Kreis, Ellipse, Hyperbel, Parabel
|
|
|
- Thilo Beck
- vor 9 Jahren
- Abrufe
Transkript
1 Kreis, Ellipse, Hyperbel, Parabel Hörsaalanleitung Dr. E. Nana Chiadjeu
2 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung (x α) 2 + (y β) 2 = R 2. (1) Parameterdarstellung eines Kreises: Eine Parameterdarstellung des Kreises beschrieben durch (1) ist durch { x = α + R cos(θ) (2) y = β + R sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung des Kreises beschrieben durch + y 2 6x + 4y + 11 = 0.
3 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung (x α) 2 + (y β) 2 = R 2. (1) Parameterdarstellung eines Kreises: Eine Parameterdarstellung des Kreises beschrieben durch (1) ist durch { x = α + R cos(θ) (2) y = β + R sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung des Kreises beschrieben durch + y 2 6x + 4y + 11 = 0.
4 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung (x α) 2 + (y β) 2 = R 2. (1) Parameterdarstellung eines Kreises: Eine Parameterdarstellung des Kreises beschrieben durch (1) ist durch { x = α + R cos(θ) (2) y = β + R sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung des Kreises beschrieben durch + y 2 6x + 4y + 11 = 0.
5 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung (x α) 2 + (y β) 2 = R 2. (1) Parameterdarstellung eines Kreises: Eine Parameterdarstellung des Kreises beschrieben durch (1) ist durch { x = α + R cos(θ) (2) y = β + R sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung des Kreises beschrieben durch + y 2 6x + 4y + 11 = 0.
6 Ellipse a 2 + y 2 b 2 = 1 (3) ist die Gleichung der Ellipse um Nullpunkt mit den Extremalstellen A = ( a, 0), B = (a, 0), C = (0, b) und D = (0, b) Im Allgemein, die Gleichung (x α) 2 (y β)2 a 2 + b 2 = 1 (4) beschreibt eine Ellipse des Mittelpunktes P = (α, β) mit den Extremalstellen A = ( a + α, β), B = (a + α, β), C = (α, b + β) und D = (α, b + β) und eine Parameterdarstellung davon ist { x = α + a cos(θ) (5) y = β + b sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung der Ellipse beschrieben durch + 4y 2 + 6x 16y + 21 = 0.
7 Ellipse a 2 + y 2 b 2 = 1 (3) ist die Gleichung der Ellipse um Nullpunkt mit den Extremalstellen A = ( a, 0), B = (a, 0), C = (0, b) und D = (0, b) Im Allgemein, die Gleichung (x α) 2 (y β)2 a 2 + b 2 = 1 (4) beschreibt eine Ellipse des Mittelpunktes P = (α, β) mit den Extremalstellen A = ( a + α, β), B = (a + α, β), C = (α, b + β) und D = (α, b + β) und eine Parameterdarstellung davon ist { x = α + a cos(θ) (5) y = β + b sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung der Ellipse beschrieben durch + 4y 2 + 6x 16y + 21 = 0.
8 Ellipse a 2 + y 2 b 2 = 1 (3) ist die Gleichung der Ellipse um Nullpunkt mit den Extremalstellen A = ( a, 0), B = (a, 0), C = (0, b) und D = (0, b) Im Allgemein, die Gleichung (x α) 2 (y β)2 a 2 + b 2 = 1 (4) beschreibt eine Ellipse des Mittelpunktes P = (α, β) mit den Extremalstellen A = ( a + α, β), B = (a + α, β), C = (α, b + β) und D = (α, b + β) und eine Parameterdarstellung davon ist { x = α + a cos(θ) (5) y = β + b sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung der Ellipse beschrieben durch + 4y 2 + 6x 16y + 21 = 0.
9 Ellipse a 2 + y 2 b 2 = 1 (3) ist die Gleichung der Ellipse um Nullpunkt mit den Extremalstellen A = ( a, 0), B = (a, 0), C = (0, b) und D = (0, b) Im Allgemein, die Gleichung (x α) 2 (y β)2 a 2 + b 2 = 1 (4) beschreibt eine Ellipse des Mittelpunktes P = (α, β) mit den Extremalstellen A = ( a + α, β), B = (a + α, β), C = (α, b + β) und D = (α, b + β) und eine Parameterdarstellung davon ist { x = α + a cos(θ) (5) y = β + b sin(θ) Man gebe die Gleichung sowie eine Parameterdarstellung der Ellipse beschrieben durch + 4y 2 + 6x 16y + 21 = 0.
10 z + i 2 = Re(z + 1), Hinweis: z = x + yi. Hyperbel, Parabel Hyperbel ist die Gleichung der Hyperbel mit axis y = ± b a x Parabel Die Gleichungen a 2 y 2 b 2 = 1 (6) y = a + bx + c bzw. x = ay 2 + by + c mit a 0 (7) ist die Gleichung einer Parabel. Auf welcher Kurve in der Gauß-Ebene liegen die komplexen Zahlen z, die durch die folgende Gleichung beschrieben werden?
11 z + i 2 = Re(z + 1), Hinweis: z = x + yi. Hyperbel, Parabel Hyperbel ist die Gleichung der Hyperbel mit axis y = ± b a x Parabel Die Gleichungen a 2 y 2 b 2 = 1 (6) y = a + bx + c bzw. x = ay 2 + by + c mit a 0 (7) ist die Gleichung einer Parabel. Auf welcher Kurve in der Gauß-Ebene liegen die komplexen Zahlen z, die durch die folgende Gleichung beschrieben werden?
12 z + i 2 = Re(z + 1), Hinweis: z = x + yi. Hyperbel, Parabel Hyperbel ist die Gleichung der Hyperbel mit axis y = ± b a x Parabel Die Gleichungen a 2 y 2 b 2 = 1 (6) y = a + bx + c bzw. x = ay 2 + by + c mit a 0 (7) ist die Gleichung einer Parabel. Auf welcher Kurve in der Gauß-Ebene liegen die komplexen Zahlen z, die durch die folgende Gleichung beschrieben werden?
13 z + i 2 = Re(z + 1), Hinweis: z = x + yi. Hyperbel, Parabel Hyperbel ist die Gleichung der Hyperbel mit axis y = ± b a x Parabel Die Gleichungen a 2 y 2 b 2 = 1 (6) y = a + bx + c bzw. x = ay 2 + by + c mit a 0 (7) ist die Gleichung einer Parabel. Auf welcher Kurve in der Gauß-Ebene liegen die komplexen Zahlen z, die durch die folgende Gleichung beschrieben werden?
Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer
Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort
Kurven. Mathematik-Repetitorium
Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem
Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte
Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,
Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg
Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 3 Der Axiator Eigenschaften des Axiators Bestimmung des Kegelschnitts Geometrische Betrachtungen Dualer Kegelschnitt Pol-Polare
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016
Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle
9. Geometrische Konstruktionen und Geometrische Zahlen.
9. Geometrische Konstruktionen und Geometrische Zahlen. Die Dreiteilungsgleichnung. Das Problem der Dreiteilung des Winkels wurde von Descartes vollständig gelöst. Dies ist in der Geometrie von Descartes
lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0
1 7. Der Graph einer quadratischen Funktion lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 Es wird im Folgenden untersucht,
Serie 6: Komplexe Zahlen
D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B
Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben
Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie
Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik
FK WMS: Wirtschaftsmathematik 2, Einheit 1
FK WMS: Wirtschaftsmathematik 2, Einheit 1 Markus Sinnl 1 Sprechstunde: MO, 13-14 Uhr [04/343] [email protected] http://homepage.univie.ac.at/markus.sinnl 06.10.2014 1/18 1 basierend auf Folien
Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene
Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen
Übungen mit dem Applet Kurven in Polarkoordinaten
Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r
2 Funktionen mehrerer Veränderlicher
2 Funktionen mehrerer Veränderlicher 4 2 Funktionen mehrerer Veränderlicher Wir betrachten nun Funktionen, die auf einer Teilmenge des R n definiert sind. Wir betrachten eine Funktion f, deren Definitionsbereich
Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen
Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z
Mathematik 2 SS 2016
Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,
C. Eicher Analysis Study Center ETH Zürich HS Extremwerte
C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der
4.12 Mathematiker im Umfeld von Platons Akademie
4.12 Mathematiker im Umfeld von Platons Akademie Theodoros von Kyrene (circa 460 390 v.chr.) soll (laut Iamblichos) Pythagoreer und (laut Diogenes Laertios) Platons Lehrer auf dem Gebiet der Mathematik
Name und des Einsenders
Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec [email protected] Verwenden von Dynamischer
Parameterdarstellung einer Funktion
Parameterdarstellung einer Funktion 1-E Eine ebene Kurve Abb. 1-1: Die Kurve C beschreibt die ebene Bewegung eines Teilchens 1-1 Eine ebene Kurve Ein Teilchen bewegt sich in einer Ebene. Eine ebene Kurve
Computational Geometry, MU Leoben
Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.
Repetitorium Analysis II für Physiker
Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie
I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).
Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente
Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Wir betrachten Kurven in der -Ebene. Als erstes wollen wir uns damit beschäftigen, wie sich solche Kurven mathematisch beschreiben lassen. Dafür
Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Frederieke Sperke x Funktionsanpassung
Frederieke Sperke 12 16.11.2009 x Funktionsanpassung Verbinde die Strecken zwischen den Punkten A(-4/1) und B(-3/-3)mit der Strecke zwischen den Punkten C(4/2) und D(3/-1) knickfrei und exakt miteinander.
Übungen Ingenieurmathematik
Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),
f(x) = 1 5 ex c Roolfs
Krümmung Die lineare Näherung von Funktionen durch Geraden (Tangenten) bildet die Grundlage der Differentialrechnung. Quadratische Näherungen durch Parabeln werden bei Reihenentwicklungen betrachtet. Durch
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 4: Kegelschnitte 4.1 Inhalte Didaktik der Linearen
Worksheet zur Hauptachsentransformation
Worksheet zur Hauptachsentransformation with(linearalgebra): with(plots): Die Gleichungen fuer Kreise, Ellipsen und Hyperbeln sind (mehr oder weniger) bekannt: der Einheitskreis besteht aus den Punkten
12 Übungen zu Gauß-Algorithmus
Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4
Matrix- Algorithmen Householder- und Givens- Matrizen
Fast und 20. Mai 2011 und Inhaltsverzeichnis Fast 1 2 Fast und Fast ist eine eines Vektors an der Hyperebene durch die Null im euklidischen Raum Ein zur Spiegelebene orthogonaler Vektor v R n \ {0} wird
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen
Algebraische Kurven - Vorlesung 7. Kegelschnitte und Quadriken
Algebraische Kurven - Vorlesung 7 Kegelschnitte und Quadriken Der Standardkegel im dreidimensionalen affinen Raum ist gegeben durch die homogene Gleichung Z 2 = X 2 + Y 2 Das kann man sich so vorstellen,
5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).
5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =
a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:
. ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der
Seminar für LAGym/LAB: Analytische Geometrie
Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme
8 Tangenten an Quadriken
8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE
Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:
FK WMS: Wirtschaftsmathematik 2, Einheit 1
Markus Sinnl 2 [email protected] http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag. Reinhard Ullrich 2 Sprechstunde: MI, 10-11
PROBEPRÜFUNG MATHEMATIK I UND II
PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant
Inhaltsverzeichnis. geometrischer Objekte auszufüllen. Die Liste der Lösungen kann auch eine ABC Liste zu diesen Themen sein.
Lückentexte 1 zu den Themen: I. Der Kreis als Figur in der Ebene II. Der Kreis als Figur im Raum III. Die Kugel Multiple Choice Aufgabe zum Thema IV. Ebene Schnitte einer Kugel Kreuzworträtsel zu den Themen:
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
Gleichseitige Hyperbeln zu Dreieck und Viereck. Eckart Schmidt
Gleichseitige Hyperbeln zu Dreieck und Viereck Eckart chmidt Zu Dreiecken werden Büschel gleichseitiger Umhyperbeln als auch gleichseitiger Berührhyperbeln betrachtet Gearbeitet wird in baryzentrischen
Quadratische Funktionen
Quadratische Funktionen 1-E Galileo Galilei und der schiefe Turm von Pisa Galileo Galilei (1564-164) Der berühmte italienische Wissenschaftler Galileo Galilei stellte das korrekte Fallgesetz auf. 1590
Analysis II für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen
Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik
Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene
1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.
1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)
Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit
Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche
1.4. Funktionen, Kurven und Parameterdarstellungen
.4. Funktionen, Kurven und Parameterdarstellungen Reellwertige Funktionen Eine reelle Relation ist eine beliebige Teilmenge F der Ebene (also eine ebene "Fläche"). Von einer reellen Funktion spricht man,
2. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013. z 3 + 4z 2 + z 26 z 2. = z 2 + 6z i und 2
O. Alaya, S. Demirel M. Fetzer, B. Krinn M. Wied. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 4. Komplexe
Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29
Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die
Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007
Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.
Linien- oder Kurvenintegrale: Aufgaben
Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das
ANALYTISCHEN GEOMETRIE DER EBENE.
DIE ELEMENTE DEB ANALYTISCHEN GEOMETRIE DER EBENE. ZUM GEBRAUCH AN HÖHEREN LEHRANSTALTEN SOWIE ZUM SELBSTSTUDIUM DARGESTELLT UND MIT ZAHLREICHEN ÜBUNGSBEISPIELEN VERSEHEN VON DR. H. GANTER UND DE. F. RUDIO
Flächen zweiter Ordnung
1 Flächen zweiter Ordnung Definition: Eine Fläche zweiter Ordnung ist die Gesamtheit aller Punkte, deren Ortsvektoren x der Gleichung x T A x + p T x + f = 0 genügen, wobei x 1 x = x x 3, A = Ausführliche
Lemniskaten und eine Strophoide des Dreiecks
Lemniskaten und eine Strophoide des Dreiecks Eckart Schmidt Spiegelt man Umkegelschnitte eines Dreiecks am Umkreis, so erhält man im allgemeinen Kurven vierter Ordnung. Hier werden nur gleichseitige Umhyperbeln
Unterrichtsreihe zur Parabel
Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis
Übungen zu Kurvenintegralen Lösungen zu Übung 12
Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:
Hausaufgaben und Lösungen
Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.
Abschlussprüfung 2010 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels
Übungen zum Vorkurs Mathematik
Übungen zum Vorkurs Mathematik Blatt 1 W.S.2009/2010 - Ernst Bönecke Aufgaben zur Aussagenlogik 1.) Seien A, B, C Aussagen. Beweisen Sie mit Hilfe von Wahrheitstafeln, dass folgende Aussagen stets wahr
Korrelation und Regression
FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Abb.1. Falls die Spitze des Kegels (bzw. Doppelkegels) nicht in der jeweiligen Schnittebene liegt, können die folgende Kurven entstehen:
Kegelschnitte Ein Kegelschnitt ist eine ebene Kurve, die entsteht, wenn man die Oberfläche eines Kreiskegels bzw. Doppelkreiskegels mit einer Ebene schneidet (vgl.abb.1). Der Doppelkreiskegel seinerseits
13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss
Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe
Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.
DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den
Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS
Trigonometrie aus geometrischer und funktionaler Sicht
Trigonometrie aus geometrischer und funktionaler Sicht Der Kosinussatz und der Sinussatz: Wenn in einem Dreieck nur zwei Seiten und der eingeschlossene Winkel gegeben sind, oder nur die drei Seiten bekannt
Seminar Galoistheorie
Seminar Galoistheorie Prof. M. Brodmann Konstruktion mit Zirkel und Lineal Judith Keller und Vesna Nikolic 20.Mai 2009 1 Einleitung Im letzen Teil des Seminars zur Galoistheorie geht es um die Lösbarkeit
Implizite Differentiation
Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =
Ergänzung zu komplexe Zahlen
Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt
Segmentierung des Aterienbaums
Segmentierung des Aterienbaums Christoph Schaefer Seminar: Bildverarbeitung für die Medizin Universität Koblenz-Landau 27.01.2007 1 Anwendungsgebiete 2 Segmentierung Überblick Deformierbare Modelle Snake
Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation
Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen
7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?
Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist
1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität.
34 1.7. Die indirekte (umgekehrte) Proportionalität a Die Funktion f : y = a 0, 0 heisst umgekehrte (indirekte) Proportionalität. Spezialfall a = 1: f: Bilde den Kehrwert der gegebenen Zahl. An der Stelle
Lösung von Gleichungen vierten Grades Carolin Dick
Lösung von Gleichungen vierten Grades 1 Lösung für x 4 + ax 3 + bx 2 + cx + d = 0: 2 Geschichtlicher Hintergrund 1539: Cardano erhält die Formel zur Lösung kubischer Gleichungen 1540: Cardanos Schüler
Skriptum Konstruierbare Zahlen. Projekttage Mathematik 2007
Skriptum Konstruierbare Zahlen Projekttage Mathematik 007 c Florian Stefan und Stefan Englert Würzburg, 007 Konstruktion mit Zirkel und Lineal Gegeben sei eine Menge M von Punkten in der Zeichenebene Dann
Analytische Geometrie des Raumes
Analytische Geometrie des Raumes Als Begründer der analytischen Geometrie gilt René Descartes (Discours de la méthode). Seine grundliegende Idee bestand darin, geometrische Gebilde (Gerade, Kreis, Ellipse
Darstellungsformen einer Funktion
http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die
Klassifikation von partiellen Differentialgleichungen
Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.
8.Kreisdarstellung in Perspektive
8.Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel oder Hyperbel.
Tag der Mathematik 2010
Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt
Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7
Inhaltsverzeichnis Prolog. Die Elemente des Euklid... 1 1. Euklid 2. Axiome 3. Über die Sprache der Geometrie Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung... 5 1. Affine Ebenen...
Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE
Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse
