Informatik I Modul 5: Rechnerarithmetik (2)
|
|
|
- Barbara Pfaff
- vor 8 Jahren
- Abrufe
Transkript
1 Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit 2 Burkhard Stiller M5 2
2 Addition und Subtraktion Schaltungen zur Addition von Festkomma-Dualzahlen: Grundlage für die Durchführung aller arithmetischen Verknüpfungen Denn: Subtraktion Addition der negativen Zahl X - Y = X + (-Y) Multiplikation und Division lassen sich ebenfalls auf die Addition zurückführen. Bei Gleitkommazahlen: Mantisse und Exponent werden separat verarbeitet. Hierbei bildet die Addition von Festkomma-Dualzahlen die Grundlage. Grundtypen von Addierern sind wichtig 2 Burkhard Stiller M5 3 Vom Halbaddierer zum Volladdierer Bei der Addition zweier Dualzahlen (a und b): Summe (s) und Übertrag (ü) entstehen als Ergebnis. Funktionstabelle: a b s ü Man nennt dies einen Halbaddierer 2 Burkhard Stiller M5 4
3 Halbaddierer Gleichungen: s = a b a b = a b ü= a b Das Schaltbild und das Schaltsymbol: a b = s ü a b Σ CO s ü Schaltbild und Schaltsymbol eines -Bit-Halbaddierers 2 Burkhard Stiller M5 5 Mehrstellige Dualzahlen Zusätzlicher Eingang für den Übertrag der vorhergehenden Stellen ist nötig. a i b i ü i s i ü i+ Dies nennt man einen Volladdierer 2 Burkhard Stiller M5 6
4 Gleichungen, Schaltnetz und Schaltsymbol Ausgangsgleichungen: a i b i = s i = a i b i ü i ü i+ = a i ü i b i ü i a i b i = (a i b i ) ü i a i b i Halbaddierer ü i = s i ü i+ a i b i Σ s i CO ü ü i CI i+ Volladdierer Halbaddierer 2 2 Burkhard Stiller M5 7 Carry-lookahead-Addierer () Alle Überträge direkt aus den Eingangsvariablen bestimmen (carry-lookahead). Vermeidet Nachteil der großen Additionszeit des Carry-ripple-Addierers Es gilt: ü i+ = a i b i (a i b i ) ü i = g i p i ü i s i = (a i b i ) ü i = p i ü i mit g i = a i b i (generate carry, erzeuge Übertrag) und p i = (a i b i ) (propagate carry, leite Übertrag weiter) g i und p i können direkt aus den Eingangsvariablen erzeugt werden. 2 Burkhard Stiller M5 8
5 Carry-lookahead-Addierer (2) Problem: Größe des Hardware-Aufwands steigt mit steigender Stellenzahl stark an. Lösungen: kleinere Carry-lookahead-Addierer mit paralleler Übertragserzeugung, die seriell kaskadiert werden Blocküberträge der kleineren Blöcke parallel verarbeiten Hierarchie von Carry-lookahead-Addierern. 2 Burkhard Stiller M5 9 Schaltbild: 3-Bit-Carry-lookahead-Addierer b a b a b 2 a 2 = = = g p g p g p 2 2 = ü = s = s ü s ü2 2 parallele Übertragslogik ü 3 ü 2 Burkhard Stiller M5
6 Überlauferkennung Allgemeine Überlauferkennung bei dualer Addition: Korrekte Addition: beide Überträge sind gleich. Überlauf: beide Überträge sind ungleich. Realisierung z.b. durch ein Antivalenzgatter 2 Burkhard Stiller M5 Multiplikation und Division Zweierkomplementzahlen erwiesen sich für Addition und Subtraktion als besonders günstig, weil bei dieser Darstellung das Vorzeichen nicht explizit betrachtet werden mußte. Bei der Multiplikation existiert dieser Vorteil nicht. Lösungen: Zweierkomplementzahlen zunächst in eine Form mit Betrag und Vorzeichen umwandeln. Zahlen dann miteinander zu multiplizieren und das Ergebnis schließlich wieder in die Zweierkomplementdarstellung umzusetzen. Spezielle Multiplikationsalgorithmen für Zweierkomplementzahlen verwenden (Booth-Algorithmus, hier nicht tiefergehend behandelt). 2 Burkhard Stiller M5 2
7 Multiplikation Zur Multiplikation von Gleitkommazahlen muß man Mantissen beider Zahlen multiplizieren und ihre Exponenten addieren: m b e m 2 b e2 = (m m 2 ) be + e2 Ist die Mantisse mit Hilfe von Betrag und Vorzeichen dargestellt, ist der übliche Multiplikationsalgorithmus anwendbar. Das Ergebnis muß nach der Multiplikation unter Umständen noch normalisiert werden. Bei Addition der Charakteristiken c = e + o und c 2 = e 2 + o muß die Summe außerdem um den Offset o korrigiert werden, um die richtige Ergebnischarakteristik c = (e + e 2 ) + o zu erhalten. 2 Burkhard Stiller M5 3 Parallele und serielle Multiplikation Papier und Bleistift Methode: Analog zur Multiplikation mit Papier und Bleistift im Dezimalsystem kann man auch im Dualsystem vorgehen. Beispiele: Burkhard Stiller M5 4
8 Vorzeichen-Betrag-Zahlen Bei Zahlen, die mit Betrag und Vorzeichen dargestellt sind, ergeben sich keine Probleme. Die Beträge der Zahlen werden wie positive Zahlen miteinander multipliziert. Das Vorzeichen des Ergebnisses ergibt sich aus der Antivalenzverknüpfung der Vorzeichen der beiden Faktoren. 2 Burkhard Stiller M5 5 Vorzeichenbehaftete Multiplikation Vorzeichenbehaftete Zahlen können grundsätzlich in die Darstellung mit Vorzeichen und Betrag gebracht werden. Das Vorzeichen des Produkts wird dann nach der Regel sign (XY) = sign (X) sign (Y) aus den beiden Faktorenvorzeichen durch die Exklusiv-ODER-Verknüpfung gewonnen. 2 Burkhard Stiller M5 6
9 Anmerkungen Bei vielen Anwendungen jedoch wechseln Addition und Multiplikation einander ständig ab. Umwandlung zwischen verschiedenen Zahlendarstellungen kann viel Zeit in Anspruch nehmen. Es wäre günstiger, wenn durchgängig (also auch bei der Multiplikation) im Zweierkomplement gerechnet wird, um die Vorteile bei der Addition nutzen zu können (z.b. Booth- Algorithmus). 2 Burkhard Stiller M5 7 Division Die Division von Dualzahlen folgt denselben Prinzipien wie die Multiplikation. Auch hier stellt die Papier-und-Bleistift-Methode die Basis für verschiedene Algorithmen dar. Beispiel: 224 : 2 = Burkhard Stiller M5 8
10 Manuelle Division Im Dualsystem sind als Ergebnis einer Teildivison nur die Werte Divisor > augenblicklicher Dividend Divisor augenblicklicher Dividend möglich. Bei manueller Division erkennt man sofort, ob das Ergebnis ist und eine weitere Stelle gebraucht wird. 2 Burkhard Stiller M5 9 Maschinelle Division Drei Möglichkeiten:. Komparatorschaltung, um den Divisor mit augenblicklichem Dividenden zu vergleichen. 2. Subtraktion: Ergibt sich ein negatives Ergebnis, lädt man nochmals den alten Wert des Dividenden. 3. Subtraktion: Bei einem negativen Ergebnis, addiert man den Divisor wieder (Rückaddition). Verkürzte Division: Rückaddition und Subtraktion des um eins nach rechts verschobenen Divisors zusammenziehen. Man addiert gleich den um eins verschobenen Divisor: + Divisor - ½ Divisor = + ½ Divisor 2 Burkhard Stiller M5 2
11 Division Durchführung der Subtraktion: Direkte Subtraktion des Divisors Addition des Divisor-Zweierkomplements. Direkte Subtraktion: : = - - negativ neuladen - - da positiv da negativ da positiv da nicht negativ 2 Burkhard Stiller M5 2 Bemerkungen Bei Division durch muß ein Ausnahmezustand erkannt werden und an die Steuereinheit (Prozessor) weitergemeldet werden. Die Division muß abgebrochen werden, wenn die vorhandene Bitzahl des Ergebnisregisters ausgeschöpft ist (periodische Dualbrüche). Die Schaltungen für die Multiplikation können nach Modifikation auch für den Grundalgorithmus der Division eingesetzt werden: Linksschieben des Dividenden (statt Rechtsschieben des Multiplikanten) Subtraktion des Divisors (statt Addition des Multiplikators) 2 Burkhard Stiller M5 22
12 Beispiel MIPS R Floating-point Unit 2 Burkhard Stiller M5 23 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit 2 Burkhard Stiller M5 24
13 Arithmetisch-logische Einheit Arithmetisch-logische Einheit (ALU, arithmetic logic unit): Rechenwerk, der funktionale Kern eines Digitalrechners zur Durchführung logischer und arithmetischer Verknüpfungen. Eingangsdaten der ALU: Daten und Steuersignalen vom Prozessor Ausgangsdaten der ALU: Ergebnisse und Statussignale an den Prozessor. Oft können die in einen Prozessor integrierten ALUs nur Festkommazahlen verarbeiten. Gleitkommaoperationen werden dann entweder von einer Gleitkommaeinheit ausgeführt oder per Software in Folge von Festkommabefehlen umgewandelt. 2 Burkhard Stiller M5 25 Schema einer einfachen ALU s s 2 ALU ALU2 Register X Register Y X X Y Y Multiplexerschaltnetz s s 2 c in s 3 s 4 s 5 Y X ALU3 ALU + ALU2 +c in zero sign overflow ALU ALU2 arithmetisch-logisches Schaltnetz ALU3 s 3 s 4 s 5 ALU ALU2 - c in ALU2 ALU - c in ALU ALU2 ALU ALU2 ALU ALU2 c out ALU ALU2 ALU ALU2 Schiebeschaltnetz s 6 s 7 s 6 s 7 Z ALU3 Register Z ALU3 2 ALU3 2 2 Burkhard Stiller M5 26 Z speichern
14 Bestandteile der ALU Registersatz Multiplexerschaltnetz Arithmetisch logisches Schaltnetz zur Durchführung arithmetisch logischer Operationen Schiebeschaltnetz Eingänge: Datenworte X und Y, Steuersignale s s 7 zur Festlegung der ALU-Operation Ausgänge: Statussignale zero, sign und overflow Hiermit kann das Steuerwerk bestimmte ALU-Zustände erkennen und darauf entsprechend zu reagieren. 2 Burkhard Stiller M5 27 Bitscheiben- (bitslice-) ALU Bitscheiben-ALU: Erweiterbare Strukturen auf einem Baustein bei einer kurzen Wortlänge (m = 4 oder 8) m-bit-alu. Bitscheibe: Verkettung von k der gleichen Bausteine (d.h. m-bit-alu). Erlaubt die Verarbeitung von Operanden der Wortlänge k*m. Alle Bausteine erhalten die gleichen Steuersignale. Sie führen parallel die gleiche Operation auf verschiedenen Teilen des Operanden aus. Ein Übertrag wird durch den Nachbarn berücksichtigt. Eine gemeinsame Steuerung erfolgt z.b. durch Mikroprogrammablauf und Mikroprogrammsteuereinheit. 2 Burkhard Stiller M5 28
15 Beispiel: AMD 29-Baustein Vier Bitscheiben der Länge 4 Bit Daten-Eingang Daten-Ausgang Register R Register R Register R Register R R(:3) R(4:7) R(8:) R(2:5) c out Arithmetisch logische Schaltung Arithmetisch logische Schaltung Arithmetisch logische Schaltung Arithmetisch logische Schaltung c in Steuerschaltung Steuerschaltung Steuerschaltung Steuerschaltung Externe Steuersignale 2 Burkhard Stiller M5 29 AMD 29-Baustein Bestandteile des Bausteins: Registersatz: 6 Register zu je 4 Bits (6x4-bit RAM) Arithmetisch-logische Schaltung C, welche drei arithmetische und fünf logische Funktionen ausführen kann. Befehlsbus I zur Auswahl einer Operation Schiebeeinheit: Verschiebung nach rechts/links Eingänge der arithmetisch logischen Schaltung: aus dem Registerspeicher, aus dem Register Q aus dem externen Dateneingang D oder Null Speicheradressen A und B wählen die Register für Quelle oder Ziel Ausgänge (Ergebnisse): intern im Registersatz oder am Datenausgang Y Steuerleitungen I, A und B sind parallel an alle Bitscheiben geschaltet. Jede Bitscheibe verarbeitet den Übertrag c in und gibt eventuell einen Übertrag c out weiter, so dass ein Gruppenübertrag mit serieller Weitergabe möglich ist. Merker F, OVR und Z zeigen den Status einer Operation an (Vorzeichen, Bereichsüberschreitung und Null). 2 Burkhard Stiller M5 3
6. Zahlendarstellungen und Rechnerarithmetik
6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,
Informatik I Modul 2: Rechnerarithmetik. Modul 2: Rechnerarithmetik (1)
Informatik I Modul 2: Rechnerarithmetik 2012 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung Grundrechenarten Zeichendarstellung 2012 Burkhard Stiller M2 2 Rechnerarithmetik
Informatik I Modul 2: Rechnerarithmetik Burkhard Stiller M2 1
Informatik I Modul 2: Rechnerarithmetik 2012 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung Grundrechenarten Zeichendarstellung 2012 Burkhard Stiller M2 2 Rechnerarithmetik
Computer Arithmetik. Computer Arithmetik Allgemein
Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)
Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation
Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete
Teil 2: Rechnerorganisation
Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation
Inhalt. Zahlendarstellungen
Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen
Informatik I Modul 2: Rechnerarithmetik (1)
Fall Term 2010, Department of Informatics, IFI, UZH, Switzerland Informatik I Modul 2: Rechnerarithmetik (1) 2010 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 2010
Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2)
Fall Term 1, Department of Informatics, IFI, UZH, Switzerland Modul : Rechnerarithmetik (1) Informatik I Modul : Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 1 Burkhard Stiller M 1 1 Burkhard
Kapitel 5: Darstellung von Daten im Rechner
Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel
Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen
Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)
Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller
Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen
3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
12. Tutorium Digitaltechnik und Entwurfsverfahren
12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Zahlendarstellungen und Rechnerarithmetik*
Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien
E Zahlendarstellungen und Rechnerarithmetik
E Zahlendarstellungen und Rechnerarithmetik Einordnung in das Schichtenmodell: 1. Darstellung positiver ganzer Zahlen 2. binäre Addition 3. Darstellung negativer ganzer Zahlen 4. binäre Subtraktion 5.
Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Division
Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Division Eberhard Zehendner (FSU Jena) Rechnerarithmetik Division 1 / 44 Division in UInt Aus dem Dividenden A und
bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke
Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung
Integrierte Schaltungen
Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100
Grundlagen der Technischen Informatik
Grundlagen der technischen Informatik Kapitel 4 Verarbeitungsschaltungen Pascal A. Klein, M.Sc. 4 Verarbeitungsschaltungen... 3 4.1 Einführung... 3 4.2 Addierer... 3 4.2.1 Halbaddierer... 3 4.2.2 Volladdierer...
Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck
Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen
Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben
Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der
Carry-Lookahead Addierer (CLA)
Carry-Lookahead Addierer (CLA) Idee: Vorausberechnung der Carry-Signale c i für alle n Stellen für i-ten Volladdierer gilt: c i+1 = a i b i + (a i +b i )c i := G i + P i c i G i = a i b i gibt an, ob in
Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016
Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den
3 Rechnen und Schaltnetze
3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s
TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl
GTI ÜBUNG 12 KOMPARATOR UND ADDIERER
1 GTI ÜBUNG 12 KOMPARATOR UND ADDIERER Aufgabe 1 Komparator 2 Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander vergleicht. Die Schaltung besitzt drei Ausgänge: ist
Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4
Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von
Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79
Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung
Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79
Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator
5 Verarbeitungsschaltungen
5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten
Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck
Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung
Algorithmen zur Division
Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest
Grundlagen der Rechnerarchitektur
Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Multiplikationschip. Multiplikation. Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95. Oberwiesenstr.
Informationsblatt für die Lehrkraft Multiplikation Multiplikationschip Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95 Autor: Ernesto Ruggiano Oberwiesenstr. 42 85 Zürich
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Binäre Division. Binäre Division (Forts.)
Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:
6.2 Kodierung von Zahlen
6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1
Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.
Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.
Digital Design 4 Schaltwerke
4 Schaltwerke Schaltwerk: Ausgabevektor hängt nicht nur von Eingabevektor ab, sondern auch von allen bisherigen Eingaben. A(t n ) = f(e(t n ), E(t n-1 ), E(t n-2 ), E(t n-3 ),... E(t 0 ) dazu sind erforderlich:
Grundlagen der technischen Informatik
Prof. Dr. Dieter Kranzlmüller Dr. Nils gentschen Felde Dr. Karl Fürlinger Stephan Reiter Christian Straube Grundlagen der technischen Informatik Workshop im Rahmen des Informatik-Probestudiums 2012 1 Überblick/Agenda
Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1
4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
Zahlensysteme Römische Zahlen
Modul 2: Rechnerarithmetik (1) Informatik I Modul 2: Rechnerarithmetik Zahlensysteme Zahlendarstellung Grundrechenarten Zeichendarstellung 212 Burkhard Stiller M2 1 212 Burkhard Stiller M2 2 Rechnerarithmetik
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
3 Verarbeitung und Speicherung elementarer Daten
3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen
Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen
Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 25. April 2013 1 Boolesche
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche
Abschlussklausur Informatik, SS 2012
Abschlussklausur Informatik, SS 202 09.07.202 Name, Vorname: Matr.-Nr.: Unterschrift: Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg
Modul IP7: Rechnerstrukturen
64-040 Modul IP7: 3. Arithmetik Norman Hendrich & Jianwei Zhang Universität Hamburg MIN Fakultät, Vogt-Kölln-Str. 30, D-22527 Hamburg {hendrich,zhang}@informatik.uni-hamburg.de WS 2010/2011 Hendrich &
5 Zahlenformate und deren Grenzen
1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik
Zahlensysteme und Kodes. Prof. Metzler
Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form
Algorithmen zur Division
Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest
Kapitel 6 Darstellung von Daten im Rechner. Kapitel 6: Darstellung von Daten im Rechner Seite 1 / 63
Kapitel 6 Darstellung von Daten im Rechner Kapitel 6: Darstellung von Daten im Rechner Seite / 63 Darstellung von Daten im Rechner Inhaltsverzeichnis 6. Darstellung ganzer Zahlen 6.2 Darstellung reeller
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen
Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010
Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................
2.Vorlesung Grundlagen der Informatik
Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik [email protected]
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Computerarithmetik (1)
Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis
Einführung in die Informatik I
Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen
Datendarstellung Teil 2
Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 2 Kai-Steffen Hielscher Folienversion: 08. November 2016 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013
Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in
Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8
Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung
Algorithmen zur Integer-Multiplikation
Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10
FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen
1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement
3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:
2.1.2 Gleitkommazahlen
.1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:
Die Mikroprogrammebene eines Rechners
Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.
Darstellung ganzer Zahlen als Bitvektoren
Darstellung ganzer Zahlen als Bitvektoren Jan Peleska Jan Bredereke Universität Bremen, Fachbereich Informatik Vers. 1.2 1 Darstellung natürlicher Zahlen z N 0 und Addition 1.1 Dualzahlen dargestellt durch
Menschliches Addierwerk
Menschliches Addierwerk Einleitung In seinem Buch The Three-Body Problem 1 beschreibt der chinesische Autor Liu Cixin die Entwicklung eines Computers, der aus mehreren Millionen Menschen zusammengesetzt
GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK
1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen
Das Rechnermodell - Funktion
Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze
Zahlensysteme Römische Zahlen
Herbstsemester 211, Institut für Informatik IFI, UZH, Schweiz Modul 2: Rechnerarithmetik (1) Informatik I Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung Zeichendarstellung 211 Burkhard
Programmierbare Logik Arithmetic Logic Unit
Eine arithmetisch-logische Einheit (englisch: arithmetic logic unit, daher oft abgekürzt ALU) ist ein elektronisches Rechenwerk, welches in Prozessoren zum Einsatz kommt. Die ALU berechnet arithmetische
Zwischenklausur Informatik, WS 2014/15
Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar
Digitale Systeme und Schaltungen
Zusammenfassung meines Vortrages vom 26. Jänner 2017 Digitale Systeme und Schaltungen Andreas Grimmer Pro Scientia Linz Johannes Kepler Universität Linz, Austria [email protected] In dieser Zusammenfassung
Darstellung von negativen binären Zahlen
Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------
Tutorium Rechnerorganisation
Woche 3 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu
Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler
F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln
Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner
Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer
Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009
Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen
Kapitel 2. Zahlensysteme, Darstellung von Informationen
Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.
Informationsverarbeitung in IT-Systemen
Informationsverarbeitung in IT-Systemen Informationsverarbeitung in IT-Systemen Signalarten Präfixe Zahlensysteme Rechnen mit Dualzahlen Darstellung negativer Dualzahlen Codes Paritätsprüfung Digitaltechnik
Zahlendarstellung und Rechnerarithmetik
G G.1.1 Inhaltlich Zahlendarstellung: lesbare ASCII Zeichenkette, ganzzahliger Integer, Gleitkommazahl, Festkommazahl. Arithmetik: Vorzeichenregeln, Exponenten, Vorzeichen, Überlauf. Zahlendarstellung
Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31
Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur
