Speckle Interferometrie

Größe: px
Ab Seite anzeigen:

Download "Speckle Interferometrie"

Transkript

1 Speckle Interferometrie LO-Praktikum FHM, FK 06 Prof. Dr. Andreas Ettemeyer Seite 1

2 Praktikum Speckle Interferometrie Ziel - Kennenlernen der Eigenschaften von Speckles - Kennen der Einsatzmöglichkeiten von Speckle Interferometrie Ablauf des Praktikums - Erstellen von Versuchsaufbauten für verschiedene Speckle Techniken - Untersuchung der Messergebnisse - Erstellen eines Protokolls mit vergleichender Darstellung der verschiedenen Verfahren Seite 2

3 Entstehen von Speckles Laser Aperture Lens Camera a b g Rough surface Speckle image Aufgaben Versuchsaufbau erstellen Speckle beobachten Was passiert bei Bewegung des Objekts? Was passiert bei Änderung der Blende? Größe der Speckles: Speckle b 2, 4 λ a Seite 3

4 Bewegung von Speckles Reference image Deformation image Seite 4

5 Speckle Interferometrie: out-of-plane z x Seite 5

6 e z x Streifenordnung N: α 2 α 2 e 2 Definition des Empfindlichkeitsvektors e 1-1 ψ P d P Die Phasendifferenz (=Wegdifferenz) des Lichtweges zwischen Punkt P und P bestimmt sich zu: u φ = k d mit Verschiebungsvektor: d = v w Lichtwegänderung: s = e e = e 1+ e 1d + e2d = ed 2 Empfindlichkeitsvektor e s φ = λ 2π φ φ Mit N = wird s = λ Nλ = e d 2π 2π Nλ = e d cosψ N λ d = α α α e = ( e1 + e2 ) cos = 2cos 2cos cosψ = 1 = 1 Mit Beobachtung in z-richtung ergibt sich für w: N λ φλ w = = α α 2cos 4π cos 2 2 Seite 6

7 Versuchsaufbau out-of-plane Aufgaben Versuchsaufbau erstellen Welche Streifen entstehen bei Belastung der Platte? Welche Verformung gehört dazu? Welche Beanspruchung ergibt sich daraus für die Platte? Seite 7

8 Bestimmung der Phase / Streifenordnung Speckle Bild und Streifenbild sind Intensitätsverteilungen. Für jeden Bildpunkt gilt: Einführung definierter zusätzlicher Phasenverschiebungen (z.b. um 90, 180 und 270 im Referenzstrahl) führt zu einer Änderung der Helligkeit: Lösbares Gleichungssystem I = I0 + Kcos( φ) I1 = I0 + Kcos( φ + 0) π I2 = I0 + Kcos( φ + ) 4 π I3 = I0 + Kcos( φ + ) 2 3π I4 = I0 + Kcos( φ + ) arctan I φ = I I I 1 3 Seite 8

9 In-Plane Messung Seite 9

10 z x e 2 α α P e 1 d Empfindlichkeitvektor in-plane ψ P e reference state mit Nλ = e d Nλ = e d cosψ e = ( e1 + e2 )sinα = 2sinα d = 1 = 1 N λ = 2sinα cosψ mit u d = v w Damit ergibt sich für u: u N λ φλ = = 2sinα 4πsinα (Analog für v in y-richtung) Seite 10

11 Versuchsaufbau Laser CCD-Kamera Linse Strahlteiler 50/50 Spiegel Spiegel Platte Aufgaben Versuchsaufbau erstellen Welche Streifen entstehen bei Belastung der Platte? Welche Verformung gehört dazu? Verstellschraube Welche Beanspruchung ergibt sich daraus für die Platte? Piezospiegel Seite 11

12 Shearografie Seite 12

13 z e α 2 α 2 e 2 e 1 ψ P 1 d 1 P 2 d 2 Ergebnis der Messung P 1 P 2 reference state Bestimmung der Empfindlichkeitsrichtung wie im out-of-plane Fall. Annahme, dass der Empfindlichkeitsvektor sich nicht ändert. Da nur die Phasenänderungen zwischen den überlagerten Punkten gemessen werden ergibt sich für w: N λ φλ w( im Abstand x) = = α α 2cos 4π cos 2 2 Dies entspricht dem Differentenquotienten: x w Nλ 1 φλ 1 = = x α 2cos x α 4π cos x 2 2 Seite 13

14 Shearografische Messung Aufgaben Versuchsaufbau erstellen Welche Streifen entstehen bei Belastung? Welche Verformung gehört dazu? Bei welcher Belastung werden Fehler sichtbar? Seite 14

Versuchsprotokoll. Holografie

Versuchsprotokoll. Holografie Versuchsprotokoll Holografie Versuchsdatum: 25.11.2008 Versuchsbetreuer: Dr. Steffen Hackbarth Institut für Physik, Humboldt-Universität zu Berlin Sebastian Bommel (514544) Matthias Reggentin (514620)

Mehr

Phasenmessung in der nichtlinearen Optik

Phasenmessung in der nichtlinearen Optik Phasenmessung in der nichtlinearen Optik Th. Lottermoser, t. Leute und M. Fiebig, D. Fröhlich, R.V. Pisarev Einleitung Prinzip der Phasenmessung Experimentelle Durchführung Ergebnisse YMnO 3 Einleitung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 5. Schwingungen und Wellen 5.6 - Beugung von Ultraschall Durchgeführt am 3.0.06 Dozent: Praktikanten (Gruppe ): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer E3-463

Mehr

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind

Mehr

Atominterferometrie. Atominterferometrie. Humboldt- Universität zu Berlin. Institut für Physik. Seminar Grundlagen der Quantenphysik

Atominterferometrie. Atominterferometrie. Humboldt- Universität zu Berlin. Institut für Physik. Seminar Grundlagen der Quantenphysik Seminar Grundlagen der Quantenphysik www.stanford.edu/group/chugr oup/amo/interferometry.html 1 Gliederung Humboldt- Universität zu Berlin 1. Allgemeines 2. Theorie 2.1 Prinzip 2.2 Atominterferometer 2.3

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Prinzip Weißlicht-Interferometer

Prinzip Weißlicht-Interferometer Prinzip Weißlicht-Interferometer Aufbau: Michelson-Interferometer Verwendet weißes Licht Geringe Kohärenzlänge Interferenz nur für identische Teilwege Streifensysteme (für jede Farbe) Verschiebung eines

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Interferometrische Messtechnik in der industriellen Fertigung von der Idee bis zum praktischen Einsatz

Interferometrische Messtechnik in der industriellen Fertigung von der Idee bis zum praktischen Einsatz Interferometrische Messtechnik in der industriellen Fertigung von der Idee bis zum praktischen Einsatz Innovationsforum Photonik am 12. Mai in Glosar Verleihung Keiser-Friedrich-Forschungspreis 2009 Pawel

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

3.9 Interferometer. 1 Theoretische Grundlagen

3.9 Interferometer. 1 Theoretische Grundlagen FCHHOCHSCHULE HNNOVER Physikalisches Praktikum 3.9. 3.9 Interferometer 1 Theoretische Grundlagen Licht ist eine elektromagnetische Strahlung mit sehr geringer Wellenlänge (auf den Welle - Teilchen - Dualismus

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch

Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 3: Messung der Lichtgeschwindigkeit Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch Theoretische Grundlagen: Drehbewegungen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Wellen an Grenzflächen

Wellen an Grenzflächen Wellen an Grenzflächen k ey k e α α k ex k gy β k gx k g k r k rx k ry Tritt ein Lichtstrahl in ein Medium ein, so wird in der Regel ein Teil reflektiert, und ein Teil wird in das Medium hinein gebrochen.

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

Gitter. Schriftliche VORbereitung:

Gitter. Schriftliche VORbereitung: D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Geschwindigkeitsmessung mit Lasern

Geschwindigkeitsmessung mit Lasern Geschwindigkeitsmessung mit Lasern Andreas Buschermöhle Universität Osnabrück 3. Juli 2007 1 2 3 4 berührungslose Messung berührungslose Messung sehr präzise Messung berührungslose Messung sehr präzise

Mehr

Lichtgeschwindigkeit Versuch P1 42, 44

Lichtgeschwindigkeit Versuch P1 42, 44 Auswertung mit ausführlicher Fehlerrechnung Lichtgeschwindigkeit Versuch P1 42, 44 Iris Conradi, Melanie Hauck Gruppe Mo-02 7. Dezember 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Drehspiegelmethode

Mehr

Versuch Polarisiertes Licht

Versuch Polarisiertes Licht Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise

Mehr

Zweiphotoneninterferenz

Zweiphotoneninterferenz Zweiphotoneninterferenz Patrick Bürckstümmer 11. Mai 2011 Einführung: Gewöhnliche Interferometrie Übersicht Theorie der 2PHI für monochromatische Photonen Das Experiment von Hong,Ou und Mandel (1987) Versuchsaufbau

Mehr

Einführung in die Astronomie und Astrophysik I. Jürgen Schmitt Hamburger Sternwarte

Einführung in die Astronomie und Astrophysik I. Jürgen Schmitt Hamburger Sternwarte Einführung in die Astronomie und Astrophysik I Jürgen Schmitt Hamburger Sternwarte Stellarastrophysik (I) Was wird behandelt? Helligkeitssystem Parallaxe und Entfernungen der Sterne Astronomische Einheit

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Physik III - Anfängerpraktikum- Versuch 353

Physik III - Anfängerpraktikum- Versuch 353 Physik III - Anfängerpraktikum- Versuch 353 Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 Theorie 2 2.1 Der Entladevorgang..................................

Mehr

Grundlagen der medizinischen Physik

Grundlagen der medizinischen Physik Thematik Grundlagen der medizinischen Physik Dr. László Smeller [email protected] Dr. Ferenc Tölgyesi [email protected] Dr. Attila Bérces [email protected] Woche Vorlesungen:

Mehr

Fehlvorstellungen zur Optik entgegenwirken

Fehlvorstellungen zur Optik entgegenwirken Fehlvorstellungen zur Optik entgegenwirken CARSTEN KAUS CHRISTIAN SALINGA ANDREAS BOROWSKI HEIDRUN HEINKE Online-Ergänzung MNU 65/7 (15.10.2012) Seiten 1 10, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Annährungssensoren. Induktive Sensoren. Kapazitive Sensoren. Ultraschall-Sensoren. Optische Anährungssensoren

Annährungssensoren. Induktive Sensoren. Kapazitive Sensoren. Ultraschall-Sensoren. Optische Anährungssensoren Annährungssensoren Zum Feststellen der Existenz eines Objektes innerhalb eines bestimmten Abstands. In der Robotik werden sie für die Nah-Gebiets-Arbeit, Objekt-Greifen oder Kollisionsvermeidung verwendet.

Mehr

Lichtgeschwindigkeit Versuchsvorbereitung

Lichtgeschwindigkeit Versuchsvorbereitung Versuche P1-42,44 Lichtgeschwindigkeit Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 29.11.2010 1 Inhaltsverzeichnis 1 Drehspiegelmethode

Mehr

Beugung und Interferenz von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz.

Beugung und Interferenz von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz. Prinzip Wird ein Doppelspalt in den divergenten Mikrowellenstrahl gebracht, so entsteht hinter

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Protokoll zum Physikalischen Praktikum Versuch 7 - Justierung einer Goniometers Versuch 8 - Prisma

Protokoll zum Physikalischen Praktikum Versuch 7 - Justierung einer Goniometers Versuch 8 - Prisma Protokoll zum Physikalischen Praktikum Versuch 7 - Justierung einer Goniometers Versuch 8 - Prisma Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 3.11.004 Inhaltsverzeichnis 1 Ziel

Mehr

Deflektometrie Ein Messverfahren für spiegelnde Oberflächen

Deflektometrie Ein Messverfahren für spiegelnde Oberflächen Deflektometrie Ein Messverfahren für spiegelnde Oberflächen Dr. Alexander Zimmermann FORWISS Universität Passau Institut für Softwaresysteme in technischen Anwendungen der Informatik 19. Oktober 2017 Gliederung

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein [email protected] Florian Jessen [email protected] 26. April 2004 Made

Mehr

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Bildverarbeitung: 3D-Geometrie D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik Ato- und Kernphysik Atohülle Baler-Serie des Wasserstoff LD Handblätter Physik P6.2.1.3 Beobachtung der Aufspaltung der Balerlinien an deuterierte Wasserstoff (Isotopieaufspaltung) P6.2.1.3 (a) P6.2.1.3

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

O9a Interferenzen gleicher Dicke

O9a Interferenzen gleicher Dicke Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher

Mehr

(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (3) Grundlagen II Vorlesung CV-Integration S. Müller KOBLENZ LANDAU Wiederholung I Strahlungsphysik (Radiometrie) Lichttechnik (Photometrie) V(λ)-Kurve.0 0.8 0.6 0.4 0. 0 400 500 600 700 800λ[nm] violett

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit Vision 2008 Simone Weber Gliederung 1. Einleitung 2. Eigenschaften der telezentrischen Abbildung 3. Telezentriefehler 2ϕ 4. Quantifizierung

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

8 Reflexion und Brechung

8 Reflexion und Brechung Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum des Flugzeugs 4. Versuch: Induzierter Abind hinter einem Tragflügel D. Fleischer C. Breitsamter Flügel unendlicher Spanneite (D): Auftrieb und Zirkulation z + z Translationsströmung Wirbelströmung

Mehr

Quantenteleportation

Quantenteleportation Quantenteleportation Tim Robert Würfel Fakultät für Physik Universität Bielefeld Physikalisches Proseminar 2013 1 von 34 Würfel, Tim Robert Quantenteleportation Gliederung Motivation 1 Motivation 2 Physikalische

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende

Mehr

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Klaus Heißenberg. Folie 2/31. LTM Universität Paderborn. Universität Paderborn. Klaus Heißenberg

Klaus Heißenberg. Folie 2/31. LTM Universität Paderborn. Universität Paderborn. Klaus Heißenberg Entwicklung eines interaktiven, plattformunabhängigen und frei programmierbaren Messdatenerfassungs-, Analyse- und Visualisierungssystems am Beispiel eines Druckmessfolien-Sensors Folie 2/31 Inhalt Einleitung

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov [email protected] Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit

Mehr

Verschränkung und Verschränkungsmaße

Verschränkung und Verschränkungsmaße Überblick 1 Was ist Verschränkung? 2 3 Beispiele Bell-Zustände φ + = 1 2 ( 00 + 11 ), φ = 1 2 ( 00 11 ) ψ + = 1 2 ( 01 + 10 ), ψ = 1 2 ( 01 10 ) Zusammengesetzte Systeme Gegeben: physikalisches System

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr