Funktion der Gitterwellenzal q betractet, erält man so die möglicen Energiebänder

11 4.4.5 Quellen und weiterfürende Literatur [1] en.wikipedia.org / de.wikipedia.org [] Cristian B. Lang / Norbert Pucker Matematisce Metoden in der Pysik,. Auflage, 5 [3] Quantenmecanik VO UE, Vorlesungsmitscrift SS 8 [4] Torsten Fließbac Quantenmecanik, Lerbuc zur Teoretiscen Pysik III, 4. Auflage, 5 [5] Claude Coen-Tannoudji Quantum Mecanics, Vol. I, 1977 [6] H. G. Evertz / W. von der Linden Quantenmecanik, 3. Auflage, Vorlesungsskriptum SS 7, S. 174 ff. (ttp://itp.tugraz.at/lv/evertz/qm_skript/qm.tml) [7] Yoav Peleg, et. al. Scaum s Outlines, Quantum Mecanics, 1998, S. 4 ff

Ferienkurs Theoretische Mechanik SS 2011

Ferienkurs Theoretische Mechanik SS 2011 Ferienkurs Teoretisce Mecanik SS Lösungen Freitag Aufgabe : Rotation eines Quaders um die Raumdiagonale Die Hauptacsen verlaufen durc den Scwerpunkt des Quaders parallel zu den Kanten. Die Kante der Länge

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner?

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? 1 Matematik und Nanotecnologie: Warum werden Computer immer kleiner? Ansgar Jüngel Institut für Analysis und Scientific Computing www.juengel.at.vu Einleitung: vom Computer zum Halbleiterbauteil Herleitung

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

WALTER SCHOTTKY INSTITUT

WALTER SCHOTTKY INSTITUT Lerstul für Halbleitertecnologie Lösung zur Zentralübung 3 Aufgabe 1: a Klassisce Betractung (i E 1 ev und V ev (ii E 4 ev und V ev > vollständige Reflexion R 1 > Transmission über die Stufe inweg, R Aber:

Mehr

Symmetrietransformationen

Symmetrietransformationen Kapitel 6 Symmetrietransformationen Besonders wichtig, nicht nur in der Quantenmechanik, sind zeitliche und räumliche Verschiebungen sowie Drehungen. Man bezeichnet sie auch als Symmetrietransformationen,

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

1 Differentiation im Komplexen

1 Differentiation im Komplexen 1 Differentiation im Komplexen 1.1 Definition und einface Eigenscaften Die folgende Definition der komplexen Differenzierbarkeit mittels der komplexen Division ist eine folgenreice Verscärfung der Differentiation

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik Grundkurs Pysik: Abiturprüfung 1997 Aufgabe 3 Atompysik 1. Der gesamte sictbare Bereic (00 nm λ 750 nm) des elektromagnetiscen Spektrums soll auf einem Scirm dargestellt werden. a) Begründen Sie, warum

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Der Hauptsatz der Differential und Integralrecnung Micael Karkulik, Stepan Scmeissl Präsentation für Logik als Arbeitssprace ê Präsentationstecnik 2 Inalt: 1.0 Zusammenfassung 2.0 Einleitung 3.0 Der Hauptsatz

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

15 / 16 I GK EF Übung 2 Dez.15

15 / 16 I GK EF Übung 2 Dez.15 1 / 16 I GK EF Übung Dez.1 Nr. 1: Ableitungsdefinition - Tangentenberecnung Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = x - x a) Bestimmen Sie die durcscnittlice Änderungsrate (Sekantensteigung)

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen.

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen. Differenzierbarkeit Wir betracten zuerst die Differenzierbarkeit reellwertiger Funktionen. Definition. Sei f : R n R und x 0 D(f) ein innerer Punkt. Dann eißt f differenzierbar an x 0, wenn es einen Vektor

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Die Fourier-Transformation

Die Fourier-Transformation Die Fourier-ransformation Im Vorerigem wurde sic intensiv mit der Fourier-Reie zur Approximation periodiscer Funktionen bescäftigt. In diesem Kapitel wird die kontinuierlice Erweiterung dieser Gedanken

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner Biostatistik, WS 200/20 Differential- und Integralrecnung Mattias Birkner ttp://www.matematik.uni-mainz.de/~birkner/biostatistik0/ 2..200 Inalt Ableitung Änderung und Steigung Recenregeln Anmerkungen 2

Mehr

1 Berechnung einer Geschwindigkeitskonstanten mit der Theorie des Übergangszustandes

1 Berechnung einer Geschwindigkeitskonstanten mit der Theorie des Übergangszustandes Pysikalisce Cemie II Lösung 11 4. Dezember 215 1 Berecnung einer Gescwindigkeitskonstanten mit der eorie des Übergangszustandes Mit Gl. 4.97 1. Eyringsce Gleicung ergibt sic für die termiscen Gescwindigkeitskonstanten

Mehr

Schülerbuchseite 8 11

Schülerbuchseite 8 11 Scülerbucseite 8 I Sclüsselkonzept: Ableitung Funktionen Seite 8 Die andere Person muss nict notwendig dieselbe Strecke gefaren sein, nur weil sie denselben Farpreis bezalt at. Es gibt versciedene Verbindungen,

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum Weg zur e-funktion Zur Einstimmung werden einige Wacstumsverläufe skizziert.. Eponentielles Wacstum. Begrenztes (bescränktes) Wacstum Wacstumsverläufe. Logistisces Wacstum. Vergiftetes Wacstum Eponentielles

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

7. Teil: Differentialrechnung

7. Teil: Differentialrechnung 7 Teil: Differentialrecnung Differenzierbarkeit und Differentiation Definition: Sei f(x) eine für x [a,b] D f stetige Funktion Dann eisst die für x (a,b) durc f(x+) f(x) lim oder lim f(x) f(x ) oder lim

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Grundlagen der Differentialrechnung

Grundlagen der Differentialrechnung Grundlagen der Differentialrecnung Wolfgang Kippels 26. Oktober 2018 Inaltsverzeicnis 1 Vorwort 2 2 Grundprinzip der Differenzialrecnung 3 3 Ableiten von Funktionen 7 3.1 Ableitungen wictiger Grundfunktionen:..................

Mehr

Höhere Mathematik II für die Fachrichtung Physik. 13. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. 13. Übungsblatt Institut für Analysis SS07 PD Dr. Peer Cristian Kunstmann.07.07 Dipl.-Mat. Leonid Caicenets, Joanna Ricter, M.Sc., Tobias Ried, M.Sc., Tobias Scmid, M.Sc. Höere Matematik II für die Facrictung Pysik 3.

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Physik in der Praxis: Fortgeschrittenen-Praktikum

Physik in der Praxis: Fortgeschrittenen-Praktikum MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Pysik in der Praxis: Fortgescrittenen-Praktikum 1. Versuc: Quantisierter Leitwert von Punktkontakten Durcfürung 19.04.2011 Abgabe am Übungsleiter

Mehr

Differenzial- und Integralrechnung IV

Differenzial- und Integralrechnung IV Differenzial- un Integralrecnung IV Rainer Hauser September 202 Einleitung. Ableitung un Integral Die Ableitung einer Funktion f: R R, f() ist efiniert urc en Differenzialquotienten als f () = f() = f(

Mehr

Übungsaufgaben zur Differential-Rechnung

Übungsaufgaben zur Differential-Rechnung Übungsaufgaben zur Differential-Recnung Weitere Übungsaufgaben mit Lösungen gibt es z.b. in Brauc/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski usw.. Bestimme allgemeines Folgen-Element, Eigenscaften

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleichungen

Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleichungen Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleicungen Diplomarbeit zur Erlangung des akademiscen Grades Diplom-Matematikerin Freie-Universität

Mehr

Klausur 2 Kurs 13PH13 Physik Lk Lösungsblatt

Klausur 2 Kurs 13PH13 Physik Lk Lösungsblatt 27.11.2001 Klausur 2 Kurs 13PH13 Pysik Lk Lösungsblatt 1 Versuc 1: In einer Vakuumröre (Triode) werden die aus einer Glükatode austretenden Elektronen durc eine variable Spannung zwiscen Glüdrat und Gitter

Mehr

2m x + U(x) ψ(x) = Eψ(x),

2m x + U(x) ψ(x) = Eψ(x), 4. Woche 4.1 Beispiel der Lösung der Schrödinger-Gleichung: Das Rechteckpotential. Die stationäre Schrödinger-Gl. ist ) ( 2 2 2m x + U(x) ψ(x) = Eψ(x), 2 mit Parametern: Längenskala L, Energieskala U 0.

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Anleitung zur Berechnung von Ableitungsfunktionen

Anleitung zur Berechnung von Ableitungsfunktionen Matematik 11d 7..009 Stefan Krissel Anleitung zur Berecnung von Ableitungsfunktionen Prolog Es gibt nict das Verfaren zur Berecnung der Ableitungsfunktion, genausowenig wie es das Verfaren zum Screiben

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

Numerische Differenziation

Numerische Differenziation In vielen Anwendungen ist es notwendig, Funktionen näerungsweise mit Hilfe eines numeriscen Verfarens zu differenzieren: Die analytisce Berecnung der Ableitung ist zum Beispiel unmöglic, wenn die zu differenzierende

Mehr

Elastizitätsmodul. 1. Aufgabenstellung

Elastizitätsmodul. 1. Aufgabenstellung M Elastizitätsmodul 1. Aufgabenstellung 1.1 Bestimmen Sie den Elastizitätsmodul E versciedener Metalle aus der Biegung von Stäben. 1. Stellen Sie den Biegepfeil s in Abängigkeit von der Belastung grafisc

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik Institut für Analysis SS 4 Prof. Dr. Roland Scnaubelt 8.7.4 Dipl.-Mat. Leonid Caicenets Höere Matematik II für die Facrictung Pysik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 68: Wir arbeiten den Folgenden

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizscule Hannover - Seminararbeit - Modellierung von Ausflussvorgängen J I Sculjar: 2010 Fac: Matematik Inaltsverzeicnis 1 Einleitung 2 11 Vorwort 2 12 Vorbereitung 2 2 Ausflussvorgang bei konstantem

Mehr

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen.

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Potentialstufen Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Stetigkeit von ψ(x, ψ (x für stückweise stetiges Potential betrachte

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10 Differenzialrecnung Was du nac den Ferien kannst! Klasse 10 Zeicne die Tangenten an den Stellen x=-4, x=-1 und x=3 an den abgebildeten Funktionsgrap, und bestimme die Tangentengleicung. Zeicne die Sekanten

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SoSe Übungsblatt Musterlösung Lösung 4 Einfluß von Randbedingungen) a) Durc Integration erälten wir: u x) = ux) = x x fy)dy +c = x π sinπz)+c b) Seien nun u) = u) = Daraus folgt: cosπy)dy +c = π sinπx)+c.

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Weitere Anwendungen von ganzrationalen Funktionen

Weitere Anwendungen von ganzrationalen Funktionen Weitere Anwendungen von ganzrationalen Funktionen 1.0 Um Obstkisten aus Pappe erzustellen, werden aus recteckigen Kartonplatten (Länge 16 dm, Breite 1 dm) an den vier Ecken jeweils Quadrate abgescnitten.

Mehr

2. ELLIPTISCHE GLEICHUNGEN 57

2. ELLIPTISCHE GLEICHUNGEN 57 2 ELLIPTISCHE GLEICHUNGEN 57 2 Finite Differenzen für elliptisce Gleicungen Im Gegensatz zu yperboliscen Gleicungen aben elliptisce Gleicungen einen Glättungseffekt, d im Allgemeinen besitzen solce Gleicungen

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

6.Wechselwirkung mit einem Flüssigkeitsfilm auf der kalten Thermode

6.Wechselwirkung mit einem Flüssigkeitsfilm auf der kalten Thermode 6. WECHSELWIRKUNG MIT FLÜSSIGKEITSFILM AUF KALTER THEMODE 153 6.Wecselwirkung mit einem Flüssigkeitsfilm auf der kalten Termode Die an der kalten Termode angebracte Benetzungssperre verindert im allgemeinen

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr