Computational Geometry, MU Leoben
|
|
|
- Robert Langenberg
- vor 8 Jahren
- Abrufe
Transkript
1 Computational Geometry, MU Leoben Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS Übungsleiterin: S. Prabitz-Hallama Das Drehparaboloid Stoffgebiet: Kurven und Flächen 1
2 2 Aufgabenstellung Gegeben ist die Fläche Φ mit der Gleichung z = x 2 + y (1) Um welche Fläche handelt es sich? Was lässt sich über die ebenen Schnitte von Φ sagen? Geben Sie eine Parameterdarstellung der Fläche an! 1 Typ der Fläche Φ Die implizite Form der Flächengleichung (1) lautet x 2 + y 2 z + 1 = 0 (2) Die linke Seite ist ein Polynom 2. Grades in x, y, z; es handelt sich daher bei Φ jedenfalls um eine algebraische Fläche 2. Ordnung. 1 Um die genaue Gestalt der Fläche Φ zu ermitteln, bestimmen wir zunächst ihren Schnitt mit einer beliebigen waagrechten Ebene ε : z = d (3) (3) eingesetzt in die Flächengleichung (2) liefert: x 2 + y 2 = d 1 Das ist die Gleichung des Grundrisses der gesuchten Schnittkurve. Sofern d 1, handelt es sich dabei um einen im Koordinatenursprung O zentrierten Kreis mit Radius r = d 1. Da die Schnittebene ε parallel zur Grundrissebene im Abstand d liegt, ist die eigentliche Schnittkurve ein dazu kongruenter Kreis in ε mit dem Mittelpunkt M(0/0/d). Das gilt für jedes d 1; deshalb haben wir das Resultat 1. Die Fläche Φ ist eine Drehfläche mit der z-achse als Rotationsachse. Zu den Drehflächen siehe Skriptum Darstellende Geometrie I, Kap. V! Um den Meridian 2 der Drehfläche Φ zu bestimmen, haben wir diese mit einer Ebene durch ihre Rotationsachse zu schneiden. Dazu können wir etwa die Aufrissebene π 2 : x = 0 (4) 1 Zu den Begriffen algebraische Fläche und Ordnung einer algebraische Fläche siehe Skriptum Darstellende Geometrie I, Kap. III. 2 Meridian = Schnitt mit einer Ebene durch die Drehachse.
3 Darstellende Geometrie I, Übungen, SS 2011: Gabelstück 3 wählen. Durch Einsetzen von (4) in (2) erhalten wir y 2 = z 1. Das ist die Gleichung einer (in π 2 liegenden) Parabel m mit der z-achse als Achse, dem Scheitel A(0/0/1) und dem Parameter p = 1 2 (Figur 1). Resultat 2. Bei der Fläche Φ handelt es sich um ein Drehparaboloid, dessen Drehachse die z-achse und dessen Scheitel der Punkt A(0/0/1) ist. Figur 2 zeigt eine schattierte Ansicht der Fläche und ihre in der yz-ebene liegende Meridianparabel m. Figur 1. Die Meridianparabel m des Drehparaboloids mit ihrem Scheitel A und ihrem Brennpunkt F ; AF = p 2 = 1 4. Figur 2. Eine schattierte Ansicht des Drehparaboloids. 2 Ebene Schnitte von Φ 2.1 Schnitte parallel zur Drehachse Aufgrund der Rotationssymmetrie können wir uns darauf beschränken, Φ mit einer Ebene π parallel zur Aufrissebene zu schneiden. Die Gleichung einer solchen Ebene lautet π : x = c, was nach Einsetzen in (2) die Gleichung des Aufrisses der gesuchten Schnittkurve liefert y 2 z + c = 0
