Station Freizeitpark Teil 1. Hilfeheft
|
|
|
- Elvira Waltz
- vor 9 Jahren
- Abrufe
Transkript
1 Station Freizeitpark Teil 1 Hilfeheft
2 Liebe Schülerinnen und Schüler! Dies ist das Hilfeheft zur Station Freizeitpark Teil 1. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls es mehrere Hinweise zu einer Aufgabe gibt, dann könnt ihr dies am Pfeil erkennen. Benutzt bitte immer nur so viele Hilfestellungen, wie ihr benötigt, um selbst weiterzukommen. Viel Erfolg! Das Mathematik-Labor-Team
3
4 Inhaltsverzeichnis Hilfe zu Seite Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil Aufgabenteil
5
6
7 Aufgabe 1.1 Um einen Punkt angeben zu können, benötigt man die x- und die y-koordinate. 1
8
9 Der Punkt P wird dann wie folgt angegeben: P( x I y ). 3
10
11 Nutze zum Bestimmen der Punkte die Skalen. Die Skala für die x-koordinate befindet sich auf der Bodenplatte und die für die y-koordinate ist die vertikale Skala. 5
12
13 Beispielpunkt GELB: G(17 18) 7
14
15 Aufgabe 1.2 Zeichnet euch eine Skizze, die die x- und die y- Achse des Koordinatensystems, die Auffahrt und eure beiden Punkte enthält. Achtung! Skizze heißt: Fokus aufs Wesentliche, also keine unwichtigen Details einzeichnen! 9
16
17 11
18
19 13
20
21 15
22
23 Beispiel: Um die Steigung m der Funktion f zu bestimmen, müsst ihr die Koordinaten von A und B kennen. A (2I2) und B (4I3) Nun gilt für die Steigung m: m = = 1 2. Also hat die Funktion f die Steigung m =
24
25 Aufgabe 1.4 Die Auffahrt der Wildwasserbahn gleicht einer linearen Funktion. 19
26
27 Eine lineare Funktion f hat die Gestalt f(x)=m x+b, wobei m die Steigung und b den y-achsenabschnitt bezeichnet. 21
28
29 Weil f eine lineare Funktion ist, hat m an jeder Stelle der Funktion f denselben Wert. 23
30
31 Aufgabe 1.5 Tragt die Hilfslinien von den Punkten zu den Koordinatenachsen ein. Bestimmt die Koordinaten der Punkte A und B und notiert diese. 25
32
33 Zeichnet das passende Steigungsdreieck ein. 27
34
35 Wie können die Längen der Seiten des Steigungsdreiecks mit Hilfe der Punktkoordinaten bestimmt werden? 29
36
37 Aufgabe 2.1 Die Vorgehensweise beim Messen der Punkte ist dieselbe wie in Aufgabe 1.1. Schaut ggf. noch einmal auf den Seiten 1 bis 7 im Hilfeheft nach. 31
38
39 Aufgabe 2.2 Alle rot eingezeichneten Geraden sind Sekanten der blauen Funktion. 33
40
41 Aufgabe 2.3 Die Geraden im oberen Bild haben eine positive Steigung, wohingegen Geraden mit negativer Steigung im unteren Bild eingezeichnet sind. 35
42
43 Anwendungsbeispiel: Welche Gerade ist steiler? Gegeben sind die beiden Geraden g und h mit g(x)=2 x+4 und h(x)= -3 x+3. Um herauszufinden, welche der beiden Geraden steiler ist, vergleicht man die Beträge der Steigungen. In diesem Fall ist die Gerade h steiler als die Gerade g, da I2I<I-3I ist. 37
44
45 Aufgabe 2.5 Mit welchem Funktionstyp kann die Auffahrt bzw. die Abfahrt modelliert werden? (Welchem Funktionstyp entspricht die Auffahrt bzw. die Abfahrt?). Schaut gegebenenfalls noch einmal auf den Seiten 21 bis 23 im Hilfeheft nach. 39
46
47 Eine Funktion, die die Gestalt einer Geraden hat und deren Funktionsvorschrift auf die Form y = m x + b gebracht werden kann, heißt lineare Funktion. In der Funktionsvorschrift gibt m die Steigung der Geraden an und b den y-achsenabschnitt (die Höhe bei der die Geraden die y- Achse schneidet). Demnach haben nicht-lineare Funktionen nicht die Gestalt von Geraden und können auch nicht auf die Form y = m x + b gebracht werden. Beispiele für nicht-lineare Funktionen sind quadratische Funktionen und die Funktion 1 x. 41
48
49 Aufgabe 3.1 Die gesuchte Gerade t muss durch den Punkt L gehen. 43
50
51 Stellt euch das Floß der Wildwasserbahn an dieser Stelle (in Punkt L) vor. Das Floß ist ein Teil eurer gesuchten Geraden. 45
52
53 Aufgabe 3.3 Begriffsklärungen: Sekante Eine Sekante ist eine Gerade, die eine Kurve in mindestens zwei verschiedenen Punkten schneidet. (siehe auch Seite 33) Tangente Eine Tangente ist eine Gerade, die eine Kurve in mindestens einem Punkt berührt. (siehe auch Aufgabe 3.2) Berührpunkt Der Punkt P ist ein Berührpunkt, wenn eine Gerade g den Funktionsgraphen f im Punkt P berührt. An dieser Stelle schneidet die Gerade g den Funktionsgraphen f nicht. Schnittpunkt Der Punkt Q ist ein Schnittpunkt, wenn die Gerade g den Funktionsgraphen f an dieser Stelle schneidet. 47
54
55
56 Mathematik-Labor Mathe ist mehr Didaktik der Mathematik (Sekundarstufen) Institut für Mathematik Universität Koblenz-Landau Fortstraße Landau Zusammengestellt von: Kristina Becker, Carolin Reischmann, Myriam Ritz Betreut von: Martin Dexheimer, Prof. Dr. Jürgen Roth Variante A Erstellt am:
Station Trigonometrie Teil 1. Hilfeheft
Station Trigonometrie Teil 1 Hilfeheft Liebe Schülerinnen und Schüler! Dies ist das Hilfeheft zur Station Trigonometrie Teil 1. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls
Station Figurierte Zahlen. Hilfestellungen
Station Figurierte Zahlen Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Figurierte Zahlen. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten
Station Ziegenproblem. Hilfestellungen
Station Ziegenproblem Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Ziegenproblem. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls
Station Strahlensätze Teil 3. Aufgabenblätter
Station Strahlensätze Teil 3 Aufgabenblätter Mathematik-Labor Station Strahlensätze Teil 3 Liebe Schülerinnen und Schüler! Arbeitet bitte die folgenden Aufgaben der Reihe nach durch - bitte keine Aufgaben
Schule. Station Jakobsstab & Co. Teil 1. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Schule Station Jakobsstab & Co. Teil 1 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Jakobsstab & Co. Teil 1 Liebe Schülerinnen und Schüler! Schon immer haben sich die Menschen
Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! In diesem 3. Teil könnt ihr anwenden, was ihr im 2. Teil der Station gelernt habt.
Schule. Station Baustelle Schule Teil 1. Klasse. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Baustelle Schule Teil 1 Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Station Baustelle Schule Liebe Schülerinnen und Schüler! Ihr könnt sicher leicht den Umfang des folgenden
Station Gleichdicks. Hilfestellungen
Station Gleichdicks Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Gleichdicks. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls
Schule. Klasse. Station Jakobsstab & Co. Tischnummer. Gruppenergebnisse
Schule Station Jakobsstab & Co. Klasse Tischnummer Gruppenergebnisse Mathematik-Labor Station Jakobsstab & Co. Liebe Schülerinnen und Schüler! Schon immer haben sich die Menschen Gedanken gemacht, wie
Station Von Zuckerwürfeln und Schwimmbecken Teil 3
Station Von Zuckerwürfeln und Teil 3 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und In diesem dritten Teil wollen wir nun zum einen
Schule. Station Löffelliste Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Station Löffelliste Teil 3 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 3 Liebe Schülerinnen und Schüler! Opa Helmut hat nun bereits die meisten Punkte auf seiner
Station Strahlensätze Teil 1. Arbeitsheft. Teilnehmercode
Station Strahlensätze Teil 1 Arbeitsheft Teilnehmercode Mathematik-Labor Station Strahlensätze Teil 1 Liebe Schülerinnen und Schüler! Schon immer haben sich die Menschen Gedanken gemacht, wie man Strecken
Schule. Klasse. Station Figurierte Zahlen Teil 1. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Figurierte Zahlen Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt. Die Steinchen
Schule. Klasse. Station Figurierte Zahlen Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Figurierte Zahlen Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt. Die Steinchen
Station Trigonometrie des Fußballs - 2. Teil -
Station Trigonometrie des Fußballs - 2. Teil - Aufgabenblätter Mathematik-Labor Station Trigonometrie des Fußballs Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln der Trigonometrie
Schule. Klasse. Station Mathematik und Kunst Teil 1. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Mathematik und Kunst Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Klicken Sie hier, um Text einzugeben. Liebe Schülerinnen und Schüler! Herzlich willkommen
Schule. Klasse. Station Mathematik und Kunst. Tischnummer. Gruppenergebnisse
Schule Station Mathematik und Kunst Gruppenergebnisse Klasse Tischnummer Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Beim Bearbeiten der Station Mathematik und Kunst
Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode
Station Figurierte Zahlen Teil 2 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:
Station Strahlensätze Teil 2. Aufgabenblätter
Station Strahlensätze Teil 2 Aufgabenblätter Mathematik-Labor Station Strahlensätze Teil 2 Liebe Schülerinnen und Schüler! In der letzten Stunde habt ihr den zweiten Strahlensatz in Zusammenhang mit dem
Station Umgestaltung des Campus Teil 2
Station Umgestaltung des Campus Teil 2 Tischnummer Arbeitsheft Teilnehmercode -2. Teil- Liebe Schülerinnen und Schüler! Die immer größer werdende Diskussion über die Inklusion, hat den Campus Landau erreicht.
Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode
Station Figurierte Zahlen Teil 3 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:
Station Strahlensätze Teil 1. Lösungsheft. Teilnehmercode
Station Strahlensätze Teil 1 Lösungsheft Teilnehmercode Mathematik-Labor Station Strahlensätze Teil 1 Liebe Schülerinnen und Schüler! Schon immer haben sich die Menschen Gedanken gemacht, wie man Strecken
Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode (Schüler-ID und Geburtstag)
Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode (Schüler-ID und Geburtstag) Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Herzlich
Schule. Station Löffelliste Teil I. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Station Löffelliste Teil I Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Liebe Schülerinnen und Schüler! Opa Helmut möchte einige seiner Lebenswünsche erfüllen und stellt
Schule. Station Figurierte Zahlen Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Schule Station Figurierte Zahlen Teil 3 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit
Station Von Zuckerwürfel und Schwimmbecken Teil 3
Station Von Zuckerwürfel und Teil 3 Arbeitsheft Schule Klasse Tischnummer Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Von Zuckerwürfel und Alisa und Paul planen eine tolle Poolparty.
Station Spieglein, Spieglein. Arbeitsheft. Tischnummer. Teilnehmercode
Station Spieglein, Spieglein Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Station Spieglein, Spieglein Liebe Schülerinnen und Schüler! Spieglein, Spieglein an der Wand, wer ist die Schönste
Station Trigonometrie des Fußballs - 1. Teil -
Station Trigonometrie des Fußballs - 1. Teil - Aufgabenblätter Mathematik-Labor Station Trigonometrie des Fußballs - 1. Teil - Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln
Station USA ein Land der unbegrenzten Möglichkeiten Teil 1. Arbeitsheft. Schule. Klasse. Tischnummer. Teilnehmercode
Station USA ein Land der unbegrenzten Teil 1 Arbeitsheft Schule Klasse Tischnummer Teilnehmercode Mathematik-Labor USA ein Land der unbegrenzten Liebe Schülerinnen und Schüler! In Ihrem bisherigen Schulverlauf
Funktionen gra sch darstellen
Arbeitsblätter zum Ausdrucken von sofatutor.com Funktionen gra sch darstellen = 2 + 8 Erkläre, wie du den Graphen der Funktion zeichnest. 2 Bestimme, ob der Weg des Meteoriten zu einer Funktion gehört.
Mathematik 9. Quadratische Funktionen
Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert
Schule. Station Jakobsstab & Co. Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Schule Station Jakobsstab & Co. Teil 2 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Klicken Sie hier, um Text einzugeben. Liebe Schülerinnen und Schüler! In Teil 1 der Station
Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 1 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 016 1 Aufgabe
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit
Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f
Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
I. Nullstellen Arbeitsblatt I.1 Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der Faktoren null wird, sonst nicht. Beispiele:
Lernkontrolle Relationen, Funktionen, lineare Funktionen
Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie
Grundlagen zu Geraden
Grundlagen zu Geraden Punkte in ein Koordinatensystem einzeichnen: Bei einem Punkt P(x y) wird die erste Komponenten (die erste Zahl in der Klammer) auf der x-achse abgetragen und die zweite Komponente
Üben. Lineare Funktionen. Lösung. Lineare Funktionen
Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,
Station Von Zuckerwürfeln und Schwimmbecken Teil 1
Schule Station Von Zuckerwürfeln und Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Von Zuckerwürfeln und Liebe Schülerinnen und Schüler! Was haben ein Zuckerwürfel und
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79
Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine
Rudolf Brinkmann Seite und W = {x 3 x 6}
Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine
Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:
Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse
Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der
Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Herzlich willkommen im Mathematik-Labor
Einführungsbeispiel Kostenfunktion
Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die
Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.
Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )
Übungen zur Linearen und zur Quadratischen Funktion
Übungen zur Linearen und zur Quadratischen Funktion W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Die Aufgabenstellungen 2 1.1 Aufgabe 1:................................... 2 1.2 Aufgabe 2:...................................
Station Tatort Tankstelle Teil 2. Arbeitsheft. Tischnummer. Teilnehmercode
Station Tatort Tankstelle Teil 2 Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Tatort Tankstelle Liebe Schülerinnen und Schüler! Im ersten Teil der Station Tatort Tankstelle habt ihr
Station Von Zuckerwürfeln und Schwimmbecken Teil 2
Station Von Zuckerwürfeln und Teil 2 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Im ersten Teil habt ihr bereits einige Eigenschaften
2. Schulaufgabe aus der Mathematik Lösungshinweise
2. Schulaufgabe aus der Mathematik Lösungshinweise Gruppe A (a) Allgemein ist eine Geradengleichung in der Form g(x) = m x+b gegeben, wobei m die Steigung der Geraden und b der y-achsenabschnitt, also
Mathemathik-Prüfungen
M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie
Zusammengesetzte Übungsaufgaben lineare Funktionen
Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen
Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:
Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen
Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.
Fach: Mathematik - Quadratische Funktionen Anzahl Aufgaben: 51 Musteraufgaben Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)
Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:
Inhalt:. Punkte im Koordinatensstem....................................... Funktionen und ihre Schaubilder..................................... Punktprobe und Koordinaten berechnen...............................
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
KOMPETENZHEFT ZU LINEAREN FUNKTIONEN
KOMPETENZHEFT ZU LINEAREN FUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Gib die Gleichung der dargestellten Gerade in Normalform an. a) b) Aufgabe 1.2. Ein Skatepark ist ein speziell für Skater/innen eingerichteter
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Arbeitsblätter Förderplan EF
Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen
Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen
Teil 4 Aufgaben Nr. 4 bis 8 Hier nur Lösung von Nr. 4. Auf der Mathematik-CD befinden sich alle Lösungen Parabelfunktionen mit vielen Zusatzaufgaben (Keine Integration) Datei Nr. 405 S Januar 00 Friedrich
Begleitbuch für Mathematik für die Prüfung zur Fachhochschulreife 2018 Baden-Württemberg - Berufskolleg. Analysis
Begleitbuch für Mathematik für die Prüfung zur Fachhochschulreife 018 Baden-Württemberg - Berufskolleg Analysis Dipl.-Math. Alexander Schwarz Im Weinberg 9 7489 Cleebronn E-Mail: [email protected]
V2-2-4 Polynom vom Grad 3
2.4 Polynom vom Grad 3 Titel V2-2-4 Polynom vom Grad 3 Version Mai 20 Themenbereich Von der Sekanten- zur Tangentensteigung Themen Verfeinerung der Intervalle zur Bestimmung der Steigung an mehreren Punkten
Station Von Zuckerwürfeln und Schwimmbecken Teil 1
Station Von Zuckerwürfeln und Teil 1 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Was haben ein Zuckerwürfel und ein Schwimmbecken
einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:
Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:
(a b c = ) ( (
Funktionssynthese / Trassierung Beide Themen gehören schon ein wenig zusammen, denn bei beiden Themen werden Eigenschaften, die die spätere Funktion haben soll, vorher definiert. Über die definierten Eigenschaften
Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.
FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen
Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind
1 Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1. Zeichne die Graphen zu den folgenden Funktionen in ein Koordinatensystem, indem Du zuerst
Repetitionsaufgaben: Lineare Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl
Zusammenfassung und Wiederholung zu Geraden im IR ²
Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...
Quadratische Funktion
Quadratische Funktion Wolfgang Kippels. September 017 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3 3 Aufgaben 3.1 Aufgabe 1:................................... 3. Aufgabe :...................................
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen
Abitur Mathematik Baden-Württemberg 2012
Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)
Mathematische Grundlagen
Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander
Schule. Station Löffelliste Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Station Löffelliste Teil 3 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 3 Liebe Schülerinnen und Schüler! Opa Helmut hat nun bereits die meisten Punkte auf seiner
Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert
Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte
fi fi fi fi fi fi fi fi
LEARN ATTACK MATHEMATIK TOPTHEMEN OBERSTUFE DER SICHERE WEG ZUM ABITUR Dudenverlag Berlin Duden Bibliograsche Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese
Dritte Schularbeit Mathematik Klasse 4B am
Dritte Schularbeit Mathematik Klasse 4B am 10.03.2017 FEHLER VORBEHALTEN. KORREKTUR GRUPPE A Aufgabe 1. (2x2 Punkte) Löse folgende Systeme von zwei Gleichungen in zwei Variablen (a) I : x+y = 9 II : 2x+y
5 Die Gerade g 1 hat die Gleichung 6: y = 1 }
Geraden Schülerbuchseite 199 01 5 Die Gerade g 1 hat die Gleichung 6: = 1 }. Die Gerade g hat die Gleichung : = 1 }. Die Gerade g hat die Gleichung 1: =. Die Gerade g hat die Gleichung : =. Die Gerade
Skript Analysis. sehr einfach. Erstellt: Von:
Skript Analysis sehr einfach Erstellt: 2017 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Funktionen... 3 2. Geraden... 6 3. Parabeln... 9 4. Quadratische Gleichungen... 11 5. Ableitungen...
Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen
Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Leun4m 29. April 2015 Version: 0 Ich kann nicht für Richtigkeit garantieren! Inhaltsverzeichnis 1 Themenübersicht 1 2 Funktionen und Graphen 2
Wiederholung Quadratische Funktionen (Parabeln)
SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:
Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode
Station Löffelliste Teil 2 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 2 Liebe Schülerinnen und Schüler! Nachdem Opa Helmut seine Reise zum Mond beendet hat,
Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum eine Zuordnung eine Funktion ist oder nicht.
Mathematik 8a Vorbereitung zu Arbeit Nr. 4 - Lineare Funktionen am..07 Checkliste Was ich alles können soll Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
) (1 BE) 1 2 ln 2. und somit
1 Aufgaben aus dem Aufgabenpool 1 1.1 Analysis A1_1 Eine Funktion f ist durch 1 x f(x) e 1, x IR, gegeben. Ermitteln Sie die Nullstelle der Funktion f. ( ) b) Die Tangente an den Graphen von f im Punkt
AMPELABFRAGE LINEAREN FUNKTIONEN. Lineare Funktionen. Autor: Volker Altrichter
AMPELABFRAGE ZU LINEAREN FUNKTIONEN Autor: Volker Altrichter Aufgabe 1: 2 Gegeben ist die Gleichung einer Geraden: 3 4 y = x 2, x IR. Welche der folgenden Aussagen ist richtig? Die Gerade hat die Steigung
DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:
DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 8 8. Klasse: auszug aus dem Originaltitel: Gehört der Punkt zum Funktionsgraph?. Betrachte die Funktion y = x +. Gehört der Punkt P(/5)
Lineare Funktionen Kapitel 7. Lineare Funktionen Kapitel 7 ( ) ( 2) ( 5) P und P auf dem Graphen der Funktion
Schuljahr 06-07 FOS Schuljahr 06-07 FOS Bestimmen Sie für folgende Funktionen die fehlenden Koordinaten: Fehlt der -Wert, wird der gegebene -Wert in die Funktionsgleichung eingesetzt Fehlt der -Wert, setzt
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13
Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())
Aufgabe 2 Berechne zur gegebenen Funktion die erste und zweite Ableitung. Wie groß ist die Steigung in den Punkten x = { 1,0,50}?
Testarbeit Mathematik Klasse Name Aufgabe Skizziere die Ableitung! Wie groß ist die Steigung ungefähr bei x =,0,,, { }? Kennzeichne lokale Minima, Maxima und den Wendepunkt. Was passiert beim Wendepunkt?
Aufgabenpool zur Quereinstiegsvorbereitung Q1
Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a
