Modellbildung Mechatronischer Systeme (MMS)
|
|
|
- Paul Blau
- vor 8 Jahren
- Abrufe
Transkript
1 Modellbldung Mechatronscher Systeme (MMS) rof. Dr.-Ing. habl. Jörg Grabow Fachgebet Mechatronk
2 Vorlesungsnhalt 1. Enführung und Grundbegrffe 2. Mechatronsche Bauelemente 3. hyskalsche elsysteme Copyrght 2
3 1. Enführung und Grundbegrffe 1.1 Begrff des mechatronschen Systems 1.2 Bedeutung der Energe 1.3 Fundamentalgrößen 1.4 Konsttutve Gesetze 1.5 Energeumformungen 3
4 1.1 Begrff des Mechatronschen Systems Umwelt Systemgrenze mechansches elsystem elektrsches elsystem Systemabgrenzung abgeschlossene Systeme relatv solerte Systeme offene Systeme Energestrom (Energefluss) thermsches elsystem Gesamtsystem Mechatronsches Gesamtsystem Systemwechselwrkung Informatonsaustausch Stoffaustausch Energeaustausch rozess: Der rozess defnert ene zetlche Aufenanderfolge von Zuständen nnerhalb enes Systems n Abhänggket von Vorbedngungen und äußeren Enflüssen. 4
5 1.2 Bedeutung der Energe Energe: De Energe E st ene mengenartge physkalsche Zustandsgröße gemessen n Joule. Se kann fleßen und hr Fleßmaß st de Energestromstärke (Energefluss), de Dfferenz der Energeströme st de Lestung. Energe fleßt ne allen sondern se benötgt dazu enen Energeträger. Zu jedem Energeträger gehört en otental. ENERGIESROMRINZI rozess oder Specher I E1 Energestrom rozess rozesslestung Energeträger I E 2 rägerstrom I E otentale 5
6 1.2 Bedeutung der Energe geschlossene rägerstromkresläufe offene rägerstromkresläufe Energestrom Energestrom Motor Gebläse Dampfkessel urbne L, M S, Ṡ Energestrom Energestrom Battere Motor Specher Wasserturbne Q, I m, ṁ Bespele für das Energestromprnzp 6
7 1.2 Bedeutung der Energe elektrsches elsystem Energeaustausch mechansches elsystem Energewandlung: Vorgang be dem Energeart des Energeflusses geändert wrd. (z.b. Elektromotor elektrsche Energe mechansche Energe) elsystem Energewandlung Energespecherung Energeübersetzung: Vorgang be dem de Form des Energeflusses geändert wrd, de Energeart aber erhalten blebt (Getrebe, ransformator). System 1 System 2 Energetransport Energeübersetzung System 3 Energetransport: Weterletung der Energe von ener Quelle zu ener Senke. Art und Form des Energeflusses ändern sch ncht. Energespecherung: Aufbewahrung der Energe für ene bestmmte Zet. Während der Specherung ändert sch de Energemenge ncht. 7
8 1.3 Fundamentalgrößen Quanttätsgrößen (t) : (extensve Größen) Quanttätsgrößen snd telbare Zustandsgrößen enes Basssystems, de sch nur mt der Größe des betrachteten Systems ändern. X ( t) Bsp.: Masse, Volumen, Ladung, Verschebungsfluss, Energe rmärgrößen (t) : (mengenartge extensve Größen) rmärgrößen snd blanzerbare extensve Größen, für de Zet- und Masse- oder Raumbezüge exsteren. Der Zetbezug führt auf ransportglechungen und Mengenströme, der Masse- oder Raumbezug auf Dchten. X ( ) t Größen: Impuls, Masse, Drehmpuls, Entrope, Ladung, Stoffmenge, Energe Egenschaften: (t) st blanzerbar (t) st enem Raumberech zugeordnet zu (t) exstert ene Dchte zu (t) exstert en Strom zu (t) exstert ene Stromdchte j 8
9 1.3 Fundamentalgrößen Intenstätsgröße (t): ntensve Größe Y Intenstätsgrößen snd Zustandsgrößen, de sch nur mt der Größe des betrachteten Systems NICH ändern. Y ( t) Bsp.: emperatur, Druck, Kraft, elektrscher Strom δ E = δ Gbbsform für Glechgewchtszustände: j j Def. 1.1: De Energe enes Systems kann sch nur ändern, wenn sch mndestens en Wert ener Quanttätsgröße ändert. De Energegrößen treten stets als rodukt der beden paarwesen Zustandsgrößen Quanttäts- und Intenstätsgröße auf. j Y ( t) δ E δ X δ ( t) 9
10 1.3 Fundamentalgrößen De Intenstätsgrößen j snd de zu den Quanttätsgrößen j energekunjugerten Zustandsgrößen. j = δ E(,, K) j Messtechnsche Unterschedungsmerkmale: -Varable st ene Zustandsgröße, zu deren Bestmmung genau en Raumpunkt notwendg st. ( für lat. per durch) δ E = δ -Varable st ene Zustandsgröße, zu deren Bestmmung zwe Raumpunkte notwendg snd. ( für lat. trans über) (t) bestmmt den Namen 10
11 1.3 Fundamentalgrößen Def. 1.2: Jede rmärgröße (t) bestzt enen zugehörgen Mengenstrom (t). : = d Def. 1.3: De zetlche Änderung der rmärgröße (t) nnerhalb enes abgeschlossenen Systems (Blanzraumes) st glech der Summe aller entretenden und aller austretenden Ströme, sowe aller Stromuellen und Stromsenken. d kond konv + Π = A E d System E ± Π = + A kond konv = + j A = A 11
12 1.4 Konsttutve Gesetze δ E = δ : = d Def. 1.1 Def. 1.2 δ E = δ : = d δ E = δ E + δ E De Auftelung n ele von Enzelenergeformen glt nur für de Energeänderung! 12
13 1.4 Konsttutve Gesetze -Specher = -Specher = d = d p p = δe = δ E = δ δ Systemenergeänderung δ E = δ E + δ E 13
14 1.4 Konsttutve Gesetze -Specher -Specher = d δe = δ = δe = δ L : = R : = C : = p = d p 14
15 1.5 Energeumformungen Energeänderung m Gesamtsystem: -Schrebwese: -Schrebwese: ( ) ( ) δe = δ E, + δ E, ( α ) ( β ) ( γ ) ( ξ ) δe = δ E, + δ E, δe = δ E, + δ E, Energe m -Specher, beschreben durch -Varable Energe m -Specher, beschreben durch -Varable Energe m -Specher, beschreben durch -Varable Energe m -Specher, beschreben durch -Varable E E E E ( α, ) ( γ, ) ( β, ) ( ξ, ) 15
16 Copyrght Zteren Bezehen Se sch we folgt auf deses Dokument: Grabow, J.: Modellbldung mechatronscher Systeme (MMS) Internet: Änderungen Rev. Datum Änderung Erstausgabe Begrffsbldung angepasst 16
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
MECHATRONISCHE NETZWERKE
MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
1.1 Grundbegriffe und Grundgesetze 29
1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld
Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen:
De molekulare Zustandssumme βε = e mt β = De kanonsche Zustandssumme (System) und hr Zusammenhang mt der molekularen Zustandssumme (Enzelmolekül) unterschedbare elchen: Q = ununterschedbareelchen Q : =!
Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):
LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete
4.6 Das Pumping-Lemma für reguläre Sprachen:
Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen
Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 2
Physk T Dortmund SS28 Götz hrg Shaukat Khan Kaptel 2 Drftgeschwndgket der Elektronen n enem Draht Elektronen bewegen sch unter dem Enfluss enes elektrschen Felds durch en Metall, wobe se oft Stöße mt Atomen
I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler
I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate
Protokoll zu Versuch C1-Mischungsvolumina
Protokoll zu Prnz: De sezfschen Mschungsvolumna ener Lösung werden durch auswegen fester Flüssgketsvolumna bekannter Lösungszusammensetzungen mt Hlfe von Pyknometern bestmmt. Theoretsche Grundlagen: Um
Elektrischer Strom. Elektrische Netzwerke
Elektrscher Strom. Elektrscher Strom als Ladungstransport. Wrkungen des elektrschen Stromes 3. Mkroskopsche Betrachtung des Stroms, elektrscher Wderstand, Ohmsches Gesetz. Drftgeschwndgket und Stromdchte.
Bestimmung der Elementarladung nach Millikan. 1. Theorie zum Versuchs. F R = 6 $ $ $ r $ v. $ g. F s = 4 3 $ $ r 3 $ Öl.
Versuch Nr. 5: Bestmmung der Elementarladung nach Mllkan. Theore zum Versuchs Be der Öltröpfchenmethode nach Mllkan wrd Öl mttels enes Zerstäubers n wnzge Tropfen aufgetelt. De Öltröpfchen werden durch
Aufgaben zur Einführung in die Messtechnik Die ISO/BIPM-GUM Sicht: Schätzwert & Messunsicherheit
F Aufgaben zur Enführung n de Messtechnk De ISO/BIPM-GUM Scht: Schätzwert & Messunscherhet Wolfgang Kessel Braunschweg Copyrght 004 Dr.Wolfgang Kessel Braunschweg UPROB0.PPT/F/004--/Ke Messfehler/Enführung
18. Vorlesung Sommersemester
8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten
Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung
Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012
29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.
hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät
6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen
196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen
Schriftliche Prüfung aus Systemtechnik am
U Graz, Insttt Regelngs- nd Atomatserngstechnk Schrftlche Prüfng as Sstemtechnk am 3.. Name / Vorname(n): Matrkel-Nmmer: Bonspnkte as den MALAB-Übngen: O ja O nen 3 4 errechbare Pnkte 5 6 6 4 errechte
Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel
ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore
MOD-01 LAGRANGE FORMALISMUS -- TEIL 1
MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,
Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n
Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage
Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften
Einführung in die theoretische Physik 1
Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk
Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen
Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus
Einführung in die Finanzmathematik
1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg
6.1 Definition der freien Energie und der freien Enthalpie
-- 6 FREIE ENERGIE UND FREIE ENHALIE 6. Defnton der freen Energe und der freen Enthalpe Nachdem der Energeerhaltungssatz gefunden war, hat man versucht, chemsche Affntäten mt Hlfe der Energe zu erklären.
Grundgedanke der Regressionsanalyse
Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade
Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr
Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -
Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole
Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose)
Chrstan Wdlng, Georg Deres Versuch Nr. 6 Chemsche Knet Atverungsenerge (Inverson von Saccharose) Zel des Versuchs: Das Zel des Versuches st de Bestmmung der Atverungsenerge der Reaton von Saccharose (S)
Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten
Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen
Was sind Messunsicherheiten?
Edgenösssches Justz- und Polzedepartement EJPD Bundesamt für Metrologe METAS Was snd Messunscherheten? Chrstan Hof Was snd Messunscherheten? allgemene Defntonen von Begrffen das standardserte Vorgehen
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2
ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung
SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT
Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch
Gruppe. Lineare Block-Codes
Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit
Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket
Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung
am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall
Streuungs-, Schiefe und Wölbungsmaße
aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Manhattan-Metrik anhand des Beispiels
Bestmmung durch Manhattan-Metrk 3 Manhattan-Metrk anhand des Bespels Gesucht werden de zwe Standorte für zwe Ausleferungslager. De Standpunkte der Nachfrager () snd durch de Koordnaten ( x/y ) gegeben.
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)
1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.
1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale
Dec 15, 2016 ASC, room A 238, phone 089-21804210, emal [email protected] Patrc Böhl, ASC, room A205, phone 089-21804640, emal [email protected]. Dsusson der Besetzungszahldarstellungen
Hydrosystemanalyse: Finite-Elemente-Methode (FEM)
Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf
Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen
Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:
Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013
Physkalsche Cheme II (PCII) Thermodynamk/Elektrocheme Vorlesung und Übung (LSF#105129 & LSF#101277) - SWS: 4 + 2 SoSe 2013 Prof. Dr. Petra Tegeder Ruprecht-Karls-Unverstät Hedelberg; Fachberech Cheme,
4.2 Grundlagen der Testtheorie
4.2 Grundlagen der Testtheore Wntersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabrele Helga Franke Deskrptve Statstk 4-1 bs 4-2 1 GHF m WSe 2008 / 2009 an der HS MD-SDL(FH) m
Dynamik starrer Körper
Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt
Kondensator und Spule
Hochschule für Angewandte Wssenschaften Hamburg Fakultät Lfe cences - Physklabor Physkalsches Praktkum -------------------------------------------------------------------------------------------------------------------------------------------------
Theoretische Physik: Mechanik
Ferenkurs Theoretsche Physk: Mechank Sommer 2017 Vorlesung 2 (mt freundlcher Genehmgung von Merln Mtscheck und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns 1 Systeme
Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum
Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten
Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition
Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden
Lösungen zum 3. Aufgabenblock
Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass
Weitere NP-vollständige Probleme
Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,
Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der
De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²
Die Hamilton-Jacobi-Theorie
Kaptel 7 De Hamlton-Jacob-Theore Ausgearbetet von Rolf Horn und Bernhard Schmtz 7.1 Enletung Um de Hamlton schen Bewegungsglechungen H(q, p q k = p k H(p, q ṗ k = q k zu verenfachen, führten wr de kanonschen
12 UMPU Tests ( UMP unbiased )
89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum
Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.
Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
Lösungen der Aufgaben zu Kapitel 2
Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n
Lösung Aufgabe NuS I-1: Nutzleistung und Wirkungsgrad
Schnelltest HS 008 Musterlösung Aufgabe Nr. Thema Punkte max. Punkte Vsum Vsum NuS I- Nutzlestung und Wrkungsgrad 0 ösung Aufgabe NuS I-: Nutzlestung und Wrkungsgrad Fg..: Netzwerk mt Stromquelle a) De
z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!
Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf
Contents blog.stromhaltig.de
Contents We hoch st egentlch Ihre Grundlast? Ene ncht ganz unwchtge Frage, wenn es um de Dmensonerung ener senannten Plug&Play Solar-Anlage geht. Solarsteckdosensystem für jermann, auch für Meter lautete
