Reelles Skalarprodukt

Größe: px
Ab Seite anzeigen:

Download "Reelles Skalarprodukt"

Transkript

1 Reelles Skalarprodukt Ein Skalarprodukt auf einem reellen Vektorraum V ist eine Abbildung, : V V R mit folgenden Eigenschaften: Positivität: v, v > 0 für v 0 Symmetrie: Linearität: u, v = v, u λu + ϱv, w = λ u, w + ϱ v, w Dabei sind u, v, w V und λ, ϱ R beliebige Vektoren bzw. Skalare. Skalarprodukt 1-1

2 Reelles Skalarprodukt Ein Skalarprodukt auf einem reellen Vektorraum V ist eine Abbildung, : V V R mit folgenden Eigenschaften: Positivität: v, v > 0 für v 0 Symmetrie: Linearität: u, v = v, u λu + ϱv, w = λ u, w + ϱ v, w Dabei sind u, v, w V und λ, ϱ R beliebige Vektoren bzw. Skalare. Aufgrund der Symmetrie ist ein reelles Skalarprodukt auch bzgl. des zweiten Argumentes linear, also eine Bilinearform auf V. Skalarprodukt 1-2

3 Vektorraum der auf [0, 1] definierten, reellwertigen stetigen Funktionen 1 f, g = f (xg(x dx (Positivität, Linearität, Symmetrie 0 Skalarprodukt 2-1

4 Vektorraum der auf [0, 1] definierten, reellwertigen stetigen Funktionen 1 f, g = f (xg(x dx 0 (Positivität, Linearität, Symmetrie Verallgemeinerung durch Einführung einer positiven Gewichtsfunktion w: 1 f, g w = fg w 0 Skalarprodukt 2-2

5 Vektorraum der auf [0, 1] definierten, reellwertigen stetigen Funktionen 1 f, g = f (xg(x dx 0 (Positivität, Linearität, Symmetrie Verallgemeinerung durch Einführung einer positiven Gewichtsfunktion w: 1 f, g w = fg w gewichtete Skalarprodukte für radialsymmetrische Funktionen auf der Kreisscheibe oder Kugel: 1 0 f (rg(rr dr, f (rg(rr 2 dr Skalarprodukt 2-3

6 Komplexes Skalarprodukt Ein Skalarprodukt auf einem komplexen Vektorraum V ist eine Abbildung, : V V C mit folgenden Eigenschaften: Positivität: v, v > 0 für v 0 Schiefsymmetrie: Linearität: u, v = v, u λu + ϱv, w = λ u, w + ϱ v, w Dabei sind u, v, w V und λ, ϱ C beliebige Vektoren bzw. Skalare. Skalarprodukt 3-1

7 Aufgrund der Schiefsymmetrie ist ein komplexes Skalarprodukt bzgl. der zweiten Variablen nicht linear: u, λv + ϱw = λ u, v + ϱ u, w. Lediglich für reelle Skalare ist die komplexe Konjugation ohne Bedeutung. Skalarprodukt 3-2

8 Erläuterung: Die Asymmetrie ist notwendig für die Positivität des komplexen Skalarproduktes, z.b. iv, iv i 2 v, v = v, v < 0 für v 0 Skalarprodukt 4-1

9 Erläuterung: Die Asymmetrie ist notwendig für die Positivität des komplexen Skalarproduktes, z.b. iv, iv i 2 v, v = v, v < 0 für v 0 Antisymmetrie iv, iv = i v, iv = (īi v, v = v, v > 0 Skalarprodukt 4-2

10 Erläuterung: Die Asymmetrie ist notwendig für die Positivität des komplexen Skalarproduktes, z.b. iv, iv i 2 v, v = v, v < 0 für v 0 Antisymmetrie iv, iv = i v, iv = (īi v, v = v, v > 0 Die Positivität ist notwendig für die Definition der induzierten Norm v = v, v Skalarprodukt 4-3

11 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt 5-1

12 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt Eigenschaften 10x 1 y 1 + x 2 y 2 Skalarprodukt 5-2

13 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt 10x 1 y 1 + x 2 y 2 x 1 y 2 Eigenschaften alle Skalarprodukt 5-3

14 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt 10x 1 y 1 + x 2 y 2 x 1 y 2 x 1 y 1 + x 2 y 2 Eigenschaften alle Linearität Skalarprodukt 5-4

15 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt Eigenschaften 10x 1 y 1 + x 2 y 2 alle x 1 y 2 Linearität x 1 y 1 + x 2 y 2 Positivität, Symmetrie x 1 x 2 + y 1 y 2 Skalarprodukt 5-5

16 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt Eigenschaften 10x 1 y 1 + x 2 y 2 alle x 1 y 2 Linearität x 1 y 1 + x 2 y 2 Positivität, Symmetrie x 1 x 2 + y 1 y 2 Symmetrie Skalarprodukt 5-6

17 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt Eigenschaften 10x 1 y 1 + x 2 y 2 alle x 1 y 2 Linearität x 1 y 1 + x 2 y 2 Positivität, Symmetrie x 1 x 2 + y 1 y 2 Symmetrie Die erste Definition beschreibt kein Skalarprodukt auf C 2, da weder Positivität noch Schiefsymmetrie erfüllt ist: (i, 0, (i, 0 = 10i 2 = 10 < 0 10i = (i, 0, (1, 0 (1, 0, (i, 0 = 10i Skalarprodukt 5-7

18 mögliche Definitionen reeller Skalarprodukte für Vektoren x, y, R 2 : Skalarprodukt Eigenschaften 10x 1 y 1 + x 2 y 2 alle x 1 y 2 Linearität x 1 y 1 + x 2 y 2 Positivität, Symmetrie x 1 x 2 + y 1 y 2 Symmetrie Die erste Definition beschreibt kein Skalarprodukt auf C 2, da weder Positivität noch Schiefsymmetrie erfüllt ist: (i, 0, (i, 0 = 10i 2 = 10 < 0 10i = (i, 0, (1, 0 (1, 0, (i, 0 = 10i richtige Erweiterung auf den komplexen Fall: x, y = 10x 1 ȳ 1 + x 2 ȳ 2 Skalarprodukt 5-8

19 Euklidisches Skalarprodukt Für Vektoren x = (x 1,..., x n t, y = (y 1,..., y n t C n ist das kanonische Skalarprodukt durch n y x = x j ȳ j j=1 definiert mit der assoziierten Norm z = z z n 2. Das Superskript bezeichnet dabei die Transposition und komplexe Konjugation eines Vektors. Skalarprodukt 6-1

20 Euklidisches Skalarprodukt Für Vektoren x = (x 1,..., x n t, y = (y 1,..., y n t C n ist das kanonische Skalarprodukt durch n y x = x j ȳ j j=1 definiert mit der assoziierten Norm z = z z n 2. Das Superskript bezeichnet dabei die Transposition und komplexe Konjugation eines Vektors. Die Definition schließt den reellen Fall ein, bei dem die komplexe Konjugation entfällt: y x = y t x = x 1 y 1 + x 2 y x n y n für x, y R n. Skalarprodukt 6-2

21 x = komplexes Skalarprodukt: ( 1 + 2i 2 i x, y = (1 + 2i 2 + ( 2 i 2i, y = ( 2 2i Skalarprodukt 7-1

22 x = komplexes Skalarprodukt: ( 1 + 2i 2 i, y = ( 2 2i x, y = (1 + 2i 2 + ( 2 i 2i = 2 + 4i + 4i + 2i 2 Skalarprodukt 7-2

23 x = komplexes Skalarprodukt: ( 1 + 2i 2 i, y = ( 2 2i x, y = (1 + 2i 2 + ( 2 i 2i = 2 + 4i + 4i + 2i 2 = 2 + 8i 2 Skalarprodukt 7-3

24 x = komplexes Skalarprodukt: ( 1 + 2i 2 i, y = ( 2 2i x, y = (1 + 2i 2 + ( 2 i 2i = 2 + 4i + 4i + 2i 2 = 2 + 8i 2 = 8i Skalarprodukt 7-4

25 x = komplexes Skalarprodukt: ( 1 + 2i 2 i, y = ( 2 2i x, y = (1 + 2i 2 + ( 2 i 2i = 2 + 4i + 4i + 2i 2 = 2 + 8i 2 = 8i Konjugieren ist notwendig für die Positivität der assoziierten Norm keine Konjugation falsche Definition der Längen Skalarprodukt 7-5

26 x = komplexes Skalarprodukt: ( 1 + 2i 2 i, y = ( 2 2i x, y = (1 + 2i 2 + ( 2 i 2i = 2 + 4i + 4i + 2i 2 = 2 + 8i 2 = 8i Konjugieren ist notwendig für die Positivität der assoziierten Norm keine Konjugation falsche Definition der Längen x : (1 + 2i 2 + ( 2 i 2 = 1 + 4i i 1 Skalarprodukt 7-6

27 x = komplexes Skalarprodukt: ( 1 + 2i 2 i, y = ( 2 2i x, y = (1 + 2i 2 + ( 2 i 2i = 2 + 4i + 4i + 2i 2 = 2 + 8i 2 = 8i Konjugieren ist notwendig für die Positivität der assoziierten Norm keine Konjugation falsche Definition der Längen x : (1 + 2i 2 + ( 2 i 2 = 1 + 4i i 1 = 8i R y : (2i 2 = 4 4 = 0 0 Skalarprodukt 7-7

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V.

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V. L5.6 Orthogonale und unitäre Matrizen (invertierbare Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) Reelles inneres Produkt in -Vektorraum [siehe L3.1b]: 'reeller Vektorraum' (i)

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Einleitung Grundlagen Einordnung. Normen. Thomas Gerstner. Institut für Mathematik Goethe-Universität Frankfurt am Main

Einleitung Grundlagen Einordnung. Normen. Thomas Gerstner. Institut für Mathematik Goethe-Universität Frankfurt am Main Institut für Mathematik Goethe-Universität Frankfurt am Main Einführungsvortrag Proseminar 25. Januar 2013 Outline 1 Einleitung Motivation Anwendungsbereiche 2 3 Wichtige Outline Einleitung Motivation

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hermitesche

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: Lineare Algebra Das Handout ist Bestandteil der Vortragsfolien zur Höheren Mathematik; siehe die Hinweise auf der Internetseite vhm.mathematik.uni-stuttgart.de für Erläuterungen zur Nutzung und zum Copyright.

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Unitäre und orthogonale Matrix

Unitäre und orthogonale Matrix Unitäre und orthogonale Matrix Eine komplexe n n-matrix A heißt unitär, falls A 1 = A t = A, d.h. falls die Spalten von A eine orthonormale Basis von C n bilden. Unitäre und orthogonale Matrizen 1-1 Unitäre

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen In diesem Kapitel werden nur endlich dimensionale

Mehr

1.7 Lineare Abbildungen

1.7 Lineare Abbildungen 1.7 Lineare Abbildungen Definition. Sei A : U V eine Abbildung zwischen zwei Vektorräumen U, V. Die Abbildung A heißt linear, falls für alle u, u U und b R gilt: A(u + u ) = A(u) + A(u ), A(b u) = b A(u).

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

1.14 Vektorprodukt im R 3

1.14 Vektorprodukt im R 3 1.14 Vektorprodukt im R 3 Wir kommen jetzt zu einer besonderen Operation, die nur im dreidimensionalen Euklidischen Vektorraum definiert werden kann. Definition. Sei V der dreidimensionale Euklidische

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 31 Vektorräume mit Skalarprodukt Im R n kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor

Mehr

Lösung zum 9. Tutorium

Lösung zum 9. Tutorium MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SoSe 5 Blatt 9 9.6.5 Lösung zum 9. Tutorium. Staatsexamensaufgabe Frühjahr 8 Die Vektoren v = 3, und v = 3 R4 spannen einen Unterraum U

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

4 Bilinearformen und Skalarprodukte

4 Bilinearformen und Skalarprodukte 4 Bilinearformen und Skalarprodukte 4 Grundlagen über Bilinearformen Definition 4 Sei V ein K-Vektorraum Eine Bilinearform b auf V ist eine Abbildung b : V V K mit folgenden Eigenschaften: (B) x, y, z

Mehr

Mathematik für Naturwissenschaftler II

Mathematik für Naturwissenschaftler II Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 3 30. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 3 30. Oktober 2013 1 / 23 3. Erste Fundamentalform parametrisierten

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

3 Bilinearformen und quadratische Formen

3 Bilinearformen und quadratische Formen 3 Bilinearformen und quadratische Formen Sei V ein R Vektorraum. Definition: Eine Bilinearform auf V ist eine Abbildung s : V V R, welche linear in beiden Variablen ist, d.h.: Für u, v, w V und λ, µ R

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Mathematik III. Vorlesung 68. Das Verhalten von Maßen bei linearen Abbildungen

Mathematik III. Vorlesung 68. Das Verhalten von Maßen bei linearen Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 68 Das Verhalten von Maßen bei linearen Abbildungen Lemma 68.1. Es sei V ein reeller Vektorraum und L :R n V eine bijektive lineare

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof Dr H Brenner Osnabrück SS 22 Mathematik für Anwender II Vorlesung Euklidische Vektorräume Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge,

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

8 Ungleichungen. Themen: Klassische Ungleichungen Konvexe und monotone Funktionen

8 Ungleichungen. Themen: Klassische Ungleichungen Konvexe und monotone Funktionen 8 Ungleichungen Themen: Klassische Ungleichungen Konvexe und monotone Funktionen Die Youngsche Ungleichung Aus 0 (a±b) 2 erhalten wir die Youngsche Ungleichung für a, b Ê ab 1 2 a2 + 1 2 b2. Ersetzen wir

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

Analysis II. Vorlesung 37. Differenzierbare Kurven

Analysis II. Vorlesung 37. Differenzierbare Kurven Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 37 Differenzierbare Kurven Eine Animation des Graphen der trigonometrischen Parametrisierung des Einheitskreises. Die grünen Punkte sind Punkte

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

I (u +v)+w = u +(v +w) II u +v = v +u III Es existiert ein 0 V, s. d. 0+v = v IV Es existiert ein v V, s. d. v +v = 0

I (u +v)+w = u +(v +w) II u +v = v +u III Es existiert ein 0 V, s. d. 0+v = v IV Es existiert ein v V, s. d. v +v = 0 Def. Sei (K,+, ) ein Körper. Eine Wiederholung: (Hauptdefinition Menge V mit Abbildungen der LAAG1:) Vektorraum ist eine + : V V V Menge V mit zwei Abbildungen : K V V + : V V V, : R V heißt ein Vektorraum

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen)

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen) Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 22.5.217 (Teil 1, Lösungen) 1. Mai 217 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 217 Steven Köhler 1. Mai 217

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b.

Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b. Buchempfelungen Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b. Serge Lang, Lineare Algebra Lineare Abbildungen z.b. Kowalsky

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Lineare Algebra für PhysikerInnen

Lineare Algebra für PhysikerInnen Universität Wien, SS 2015 Lineare Algebra für PhysikerInnen Beispiele für Multiple-Choice-Fragen Punkteschlüssel: [Typ 1 aus 4] und [Typ 3 aus 4]... 0.8 Punkte [Typ 2 aus 4]... 1 Punkt Bei der schriftlichen

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 32 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Hauptsatz der Zahlentheorie.

Hauptsatz der Zahlentheorie. Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist Orthogonalität p. 1 Skalarprodukt Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind u := u 1 u 2. u n reelle n-tupel, dann ist und v := v 1 v 2. v n u v := u 1 v 1 + u 2

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Vektorraum. (λ 1 + λ 2 ) v = λ 1 v + λ 2 v. Vektorraum 1-1

Vektorraum. (λ 1 + λ 2 ) v = λ 1 v + λ 2 v. Vektorraum 1-1 Vektorraum Eine abelsche Gruppe (V, +) heißt Vektorraum über einem Körper K oder K-Vektorraum, wenn eine Skalarmultiplikation definiert ist, die (λ, v) K V das Produkt λ v V zuordnet und folgende Eigenschaften

Mehr