Numerische Mathematik kompakt

Größe: px
Ab Seite anzeigen:

Download "Numerische Mathematik kompakt"

Transkript

1 Robert Plato Numerische Mathematik kompakt Grundlagenwissen für Studium und Praxis vieweg

2 Inhaltsverzeichnis Vorwort Inhaltsverzeichnis v vii 1 Polynominterpolation Allgemeine Vorbetrachtungen und Landausche Symbole Landausche Symbole Existenz und Eindeutigkeit bei der Polynominterpolation Die Lagrangesche Interpolationsformel Eine erste Vorgehensweise zur Berechnung des interpolierenden Polynoms Neville-Schema Die Newtonsche Interpolationsformel, dividierte Differenzen Der bei der Polynominterpolation auftretende Fehler Tschebyscheff- Polynome 11 - Weitere Bemerkungen und Literaturhinweise 14 - Übungsaufgaben 14 2 Splinefunktionen Einführende Bemerkungen Interpolierende lineare Splinefunktionen Die Berechnung interpolierender linearer Splinefunktionen Minimaleigenschaften kubischer Splinefunktionen Die Berechnung interpolierender kubischer Splinefunktionen Vorüberlegungen Natürliche Randbedingungen Vollständige Randbedingungen Periodische Randbedingungen Existenz und Eindeutigkeit der betrachteten interpolierenden kubischen Splines Fehlerabschätzungen für interpolierende kubische Splines 25 - Weitere Bemerkungen und Literaturhinweise 29 Übungsaufgaben 29 3 Diskrete Fouriertransformation und Anwendungen Diskrete Fouriertransformation Anwendungen der diskreten Fouriertransformation Fourierreihen Trigonometrische Interpolation, Teil Trigonometrische Interpolation, Teil Schnelle Fouriertransformation (FFT) Einführende Bemerkungen Der grundlegende Zusammenhang 37

3 Vlll INHALTSVERZEICHNIS Bit-Umkehr Der FFT-Algorithmus in der Situation JV = 2« Aufwandsbetrachtungen für den FFT-Algorithmus Pseudocode für den FFT-Algorithmus in der Situation N = 2" 42 Weitere Bemerkungen und Literaturhinweise 43 - Übungsaufgaben 43 Lösung linearer Gleichungssysteme Dreieckssysteme Obere gestaffelte Gleichungssysteme Untere gestaffelte Gleichungssysteme Der Gauß-Algorithmus Einführende Bemerkungen, Gauß-Algorithmus mit Pivotsuche Die Faktorisierung PA = LR Permutationsmatrix Frobeniusmatrizen Die Faktorisierung PA = LR LR- Faktorisierung Cholesky-Faktorisierung positiv definiter Matrizen Die Berechnung einer Faktorisierung A = LL T für positiv definite Matrizen A 6 1& OK) 4.6 Bandmatrizen Normen und Fehlerabschätzungen Nonnen Spezielle Matrixnormen Die Konditionszahl einer Matrix Störungsresultate für Matrizen Fehlerabschätzungen für gestörte Gleichungssysteme Orthogonalisierungsverfahren Elementare Eigenschaften orthogonaler Matrizen Die Faktorisierung A = QR mittels Gram- Schmidt- Orthogonalisierung Die Faktorisierung A = QS mittels Householder-Transformationen Anwendung 1: Stabile Lösung schlecht konditionierter Gleichungssysteme Ax = b Anwendung 2: Lineare Ausgleichsrechnung 76 Weitere Bemerkungen und Literaturhinweise 78 Übungsaufgaben 78 Nichtlineare Gleichungssysteme Vorbemerkungen Der eindimensionale Fall (JV = 1) Ein allgemeines Resultat Das Newton- Verfahren für N = Der Banachsche Fixpunktsatz Das Newton-Verfahren 87

4 ix Einige Begriffe aus der Analysis Das Newton-Verfahren und seine Konvergenz Nullstellenbestimmung bei Polynomen 90 - Weitere Bemerkungen und Literaturhinweise 94 - Übungsaufgaben 94 6 Numerische Integration von Funktionen Interpolatorische Quadraturformeln Spezielle interpolatorische Quadraturformeln Abgeschlossene Newton-Cotes-Formeln Andere interpolatorische Quadraturformeln Der Fehler bei der interpolatorischen Quadratur Genauigkeit abgeschlossener Newton-Cotes-Formeln für gerade Zahlen n Der Beweis von Lemma Summierte abgeschlossene Newton-Cotes-Formeln Summierte Rechteckregeln Summierte Trapezregel Summierte Simpson-Regel Asymptotik der summierten Trapezregel Die Asymptotik Extrapolationsverfahren Grundidee Neville- Schema Verfahrensfehler bei der Extrapolation Gaußsche Quadraturformeln Einleitende Bemerkungen Orthogonale Polynome Optimale Wahl der Stützstellen und Gewichte Nullstellen von orthogonalen Polynomen als Eigenwerte Nachtrag: Beweis der Asymptotik für die summierte Trapezregel Bernoulli-Polynome Der Beweis von Theorem Weitere Bemerkungen und Literaturhinweise Übungsaufgaben Einschrittverfahren für Anfangswertprobleme Ein Existenz-und Eindeutigkeitssatz Theorie der Einschrittverfahren Ein elementares Resultat zur Fehlerakkumulation Spezielle Einschrittverfahren Einschrittverfahren der Konsistenzordnung p = Einschrittverfahren der Konsistenzordnung p = Einschrittverfahren der Konsistenzordnung p = Rundungsfehleranalyse Asymptotische Entwicklung der Approximationen 134

5 7.5.1 Einführende Bemerkungen Herleitung der asymptotischen Entwicklung des globalen Verfahrensfehlers, 1. Teil Herleitung der asymptotischen Entwicklung des globalen Verfahrensfehlers, 2. Teil Asymptotische Entwicklungen des lokalen Verfahrensfehlers Extrapolationsmethoden für Einschrittverfahren Schrittweitensteuerung Verfahrensvorschrift Problemstellung Vorgehensweise bei gegebener Testschrittweite h^ Bestimmung einer neuen Testschrittweite h ( - k+1 ' ) im Fall S^ > e Pseudocode zur Schrittweitensteuerung Weitere Bemerkungen und Literaturhinweise Übungsaufgaben 146 Mehrschrittverfahren für Anfangswertprobleme Grundlegende Begriffe Mehrschrittverfahren Konvergenz- und Konsistenzordnung Nullstabilität, Lipschitzbedingung Übersicht Der globale Verfahrensfehler bei Mehrschrittverfahren Das Konvergenztheorem Hilfsresultat 1: Das Lemma von Gronwall Beschränktheit der Matrixfolge A, A 2, A 3, Die Konsistenzordnung linearer Mehrschrittverfahren Spezielle lineare Mehrschrittverfahren - Vorbereitungen Adams-Verfahren Der Ansatz Adams-Bashfort-Verfahren Adams-Moulton-Verfahren Nyström- und Milne-Simpson-Verfahren Der Ansatz Nyström-Verfahren Milne-Simpson-Verfahren BDF-Verfahren Der Ansatz Tabellarische Übersicht über spezielle Mehrschrittverfahren Prädiktor-Korrektor-Verfahren Linearer Prädiktor/Linearer Korrektor Lineare homogene Differenzengleichungen Die Testgleichung Existenz und Eindeutigkeit bei linearen homogenen Differenzengleichungen Die komplexwertige allgemeine Lösung der Differenzengleichung Lu = Die reellwertige allgemeine Lösung der Differenzengleichung Lu = Eine spezielle Differenzengleichung 182

6 8.9 Steife Differentialgleichungen Einführende Bemerkungen Existenz und Eindeutigkeit der Lösung bei Anfangswertproblemen für Differentialgleichungen mit oberer Lipschitzeigenschaft Das implizite Euler-Verfahren für steife Differentialgleichungen Steife Differentialgleichungen in den Anwendungen Weitere Bemerkungen und Literaturhinweise Übungsaufgaben Randwertprobleme Problemstellung, Existenz, Eindeutigkeit Problemstellung Existenz und Eindeutigkeit der Lösung Differenzenverfahren Numerische Differentiation Der Ansatz für Differenzenverfahren Das Konvergenzresultat für Differenzenverfahren Vorbereitungen für den Beweis von Teil (a) des Theorems Der Nachweis der Aussage in Teil (a) von Theorem Galerkin-Verfahren Einführende Bemerkungen Eigenschaften des Differentialoperators (Cu)(x) = -u"(x) + r(x)u(x) Galerkin-Verfahren- ein allgemeiner Ansatz Systemmatrix Finite-Elemente-Methode Anwendungen Das Energiefunktional Einfachschießverfahren Numerische Realisierung des Einfachschießverfahrens mit dem Newton-Verfahren Numerische Realisierung des Einfachschießverfahrens mit einer Fixpunktiteration Weitere Bemerkungen und Literaturhinweise Übungsaufgaben Gesamtschritt-, Einzelschritt- und Relaxationsverfahren Iterationsverfahren zur Lösung linearer Gleichungssysteme Hintergrund zum Einsatz iterativer Verfahren bei linearen Gleichungssystemen Lineare Fixpunktiteration Ein Modellbeispiel Einige spezielle Klassen von Matrizen Irreduzible Matrizen Das Gesamtschrittverfahren Das Einzelschrittverfahren Der Betrag einer Matrix Konvergenzergebnisse für das Einzelschrittverfahren Das Relaxationsverfahren und erste Konvergenzresultate 235

7 M-Matrizen Das Relaxationsverfahren für konsistent geordnete Matrizen 239 Weitere Bemerkungen und Literaturhinweise Übungsaufgaben CG- und GMRES-Verfahren Vorbetrachtungen Ausblick Ansatz des orthogonalen Residuums für positiv definite Matrizen Existenz, Eindeutigkeit und Minimaleigenschaft Der Ansatz des orthogonalen Residuums (11.2) für gegebene A-konjugierte Basen Das CG-Verfahren für positiv definite Matrizen Einleitende Bemerkungen Die Berechnung J4-konjugierter Suchrichtungen in K. n (A,b) Der Algorithmus zum CG-Verfahren Die Konvergenzgeschwindigkeit des CG-Verfahrens Das CG-Verfahren für die Normalgleichungen Arnoldi-Prozess Vorbetrachtungen zum GMRES-Verfahren Arnoldi-Prozess GMRESauf der Basis des Arnoldi-Prozesses Einführende Bemerkungen Allgemeine Vorgehensweise zur Lösung des Minimierungsproblems (11.33) Detaillierte Beschreibung der Vorgehensweise zur Lösung des Minimierungsproblems (11.33) MATLAB-Programm für GMRES Konvergenzgeschwindigkeit des GMRES-Verfahrens Anhang 1: Krylovräume Anhang 2: Interaktive Programmsysteme mit Multifunktionalität 268 Weitere Bemerkungen und Literaturhinweise Übungsaufgaben Eigenwertprobleme Einleitung Störungstheorie für Eigenwertprobleme Diagonalisierbare Matrizen Der allgemeine Fall Lokalisierung von Eigenwerten Variationssätze für symmetrische Eigenwertprobleme Störungsresultate für Eigenwerte symmetrischer Matrizen Anhang: Faktorisierungen von Matrizen Symmetrische Matrizen Diagonalisierbare Matrizen Schur-Faktorisierung 280 Weitere Bemerkungen und Literaturhinweise 280

8 xüi - Übungsaufgaben Numerische Verfahren für Eigenwertprobleme Einführende Bemerkungen Ähnlichkeitstransformationen Vektoriteration Transformation auf Hessenbergform Householder-Transformationen zur Gewinnung von Hessenbergmatrizen Der symmetrische Fall Newton-Verfahren zur Berechnung von Eigenwerten Der nichtsymmetrische Fall. Die Methode von Hyman Das Newton- Verfahren zur Berechnung der Eigenwerte tridiagonaler Matrizen Das Jacobi-Verfahren für symmetrische Matrizen Approximation der Eigenwerte durch Diagonaleinträge Givensrotationen zur Reduktion der Nichtdiagonaleinträge Zwei spezielle Jacobi-Verfahren Das QR- Verfahren Eindeutigkeit und Stetigkeit der QR- Faktorisierung einer Matrix Definition des QR- Verfahrens Konvergenz des QR- Verfahrens für betragsmäßig einfache Eigenwerte Praktische Durchführung des QR- Verfahrens für Hessenbergmatrizen Das LA-Verfahren Die Vektoriteration Definition und Eigenschaften der Vektoriteration Spezielle Vektoriterationen Weitere Bemerkungen und Literaturhinweise Übungsaufgaben Restglieddarstellung nach Peano Einführende Bemerkungen Peano-Kerne Anwendungen Interpolation Numerische Integration Weitere Bemerkungen und Literaturhinweise 318 Übungsaufgaben Approximationstheorie Einführende Bemerkungen Existenz eines Proximums Eindeutigkeit eines Proximums Einige Notationen; streng konvexe Mengen Strikt normierte Räume Approximationstheorie in Räumen mit Skalarprodukt Einige Grundlagen 325

9 xiv INHALTSVERZEICHNIS Proxima in linearen Unterräumen n n _j -Proxima bzgl. Maximumnormen Anwendungen des Altemantensatzes Ein Beispiel Eine erste Anwendung des Altemantensatzes Eine zweite Anwendung des Altemantensatzes Haarsche Räume, Tschebyschev- Systeme Alternantensatz für Haarsche Räume Eindeutigkeit des Proximums Untere Schranken für den Minimalabstand Weitere Bemerkungen und Literaturhinweise Übungsaufgaben Rechnerarithmetik Zahlendarstellungen Allgemeine Gleitpunkt-Zahlensysteme Grundlegende Begriffe Struktur des normalisierten Gleitpunkt-Zahlensystems F Struktur des denormalisierten Gleitpunkt-Zahlensystems F Gleitpunkt-Zahlensysteme in der Praxis Die Gleitpunktzahlen des Standards IEEE Weitere Gleitpunkt-Zahlensysteme in der Praxis Runden, Abschneiden Runden Abschneiden Arithmetik in Gleitpunkt-Zahlensystemen Arithmetische Grundoperationen in Gleitpunkt-Zahlensystemen Fehlerakkumulation bei der Hintereinanderausführung von Multiplikationen und Divisionen in Gleitpunkt-Zahlensystemen Fehlerverstärkung bei der Hintereinanderausführung von Additionen in einem gegebenen Gleitpunkt-Zahlensystem F 350 Weitere Bemerkungen und Literaturhinweise 351 Literaturverzeichnis 352 Index 356

Numerische Mathematik für Ingenieure

Numerische Mathematik für Ingenieure Numerische Mathematik für Ingenieure von Prof. Dr. Gisela Jordan-Engeln (jetzt Engeln-Müllges) Fachhochschule Aachen und o. Prof. em. Dr. Fritz Reutter Rheinisch-Westfälische Technische Hochschule Aachen

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Methode der f initen Elemente

Methode der f initen Elemente r Methode der f initen Elemente Eine Einführung unter besonderer Berücksichtigung der Rechenpraxis Von Dr. sc. math. Hans Rudolf Schwarz ord. Professor an der Universität Zürich 3., neubearbeitete Auflage

Mehr

Allgemeine numerische Methoden

Allgemeine numerische Methoden Allgemeine numerische Methoden Dr.-Ing. Jens Uwe Böhrnsen INSTITUT FÜR ANGEWANDTE MECHANIK Technische Universität Braunschweig Spielmannstraße 3806 Braunschweig Autor Prof. Dr.-Ing. Martin Schanz TECHNISCHE

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 55 Studienplanung Bachelor

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren (für Studierende des Studienganges Bauingieurwesen und Umwelttechnik) Jens-Peter M. Zemke Technische Universität Hamburg Harburg Arbeitsbereich Mathematik 25 Skript p + c 2 23 Heinrich

Mehr

Numerische Lösung linearer Gleichungssysteme

Numerische Lösung linearer Gleichungssysteme Kapitel 2 Numerische Lösung linearer Gleichungssysteme Dieses Kapitel behandelt numerische Verfahren zur Lösung linearer Gleichungssysteme der Gestalt Ax = b, A R n n, x, b R n (21) mit a 11 a 1n A = a

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung 4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

3 Interpolation und Approximation

3 Interpolation und Approximation In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Skriptum. Numerik. Definitionen und Sätze

Skriptum. Numerik. Definitionen und Sätze Skriptum Numerik Definitionen und Sätze c Stefan Englert Würzburg, 2009 Inhaltsverzeichnis 1 Fehleranalyse 5 1.1 Zahlendarstellung................................ 5 1.1.1 Gleitkommazahlen, absoluter Fehler,

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

5 Iterationsverfahren für lineare Gleichungssysteme

5 Iterationsverfahren für lineare Gleichungssysteme 5 Iterationsverfahren für lineare Gleichungssysteme Klassische Iterationsverfahren Sei A R N N und b R N. Wir wollen nun das LGS Ax = b iterativ lösen. Dazu betrachten wir die Komponenten m = 1,...,N:

Mehr

Die Top 10 der Algorithmen Der QR-Algorithmus

Die Top 10 der Algorithmen Der QR-Algorithmus Die Top 10 der Algorithmen Der QR-Algorithmus Hans Hansen TU Chemnitz WS 04/05 17. Januar 2005 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Geschichte 3 2 Die Grundidee 3 3 Ähnlichkeitstransformationen

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

http://www.mathematik.uni-kl.de/ gramlich

http://www.mathematik.uni-kl.de/ gramlich Vorwort MATLAB ist inzwischen in vielen Hochschulen, Universitäten und Fachhochschulen gleichermaßen ein etabliertes Programmsystem, das sowohl im Fach Mathematik selbst als auch in noch stärkerem Maße

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Fragenkatalog Kapitel 1 Fehleranalyse

Fragenkatalog Kapitel 1 Fehleranalyse Teil 1: Numerik katalog Kapitel 1 Fehleranalyse 1. Zwischen was besteht ein funktionaler Zusammenhang z i? Welche Form hat er? 2. Welche 4 Typen von Fehlerquellen gibt es? Nenne Beispiele! 3. Wie berechnet

Mehr

Interpolationsverfahren

Interpolationsverfahren Kapitel 3 Interpolationsverfahren Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft KAPITEL 3 INTERPOLATIONSVERFAHREN Problem: Durch Messung sind einige Messwerte (abhängige Variable) in Abhängigkeit

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Numerische Integration

Numerische Integration Numerische Integration home/lehre/vl-mhs-1/folien/uebung/num_integration/cover_sheet_5a.tex Seite 1 von 12. p.1/12 Inhaltsverzeichnis 1. Einführung 2. Newton-Cotes Formeln Rechteckformel Trapezformel Simpsonsche

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Kleine Formelsammlung Mathematik

Kleine Formelsammlung Mathematik Kleine Formelsammlung Mathematik Bearbeitet von Hans-Jochen Bartsch 2. Auflage 2001. Buch. 256 S. Hardcover ISBN 978 3 446 21811 6 Format (B x L): 11,6 x 16,6 cm Gewicht: 229 g schnell und portofrei erhältlich

Mehr

2 Einschrittverfahren 2.1 Einführung

2 Einschrittverfahren 2.1 Einführung Einschrittverfahren. Einführung Im folgenden werden wir uns bei der Beschreibung und Analyse von numerischen Verfahren für Anfangswertprobleme auf den Fall n = beschränken. Dies wird nur gemacht, um die

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Grundlagen der Numerischen Mathematik. Heinrich Voß

Grundlagen der Numerischen Mathematik. Heinrich Voß Grundlagen der Numerischen Mathematik Heinrich Voß Technische Universität Hamburg Harburg Arbeitsbereich Mathematik 2004 2 Inhaltsverzeichnis 1 Einleitung 1 1.1 Zahlendarstellung............................

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Universität Hamburg SS 2005 Proseminar Numerik Leitung: Prof. W. Hofmann Vortrag von Markus Stürzekarn zum Thema: Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Gegeben sei ein lineares

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

2.3.1 Explizite Runge-Kutta-Verfahren

2.3.1 Explizite Runge-Kutta-Verfahren Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung

Mehr

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math.

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math. Das QZ-Verfahren Bachelor-Arbeit im 1-Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Janina Gnutzmann Erstgutachter:

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Praktische Mathematik I

Praktische Mathematik I Praktische Mathematik I ausgearbeitet von Sandra Görke und Simon Jörres nach einer Vorlesung von Prof Dr Angela Kunoth im Wintersemester 2002/2003 an der Rheinischen Friedrich Wilhelms Universität Bonn

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 20. Februar 2014 Clemens Brand und Erika Hausenblas

Mehr

9 Lösung linearer Gleichungssysteme III: Iterative Methoden

9 Lösung linearer Gleichungssysteme III: Iterative Methoden Numerik I. Version: 24.06.08 246 9 Lösung linearer Gleichungssysteme III: Iterative Methoden Die Iterationsmethoden des vorherigen Kapitels werden normalerweise für nichtlineare Probleme verwendet, wobei

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Numerische Methoden für gewöhnliche Differentialgleichungen (Numerische Mathematik II)

Numerische Methoden für gewöhnliche Differentialgleichungen (Numerische Mathematik II) Numerische Methoden für gewöhnliche Differentialgleichungen (Numerische Mathematik II) Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth [email protected]

Mehr

Einführung in die Numerische Mathematik

Einführung in die Numerische Mathematik Einführung in die Numerische Mathematik Thomas Richter [email protected] Thomas Wick [email protected] Universität Heidelberg 30. Oktober 2012 Inhaltsverzeichnis Literaturverzeichnis

Mehr

Berechnungen mit dem Horner-Schema

Berechnungen mit dem Horner-Schema Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

Springer Studium Mathematik Bachelor

Springer Studium Mathematik Bachelor Springer Studium Mathematik Bachelor Herausgegeben von M. Aigner, Freie Universität Berlin, Berlin, Germany H. Faßbender, Technische Universität Braunschweig, Braunschweig, Germany B. Gentz, Universität

Mehr

Numerische Integration

Numerische Integration Numerische Integration Nikola Isenhardt Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 00/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Mein Referat beschäftigt sich mit dem Thema

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Hauptseminar im Sommersemester 2012 Mathematische Bildverarbeitung (Vorbesprechung)

Hauptseminar im Sommersemester 2012 Mathematische Bildverarbeitung (Vorbesprechung) Hauptseminar im Sommersemester 2012 Mathematische Bildverarbeitung (Vorbesprechung) Juniorprof. Dr. Thorsten Raasch Johannes Gutenberg-Universität Mainz 21.02.2012 Inhalt der Vorbesprechung: Terminplanung

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung

Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung CNC Power Engineering - Always on the move Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung Amazing ideas and freaky challenges in software development Klaus,

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2011 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dr Slobodan Ilic Numerisches Programmieren, Übungen 6 Übungsblatt: Stückweise Interpolation

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Jürgen Hausen Lineare Algebra I

Jürgen Hausen Lineare Algebra I Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

4 Numerische Lineare Algebra

4 Numerische Lineare Algebra In der linearen Algebra wird die Struktur von linearen Abbildungen T : V W zwischen endlich-dimensionalen Vektorräumen untersucht In der numerischen linearen Algebra befassen wir uns mit einigen praktischen

Mehr

LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE

LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE STUNDENDOTATION GF EF 3. KLASSE 1. SEM. 4 2. SEM. 4 4. KLASSE 1. SEM. 3 2. SEM. 3 5. KLASSE 1. SEM. 3 2. SEM. 3 6. KLASSE 1. SEM. 3 2 2. SEM. 3 2 7. KLASSE 1.

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Interpolation und Approximation

Interpolation und Approximation Interpolation und Approximation Fakultät Grundlagen Mai 2006 Fakultät Grundlagen Interpolation und Approximation Übersicht 1 Problemstellung Polynominterpolation 2 Kubische Fakultät Grundlagen Interpolation

Mehr