4 4 bzw. y 2 = z (c 2 + 1) Es handelt sich daher beim Aufriss der Kurve um eine Parabel mit der z-achse als Achse, dem Scheitel (0/0/c 2 +1) und dem Parameter p = 1 2. Da die Schnittebene parallel zur Aufrissebene liegt, ist die Schnittkurve selbst eine dazu kongruente Parabel; ihr Scheitel ist C(c/0/c 2 + 1). Alle solchen Parabeln sind untereinander kongruent (p hängt ja nicht von c ab), liegen außerdem in zueinander parallelen Ebenen, haben zueinander parallele Achsen und sind in Richtung der positiven z-achse geöffnet. Daher folgt: Resultat 3. Die Fläche Φ entsteht durch (krumme) Parallelverschiebung einer ihrer Meridianparabeln. Φ ist daher nicht nur eine Drehfläche sondern auch eine Schiebfläche. 2.2 Schnitte schräg zur Drehachse Wir wollen nun den Schnitt l von Φ mit einer beliebigen, nicht zur Drehachse parallelen Ebene ε bestimmen. Wegen der Rotationssymmetrie können wir ohne Beschränkung der Allgemeinheit voraussetzen, dass ε normal zur Aufrissebene liegt. Eine solche Ebene besitzt eine Gleichung der Form: ε : z = ky + d Wir setzen wieder in (2) ein und erhalten als Gleichung des Grundrisses der gesuchten Schnittkurve l: x 2 + y 2 ky d + 1 = 0 Die Ergänzung der Glieder in y auf ein vollständiges Quadrat ergibt x 2 + (y k 2 )2 = k2 4 + d 1 Der Grundriss von l ist also ein Kreis mit Mittelpunkt M(0/ k 2 /0) und Radius r := k 2 k d 1 > 0 gilt. Die Schnittkurve l selbst ist daher eine Ellipse! 4 + d 1, sofern Resultat 4. Die Schnitte des Drehparaboloids Φ mit Ebenen schräg zur Drehachse sind stets Ellipsen, die Kreise als Grundrisse besitzen. Anmerkung: Da der Grundriss l der Schnittkurve l von Φ mit einer schrägen Ebene ein Kreis ist, liegt l auch im Schnitt von Φ mit jenem Drehzylinder Ψ, der l als Normalschnitt besitzt (Figur 3).
5 Darstellende Geometrie I, Übungen, SS 2011: Gabelstück 5 Figur 3. Schnitt schräg zur Achse. 3 Parameterdarstellungen der Fläche Φ 3.1 Parametrisierung als Drehfläche Wir gehen bei x und y zu Polarkoordinaten v, u über: x = v cos(u) y = v sin(u) Dann folgt aus der Flächengleichung (2): z = x 2 + y = v Damit erhalten wir als Parameterdarstellung von Φ: x(u, v) y(u, v) z(u, v) = v cos(u) v sin(u) v (5) Bei dieser Parameterdarstellung von Φ ergeben sich als u-linien (u läuft, v = v 0 = const.) die horizontalen Schnitte (= Parallelkreise von Φ, siehe Abschnitt 1) und als v-linien (v läuft, u = u 0 = const.) die ebenen Schnitte durch die Drehachse (= Meridianparabeln von Φ). Das Netz aus u- und v-linien bzgl. dieser Parametrisierung ist in Figur 4 dargestellt.
6 6 3.2 Parametrisierung als Schiebfläche Setzen wir x := u, y := v, dann folgt z = u 2 + v Als eine zweite Parameterdarstellung von Φ haben wir also: x(u, v) y(u, v) z(u, v) = u v u 2 + v (6) Als u-linien (u läuft, v = v 0 = const.) stellen sich die Schnitte von Φ mit Ebenen parallel zur xz-ebene ein, also eine Schiebschar von Parabeln (siehe Abschnitt 2.1). Analog erhalten wir als v-linien (v läuft, u = u 0 = const.) Schnitte mit Ebenen parallel zur yz-ebene, also eine zweite Schiebschar von Parabeln. Figur 5 zeigt das Netz der Parameterlinien bzgl. dieser zweiten Parametrisierung. Figur 4. Parametrisierung als Drehfläche. Figur 5. Parametrisierung als Schiebfläche.
Computational Geometry, MU Leoben
Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.
Computational Geometry, MU Leoben
Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.
Einige Bemerkungen zu den verallgemeinerten Kegelschnitten von Zvonimir Durčević
Definition 1. Es seien B, D Punkte und c eine Gerade oder ein Kreis in einer Ebene ε siehe Abb. 1 bzw.. Lässt man einen Punkt auf c laufen, dann durchläuft der Schnittpunkt X der Geraden g : D mit der
Kurven. Mathematik-Repetitorium
Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem
Dreh- und Schraubflächen
Vorlesung 9 Dreh- und Schraubflächen 9.1 Drehflächen Betrachte eine in der Ebene {y = 0} liegende reguläre Kurve c(r) = (r,0,f(r)). Denken wir uns diese um die z-achse gedreht, erhalten wir eine Dreh-
Mathematisches Denken. Übungsserie 1. γ : [0, 2] IR 2,t r(t) := 2t 1
Studiengang Architektur Mathematisches Denken Übungsserie 1 HS 2007 Abgabe der (z.t. mit dem TR) gelösten Aufgaben: Freitag 26. Oktober 2007 in der Vorlesung 1. Durch die folgende Parameterdarstellung
Name und des Einsenders
Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec [email protected] Verwenden von Dynamischer
Übungsblatt Funktionen
Übungsblatt Funktionen A. In welchem Punkt schneiden sich die beiden Geraden? In welchem Punkt schneiden sich die beiden Geraden? Lösungen 1.) y = 8 x -16 und y = 9 x -19 A ( 3 / 8 ) 2.) y = -5 x + 4 und
lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0
1 7. Der Graph einer quadratischen Funktion lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 Es wird im Folgenden untersucht,
8 Kurven in der Ebene
Aufgabe 8. Wie lautet die Gleichung der Gerade, die durch den Punkt (4 5) geht und senkrecht zur Geraden y = x 4 steht? Der Punkt (4 5) muss die Geradengleichung erfüllen: y = mx + t 5 = m 4 + t m =, da
Übungen zu Kurvenintegralen Lösungen zu Übung 12
Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:
Klausur HM II/III F 2003 HM II/III : 1
Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
8 Tangenten an Quadriken
8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
Analysis 2 - Übung 1
Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung
TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 26. April 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung Aufgabe
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8
Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben
Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie
Karlsruher Institut für Technologie KIT) 4. März 20 Institut für Algebra und Geometrie PD Dr. Gabriele Link Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Aufgabe. Kurventheorie.
Darstellende Geometrie I MU Leoben
Darstellende Geometrie I MU Leoben Sommersemester 2011 Lehrveranstaltungsbetreuer: Anton Gfrerrer, Sigrid Prabitz-Hallama, Josef Radlingmayer Darstellung von Kurven und Flächen mit MAPLE Rechnen mit Vektoren
Elemente der Zweitafelprojektion
Teil I Elemente der Zweitafelprojektion 1 Einleitung Darstellende Geometrie: Eindeutige Darstellung der Geometrie des Raumes auf einer Zeichenebene ohne primäre Anschaulichkeit. Eine DG-Zeichnung muss
Haupttermin 2012/13 Prüfer: Mag. Helgrid Müller
Schriftliche Reifeprüfung aus Darstellender Geometrie Haupttermin 2012/13 Prüfer: Erzeuge am Laufwerk H einen Ordner mit dem Namen: Mein Nachname _DG_Matura Speichere alle folgenden Beispiele dorthin ab.
Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel.
1 3 Die Parabel 3.1 Die Parabel als Kegelschnitt Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel. Sei SP
DARSTELLENDE GEOMETRIE I
DARSTELLENDE GEOMETRIE I VON DR. RUDOLF BEREIS Professor und Direktor des Instituts für Geometrie an der Technischen Universität Dresden Mit 361 Abbildungen AKADEMIE-VERLAG BERLIN 1964 h. INHALT Hinweise
Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5)
Übungen Gerade, Ebene - Kurze Aufgaben ) Gesucht ist Normalenform einer Ebene, die den Punkt P( ) enthält und auf der x- Achse senkrecht steht. ) Gegeben ist die Ebene E: x ( Gesucht ist der Winkel zwischen
Mathematik Klasse 9d, AB 14 Übungszettel Parabel Lösung
Aufgabe : Gegeben sind die folgenden Parabeln: a) f x =2x 2 8x 2 b) f 2 x = 0 x2 x c) f 3 x = 4 x2 2 x 2 Beschreibe die Parabel, in dem du den Scheitelpunkt angibst, ob sie enger oder weiter als die ist,
Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem
Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,
Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer
Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Beide Geraden haben die Steigung 2, also sind sie parallel zueinander.
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Geometrie mit Lösungen. Gieding
Geometrie mit Lösungen Gieding 060112 1 01 Die Aufgabe a) Es sei p die Normalparabel, dh der Graph der Funktion f(x) = x 2 p sei das Bild von p bei einer Drehung D Z,α Bei dieser Drehung werden die Punkte
f(x, y) = x 2 4x + y 2 + 2y
7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem
Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE
Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:
eingesetzt in die Ebenengleichung
25 5. Gegenseitige Lage von Geraden und Ebenen 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene Beispiel: ε: 2x + 3y + 4z - 24 = 0 g = P(6, -2, 2)Q(0,
Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15
5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet
Strophoiden. Eckart Schmidt
Strophoiden Eckart Schmidt Strophoiden sind als anallagmatische Kurven invariant gegenüber einer Kreisspiegelung; sie sind weiterhin das Inverse einer gleichseitigen Hyperbel, die Fußpunktkurve einer Parabel
Die Kugel. Mathematische Betrachtungen von Peter Franzke
Die Kugel Mathematische Betrachtungen von Die Einheitssphäre S 1. Die Kugel Geometrie: gekrümmte geschlossene Fläche, deren Punkte von einem festen Punkt M (Kugelmittelpunkt) einen festen Abstand r (Kugelradius)
φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.
Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =
Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2
D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des
Weitere Beispiele zur Raumgeometrie
Weitere Beispiele zur GeoGebra kann mit Vektoren und Matrizen rechnen, z.b. über ein Lineares Gleichungssystem den Schnitt Gerade-Ebene oder über das Vektorprodukt der Richtungen die Normale einer Ebene
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
Übungen mit dem Applet Kurven in Polarkoordinaten
Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r
D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18
D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )
Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2
Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie
Technische Universität Chemnitz 0. Dezember 0 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Letzter Abgabetermin: 3. Januar 0 (in
Mathematik II Lösung 9. Lösung zu Serie 9
D-EDW, D-HEST, D-USYS Dr. Ana annas 5. April 6 Lösung zu Serie 9. Überprüfung des Satzes von Green Für die Kreisscheibe mit adius a um Null gilt, dass die äußere Einheitsnormalen in einem Punkt (x, y auf
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2
Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )
Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g
Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente
Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Wir betrachten Kurven in der -Ebene. Als erstes wollen wir uns damit beschäftigen, wie sich solche Kurven mathematisch beschreiben lassen. Dafür
(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.
13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene
5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:
5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer
3 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen zu geben.
Kreis, Ellipse, Hyperbel, Parabel
Kreis, Ellipse, Hyperbel, Parabel Hörsaalanleitung Dr. E. Nana Chiadjeu 23. 11. 2011 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.1 Einführung
Mathematik II Frühlingsemester 2015 Kap 9: Funktionen von mehreren Variablen 91 Einführung wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/
1) ie Linien der abgebildeten Bauteile entsprechen den Linienarten nach DIN EN ISO
1) ie Linien der abgebildeten Bauteile entsprechen den Linienarten nach DIN EN ISO 128-24. Ordnen Sie den gekennzeichneten Linien die korrekten Linienarten zu! A B C D F G J K Verwenden Sie dazu die in
Gert Bär. Geometrie. Eine Einführung für Ingenieure und Naturwissenschaftler. 2., überarbeitete und erweiterte Auflage
Gert Bär Geometrie Eine Einführung für Ingenieure und Naturwissenschaftler 2., überarbeitete und erweiterte Auflage Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhalt 1 Aus der analytischen Geometrie
(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen).
Aufgabenblatt Funktionen. Entscheide für die folgenden Zahlen, zu welcher der Mengen N, Z, Q, R sie gehören? a), b).87, c) 8, d) π, e) 0..., f) 8 g) 0.4965649648... (Tip zu g): Die Ziffern bestehen aus
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
Kurven und Flächen eine Einführung
INSTITUTE OF GEOMETRY Kurven und Flächen eine Einführung Anton Gfrerrer Institut für Geometrie, TU Graz e-mail: [email protected] . Inhaltsverzeichnis 1 Kurven 1 1.1 Beschreibung einer Kurve
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden
Analytische Geometrie
Analytische Geometrie für Studierende der Technik und zum Selbststudium Von Dr. Adolf Hess Professor am kantonalen Technikum in Wintertbur Dritte Auflage Mit 105 Textabbildungen Springer-Verlag Berlin
Serie 6. x 2 + y 2, 0 z 4.
Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {
KOP1_3_5. Rohrverbindungen. Die Schülerinnen und Schüler können normgerechte Zeichnungen lesen.
Titel Rohrverbindungen Die Schülerinnen und Schüler können normgerechte Zeichnungen lesen. Relevante(r) Deskriptor(en) Lehrstoff Ausbildungsinhalte Methodisch/Didaktische Hinweise Hilfsmittel Quelle weitere
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Repetitorium Analysis II für Physiker
Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen
Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $
Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
Serie 5. Figure 1: 1.a)
Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet
Linien- und Oberflächenintegrale
Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg
A3.2 Quadratische Funktionen
A. Quadratische Funktionen Die Quadratfunktion Definition: Eine reelle Funktion f: = a + b + c, D = R (a, b, c R a 0) heißt quadratische Funktion. Beispiele:. f: =. f: = 0,5 - + Die Quadratfunktion f:
Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)
D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach
Einige Fragen aus den Elementen der Darstellenden Geometrie,
Einige Fragen aus den Elementen der Darstellenden Geometrie, Von A. KIEFER (Zürich). (Als Manuskript eingegangen am 4. März 1929.) I. Wenn P', P" in dem System der vereinigten Bildebenen der Grund und
Ferienserie 13. D-MAVT, D-MATL Analysis I HS 14. Die schriftlichen Aufgaben dieser Serie werden nicht abgegeben und korrigiert.
D-MAVT, D-MATL Analsis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Ferienserie 3 Die schriftlichen Aufgaben dieser Serie werden nicht abgegeben und korrigiert.. Man finde eine Rekursionsformel für die Grössen
Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.
DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den
Kegelschnitte - Teil 5
5. Details: Parabel 5.1 "Normallage" und "Standardlage" Kegelschnitte - Teil 5 Die Punkte auf der Parabel liegen smmetrisch zur Mittellinie, der "Achse der Parabel". In der "Normallage" ist dies die -Achse
Dieses Kapitel vermittelt:
2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften
Lehrbuch der Konstruktiven Geometrie
H. Brauner Lehrbuch der Konstruktiven Geometrie Springer-Verlag Wien New York Inhaltsverzeichnis Abbildungsverfahren der Darstellenden Geometrie 1. Elementargeometrische Grundlagen 1.1. Grundbegriffe 12
Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33
Algebraische Kurven und Flächen
Matheseminar, 6. Februar 2015 Algebraische Kurven Inhalt 1 Algebraische Kurven 2 Parametrisierung 3 Algebraische Flächen Algebraische Kurven Definition Definition Eine ebene algebraische Kurve C ist die
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen Kapitel 8.3 Anwendungen der partiellen Differentiation (Teil 1): Kettenregel und Linearisierung
10.5 Differentialgeometrie ebener Kurven Tangente, Normale
1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar
