Mathematische und statistische Methoden II

Größe: px
Ab Seite anzeigen:

Download "Mathematische und statistische Methoden II"

Transkript

1 Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum Mathematische und statistische Methoden II Dr. Malte Persike lordsofthebortz.de lordsofthebortz.de/g+ facebook.com/methodenlehre twitter.com/methodenlehre youtube.com/methodenlehre Folie 1 SoSe 2012 Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Inhalte dieser Sitzung Kennwerte in Theorie und Empirie Das Schätzproblem: von der Stichprobe zur Population Der 1-Stichproben t-test Folie 2

3 Kennwerte Kennwerte in Theorie & Empirie Numerische Beschreibung: relative Häufigkeit Die Wahrscheinlichkeit für die Realisation i einer Zufallsvariablen X ist p x i Theorie Das Äquivalent bei n empirisch an einer Stichprobe erhobenen Realisationen einer Zufallsvariablen X ist die relative Häufigkeit, berechnet als f x i h x n i Folie 3 Empirie

4 Kennwerte Kennwerte in Theorie & Empirie Numerische Beschreibung: Mittelwert Der Erwartungswert einer Zufallsvariablen X ist EX ( ) i1 Theorie (diskreter Fall) Das Äquivalent für empirisch an einer Stichprobe erhobene Daten einer Zufallsvariablen X ist der Mittelwert, berechnet als k px i i Folie 4 x 1 n xi n i 1 Empirie

5 Kennwerte Kennwerte in Theorie & Empirie Numerische Beschreibung: Mittelwert Ausgeschrieben lautet die Formel für den Mittelwert bei n Beobachtungen x 1 x n 1 1 x x x x x n ( 1 2 N) n n i 1 Der Mittelwert ist durch extreme Werte beeinflussbar (ausreißerempfindlich) i Folie 5 Er ist der Schwerpunkt der Beobachtungen, d.h. n i1 x i x 0

6 Kennwerte Intervalldaten Numerische Beschreibung: Mittelwert Folie 6 Der Mittelwert stimmt häufig mit keiner beobachteten Realisation überein Der Mittelwert ist wie der Erwartungswert äquivariant gegenüber gewissen (z.b. linearen) Transformationen Insbesondere 1. Addition einer Konstanten a zu allen n Beobachtungen x 1 x n x a x a 2. Multiplikation aller n Beobachtungen x 1 x n mit einer Konstanten c a xax

7 Kennwerte Intervalldaten Numerische Beschreibung: Varianz Die Varianz einer Zufallsvariablen X ist definiert als 2 k 2 i i i1 2 E X E X X p x Theorie (diskreter Fall) Das Äquivalent für empirisch an einer Stichprobe erhobene Daten einer Zufallsvariablen X heißt ebenfalls Varianz und wird berechnet als Folie 7 n 2 1 s x xi x n i 1 2 Empirie

8 Kennwerte Intervalldaten Numerische Beschreibung: Varianz Die Varianz ist das mittlere Abweichungsquadrat aller n Beobachtungen x 1 x n vom Mittelwert. n 2 1 s x xi x n i 1 2 Folie 8 Erfasst die mittlere Streuung um den Mittelwert Nur falls keine Streuung besteht, ist s² = 0, d.h. alle beobachteten Werte sind gleich. Sonst: s² > 0 Je größer die Streuung um den Mittelwert, desto größer ist die Varianz Ist anfällig gegenüber Ausreißern

9 Kennwerte Intervalldaten Numerische Beschreibung: Standardabweichung Problem: Auch die empirische Varianz ist nicht äquivariant zu erlaubten Skalentransformationen s ax a s x ( ) ( ) (mit a = const.) Wie bei der theoretischen Varianz erhält man durch Wurzelziehen die Standardabweichung (SD, standard deviation) n 1 i n i 1 s x s x x x 2 2 Folie 9 Die Standardabweichung ist äquivariant zu den erlaubten Skalentransformationen

10 Kennwerte Von der Stichprobe zur Population Problem: Beim inferenzstatistischen Test ist immer der Schluss von den Daten einer Stichprobe auf einen Sachverhalt in der Population gefragt. Beispiel: Beim Binomialtest wird anhand von empirisch in einer Stichprobe erhobenen relativen Häufigkeiten auf die Gleichheit oder Ungleichheit von theoretischen Wahrscheinlichkeiten in der Population geschlossen Dies ist der inferenzstatistische Schluss Der inferenzstatistische Schluss steht und fällt mit der Annahme, dass die Verwendung gemessener Kennwerte (z.b. relative Häufigkeit) als Schätzung für den theoretischen Populationskennwert gerechtfertigt ist Folie 10

11 Kennwerte Von der Stichprobe zur Population Dieses so genannte Schätzproblem lässt sich in einer einzigen Frage zusammenfassen Wann ist eine Schätzung eine gute Schätzung? Das wesentliche statistische Merkmal einer guten Schätzung ist die Erwartungstreue Eine Schätzung ist dann erwartungstreu, wenn bei unendlichen vielen Wiederholungen des Zufallsexperimentes der dabei gemessene Stichprobenkennwert im Mittel gleich dem theoretischen Populationskennwert ist Folie 11

12 Kennwerte Von der Stichprobe zur Population: p Es zeigt sich, dass die relative Häufigkeit eine erwartungstreue Schätzung für die Wahrscheinlichkeit in der Population ist Es gilt also sprich: dach f x pˆ x p x i i i Stichprobenkennwert (bekannt) Schätzung (bekannt) Populationskennwert (unbekannt) Dieser Zusammenhang wurde bereits im Gesetz der Großen Zahl (law of large numbers) formuliert Folie 12

13 Kennwerte Von der Stichprobe zur Population: Es zeigt sich, dass der Mittelwert eine erwartungstreue Schätzung für den Erwartungswert in der Population ist Es gilt also x ˆ Stichprobenkennwert (bekannt) Schätzung (bekannt) Populationskennwert (unbekannt) Folie 13 Dieser Zusammenhang berechtigt Wissenschaftler, aus Stichprobendaten einen Erwartungswert für eine Zufallsvariable zu behaupten (z.b. mittlerer IQ = 100)

14 Kennwerte Von der Stichprobe zur Population: ² Es zeigt sich, dass die Varianz der Stichprobe keine erwartungstreue Schätzung für die Varianz in der Population ist Es ist also s ˆ Stichprobenkennwert (bekannt) Schätzung (unbekannt) Populationskennwert (unbekannt) Folie 14 Man kann also aus der anhand von Stichprobendaten gemessenen Varianz nicht auf die Varianz der Zufallsvariable in der Population schließen

15 Kennwerte Von der Stichprobe zur Population: ² Man kann aber beweisen, dass die Stichprobenvarianz die Populationsvarianz systematisch unterschätzt, dass sie also einen Bias (= systematischer Fehler) hat Für diesen Bias gibt es eine einfache Korrektur n s ˆ n 1 Stichprobenkennwert (bekannt) Schätzung (berechenbar) Populationskennwert (unbekannt) Folie 15 Diese korrigierte Stichprobenvarianz ist eine erwartungstreue Schätzung der Populationsvarianz, so dass man aus Daten behaupten kann, dass z.b. des IQ = 10

16 Kennwerte Übersicht Wahrscheinlichkeit: Empirisch f x Theoretisch ˆp x f x Mittelwert: x 1 n n i 1 x i ˆ x Varianz: n 2 1 s xi x n i 1 2 n ˆ s n Folie 16 Standardabweichung: s s 2 2 ˆ n n 1 s

17 Einführung Prüfgröße Hypothesen Voraussetzungen Mittelwertevergleiche In der empirischen Forschung ist zumeist nicht die Prüfung eines Einzeldatums gefragt, sondern von Mittelwerten bzw. von Unterschieden zwischen solchen in mehreren Gruppen Beispiele: Verbessert sich die Schulleistung von Kindern durch Förderunterricht?, Wirkt VT bei Schizophrenen?, Sind Frauen sprachbegabter als Männer? Für Ordinaldaten haben wir den U-Test sowie den Wilcoxon Vorzeichenrangtest kennen gelernt Folie 17 Für Intervalldaten stehen bessere (i.e. teststärkere) Tests zur Verfügung

18 Einführung Mittelwertevergleiche Prüfgröße Hypothesen Voraussetzungen Folie 18 Inferenzstatistische Tests für Mittelwerte sollen anhand von Stichprobendaten Aussagen über die Unterschiedlichkeit von Erwartungswerten in der Population treffen. Für einen solchen Test müssen mehrere Dinge bekannt sein: Die Erwartungswerte selbst Ihre Verteilungsform bzw. die Verteilungsform der berechneten Prüfgröße Die Parameter dieser Verteilung All diese sind zunächst unbekannt, so dass genau wie bei den bisher behandelten Tests Schätzungen erforderlich sind

19 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Grundlagen Der 1-Stichproben t-test beantwortet die Frage, ob ein aus einer Stichprobe geschätzter Erwartungswert mit einem bekannten Erwartungswert übereinstimmt. Keiner der Merkmalsträger darf mehr als einmal in der Stichprobe vertreten sein. Beispiele: Ist der IQ von Psychologiestudierenden im Mittel 100?, Sind Geburtsraten in Deutschland so hoch wie der europäische Durchschnitt?, Erreichen Teilnehmer eines Assessment Centers im Mittel einen bestimmten Cut- Off-Wert? Folie 19

20 Einführung Der 1-Stichproben t-test Grundlagen Prüfgröße Unbekannte Population Hypothesen Voraussetzungen Bekannte Population Stichprobe (n) x Ist der Erwartungswert der Stichprobe gleich μ: H 0 oder verschieden: H 1 und Folie 20

21 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Grundlagen Grundfrage: Wie üblich kann man fragen, ob der beobachtete Mittelwert zu extrem ist, um anzunehmen, dass die Stichprobe noch aus einer Population mit dem Erwartungswert μ stammt. Ansatz: Um diese Frage zu beantworten, müssen wir zwei Dinge wissen: 1. Die Wahrscheinlichkeitsverteilung dieser Mittelwerte 2. Die Parameter dieser Verteilung Folie 21

22 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Grundlagen Problem: Die Wahrscheinlichkeitsverteilung von Mittelwerten ist ein sehr theoretisches Konstrukt Sie ergäbe sich, wenn ein Experiment mit immer neuen Stichprobe aus derselben Population wieder und wieder durchgeführt würde und bei jeder Durchführung der Mittelwert berechnet würde Erkenntnis: Ein Herr Student (aka William Sealy Gossett, Statistiker bei Guinnes) konnte herleiten, dass die Wahrscheinlichkeitsverteilung von Mittelwerten mathematisch sehr gut zu beschreiben ist Folie 22

23 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Grundlagen Wenn die Zufallsvariable einen Erwartungswert von μ der Differenzen besitzt, so hat der Mittelwert für Stichproben dieser Zufallsvariablen den Erwartungswert x Wenn die Zufallsvariable eine Standardabweichung von σ bzw. eine Varianz von σ² besitzt, so streuen die Mittelwerte mit x n bzw. 2 x 2 n Folie 23

24 Einführung Der 1-Stichproben t-test Prüfgröße Prüfgröße Hypothesen Student musste nur noch ermitteln, welche Form die Wahrscheinlichkeitsverteilung von Mittelwerten hat Er definierte zunächst eine Prüfgröße Voraussetzungen t x x x Folie 24 für die ja gemäß der bisherigen Erkenntnisse gilt: x und x n

25 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Prüfgröße Die erste Vermutung, dass t wie üblich normalverteilt sei, bestätigte sich nicht Student konnte zeigen, dass die Prüfgröße die Form einer so genannten t-verteilung hat Die t-verteilung hat nur einen Parameter, nämlich die so genannten Freiheitsgrade df (degrees of freedom) Diese Freiheitsgrade ergeben sich direkt aus der Größe der Stichprobe n, deren Mittelwert getestet wird df n 1 Folie 25

26 Einführung Die t-verteilung von Student Prüfgröße 0.4 Standard- Normalverteilung Hypothesen 0.3 Voraussetzungen t- Verteilung mit df = Kritische Werte sind bei der t- Verteilung im Vergleich zur Normalverteilung größer t z Folie 26

27 Einführung Prüfgröße Hypothesen Voraussetzungen Die t-verteilung von Student Standardnormal- und t-verteilung sind sich also offenbar sehr ähnlich, aber nicht identisch Je größer n (und damit auch die Freiheitsgrade), desto mehr gleichen sich die Wahrscheinlichkeitsverteilungen an Da die Standardnormalverteilung einfacher zu tabellieren ist es gibt nur eine wurde früher oft diese verwendet, um die Größe der Prüfgröße zu berechnen. Da die t-verteilung heute sehr einfach bestimmt werden kann, ist dieses approximative Vorgehen nicht mehr notwendig Folie 27 Merke: Für t immer die t-verteilung!

28 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Ablauf Der t-test folgt nun exakt der üblichen Vorgehensweise des Hypothesentestens 1. Voraussetzungen prüfen 2. Verteilungsannahme treffen: t-verteilt mit den berechneten df 3. Hypothesenrichtung festlegen und statistische Hypothesen formulieren 4. Signifikanzniveau festlegen 5. Prüfgröße t bestimmen 6. Wahrscheinlichkeit für die berechnete Prüfgröße bestimmen und mit dem Signifkanzniveau vergleichen Folie 28

29 Einführung Prüfgröße Hypothesen Voraussetzungen Der 1-Stichproben t-test Hypothesen Erkenntnis: Jede Stichprobe stammt aus irgendeiner Population mit einem bestimmten, aber unbekannten Erwartungswert μ X Wenn der beobachtete Mittelwert zu extrem ist, dann stammt die Stichprobe offenbar nicht aus der gegebenen Population mit dem Erwartungswert μ Die Bewertung der Prüfgröße läuft also auf den Test hinaus, ob der beobachtete Mittelwert der Stichprobe aus einer Population mit dem bekannten μ oder dem unbekannten μ X stammt Folie 29

30 Einführung Prüfgröße Der 1-Stichproben t-test Hypothesen Beim t-test sind wie beim z-test potentiell alle drei möglichen Hypothesenrichtungen von Interesse. Hypothesen Voraussetzungen H H H H : x Verwerfen der Verteilungsannahme : x bei zu hohem x : x Verwerfen der Verteilungsannahme : x bei zu niedrigem x Einseitige oder gerichtete Hypothese H H 0 1 : X Verwerfen der Verteilungsannahme : X, X bei einem zu extremen Wert Zweiseitige oder ungerichtete Hypothese Folie 30

31 Einführung Der 1-Stichproben t-test Hypothesen Prüfgröße Hypothesen Voraussetzungen Folie 31 Man ermittelt nun die Auftretenswahrscheinlichkeit p(t H 0 ) unter der Annahme, dass die angenommene Wahrscheinlichkeitsverteilung gilt. Dazu berechnet man ptt für die H: ptt für die H: pt pt t t und vergleicht p mit dem Signifikanzniveau 0 0 für die H : Das p( ) wird aus der Verteilungsfunktion der t-verteilung berechnet 0 X X X Verwerfen der H 0 bei einem zu positiven Mittelwert Verwerfen der H 0 bei einem zu negativen Mittelwert Verwerfen der H 0 bei einem zu extremen Mittelwert

32 Einführung Tests für Ordinaldaten Intervalldaten Tests für Der 1-Stichproben t-test Hypothesen Prüfgröße Beobachtung im Experiment: x Hypothesen Voraussetzungen Frage: Stammt die Stichprobe aus einer Population mit? Geht die Größe des Mittelwertes auf einen Stichprobenfehler zurück? (1) Festlegung von Signifikanzniveau α und Gerichtetheit (2) Berechnung der Prüfgröße t Achtung: Vorher immer Prüfung der Voraussetzungen! Folie 32 (3) Berechnung der Wahrscheinlichkeit für dieses oder ein extremeres z: z. B. p(t t) (4) Vergleich von p mit α und Treffen der Signifikanzaussage Aber: Bei dieser Aussage irrt man sich mit einer Wahrscheinlichkeit von α 100%

33 Einführung Tests für Ordinaldaten Intervalldaten Tests für Der 1-Stichproben t-test Voraussetzungen Prüfgröße Die Zufallsvariable muss intervallskaliert sein Hypothesen Bei n < 30 sollten die Daten normalverteilt sein Voraussetzungen Folie 33

34 Relevante Excel Funktionen T.VERT() Folie 34

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population Thema der Stunde I. Die Form der Stichprobenkennwerteverteilung II. Schlüsse von der Stichprobe auf die Population III. t-test für unabhängige und abhängige Stichproben Stichprobenkennwerte Population

Mehr

Forschungsstatistik II

Forschungsstatistik II Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-3 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik II Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Primer: Inferenzstatistik 1.0

Primer: Inferenzstatistik 1.0 : 1.0 Dr. Malte Persike persike@uni-mainz.de methodenlehre.com twitter.com/methodenlehre methodenlehre.com/g+ iversity.org/schoolinger Inhalte der nächsten Minuten Die Frage aller Fragen: Ist etwas groß?

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Forschungsstatistik II

Forschungsstatistik II Psychologie Prof. r. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-3 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung orschungsstatistik II r. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Häufigkeitsverteilungen

Häufigkeitsverteilungen Häufigkeitsverteilungen Eine Häufigkeitsverteilung gibt die Verteilung eines erhobenen Merkmals an und ordnet jeder Ausprägung die jeweilige Häufigkeit zu. Bsp.: 100 Studenten werden gefragt, was sie studieren.

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Hypothesentests für Erwartungswert und Median für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Normalverteilung X N(μ, σ 2 ) : «X ist normalverteilt mit Erwartungswert μ und Varianz σ 2» pdf: f x = 1 2 x μ exp

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Januar 2011 1 Vergleich zweier Erwartungswerte Was heißt verbunden bzw. unverbunden? t-test für verbundene Stichproben

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Rückblick: Besonders wichtige Themen Wissenschaftstheoretischer

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Juni 2014 Waldherr / Christodoulides Einführung in Quantitative Methoden 1/46 Anpassungstests allgemein Gegeben: Häufigkeitsverteilung

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Anhang: Statistische Tafeln und Funktionen

Anhang: Statistische Tafeln und Funktionen A1 Anhang: Statistische Tafeln und Funktionen Verteilungsfunktion Φ(z) der Standardnormalverteilung Die Tabelle gibt die Werte Φ(z) der Verteilungsfunktion zu vorgegebenem Wert z 0 an; ferner gilt Φ( z)

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

8 Stichprobenkennwerteverteilung

8 Stichprobenkennwerteverteilung 8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,

Mehr

T-Test für den Zweistichprobenfall

T-Test für den Zweistichprobenfall T-Test für den Zweistichprobenfall t-test (unbekannte, gleiche Varianzen) Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten, aber gleichen Varianzen durch Vergleich der

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr