U Test (Rangsummentest) Parameterfreie Tests. U -Test. U -Test. χ ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen

Größe: px
Ab Seite anzeigen:

Download "U Test (Rangsummentest) Parameterfreie Tests. U -Test. U -Test. χ ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen"

Transkript

1 Parameterfree Tests U Test (Rangsummentest) Verglech der Mttelwerte (Medane) be ncht normalvertelten Größen U - Test Mttelwertverglech von zwe ncht verbundenen Zugrößen Wlcoxon - Vorzechenrangtest Mttelwertverglech von zwe verbunderen Stchproben χ ²- Unabhänggketstest Test auf Unabhänggket von zwe Zugrößen χ ²- Anpassungstest Test auf Vorlegen ener bestmmten Vertelung SS 08 Prof. Dr. J. Schütze Parameterfree Tests U -Test (Wlcoxon-Rangsummentest) für ncht verbundene Stchproben Analogon zum doppelten T-Test, wenn kene Normalvertelung vorlegt z.b. be schefen Vertelungen, Vertelungen mt Ausreßern Voraussetzung stetge Vertelungen, (be ordnalem Skalennveau ab 5 Kategoren möglch, mt Korrektur für Rangbndungen) ncht verbundene Stchproben Der Test setzt de Glechhet der Form der Vertelungen voraus. Der Untersched zwschen den Vertelungen legt dann n ener Verschebung. Ene Ablehnung mplzert somt auch ene Verschebung der Medane. Es damt wrd also getestet, ob de Medane beder Vertelungen überenstmmen Mttelwertschätzung über Durchschntt st be schefen Vertelungen bzw. Ausreßern ungeegnet. Nullhypothese: μ μ (Glechhet der Medane) x y SS 08 Prof. Dr. J. Schütze Parameterfree Tests U -Test U -Test Idee: Stchprobenwerte werden n Ränge (Platzzffern, Rangzahlen) umgewandelt Berechnung der Testgröße für den U-Test Bede Stchproben werden zusammengenommen und der Größe nach geordnet. Dabe erhalten gleche Stchprobenwerte jewels den Durchschnttswert der hnen entsprechenden Rangzahlen (Rangbndungen legen vor). Dann bldet man für jede Stchprobe separat de Summe der Rangzahlen, man erhält de Rangsummen T, T. n Stchprobenumfang von X, n Stchprobenumfang von Y, n + n n nx( nx + ) U n n + - T, ny( ny + ) U n n + - T, nn ( + ) Kontrolle: T + T Kontrolle: U+ U n n aus U mn( U, U) berechnet man n Abhänggket vom Stchprobenumfang de Testgröße. SS 08 Prof. Dr. J. Schütze Parameterfree Tests 3 U max( n, n) < 0 nn Testgröße T U n 0, oder n 0 nn ( n+ n+ ) Testentschedung be Rsko α Ablehnberech T Un n α U n, n, α/ max( n, n ) < 0,, / Quantl Tab. für U-Test n 0, oder n 0 Ablehnberech T > z α / Der U-Test kann auch für ensetge Hypothesen berechnet werden. Be zu velen Rangbndungen st ene Korrektur der Testgröße erforderlch (s. Sachs). SS 08 Prof. Dr. J. Schütze Parameterfree Tests 4 9.

2 Vorzechenrangtest Vorzechenrangtest Vorzechenrangtest für verbundene Stchproben Analogon zum t-test für verbundene Stchproben, wenn kene Normalvertelung vorlegt Voraussetzung: Nullhypothese: stetge Vertelungen, (be ordnalem Skalennveau ab 5 Kategoren möglch, mt Korrektur für Rangbndungen) verbundene Stchproben mndestens n 6 Messwertpaare H : 0 0 μ D μ D steht herbe für den Medan der Dfferenzen der Messwertpaare der verbundenen Stchproben. Berechnung der Testgröße Aus den n Wertepaaren ( x, y ) bldet man de Dfferenzen d x y De Beträge deser Dfferenzen werden aufstegend mt Rangzahlen versehen, dabe werden Nulldfferenzen weggelassen (es bleben dann n' Paare übrg). Be betragsglechen Dfferenzen vergbt man mttlere Rangzahlen. + Rn' : Summe der Ränge be d > 0 Rn' : Summe der Ränge be d < 0 Rechenkontrolle: R + R n'( n' + ) / R mn( R, R ) + n' n' n' + n' n' SS 08 Prof. Dr. J. Schütze Parameterfree Tests 5 SS 08 Prof. Dr. J. Schütze Parameterfree Tests 6 Vorzechenrangtest Bemerkungen Testgröße be Vorzechenrangtest Rn ' T Rn ' n'( n' + ) / 4 ( n' + n')( n' + )/4 Ablehnberech be Rsko α n' 5 Ablehnberech T k u k u Quantl aus Tab. für Vorzechenrangtest n' 5 n' > 5 n ' > 5 Ablehnberech T > z α / Be ordnalen Daten erhält man schnell vele Rangbndungen. Dann st de Testgröße geegnet zu modfzeren Formeln zu Handrechnung z.b. be Sachs, Statstsche Verfahren, besser geegnet st en gutes Computerprogramm Be klenen Fallzahlen snd exakte Tests zu rechnen, mest als Opton be guter Statstksoftware verfügbar De parameterfreen Mttelwertvergleche bezehen sch auf de Medane, daher müssen n der deskrptven Statstk de Mttelwerte stets durch de Medane geschätzt werden. Prnzpell können de parameterfreen Tests auch ensetg gerechnet werden. Dann darf man be den Testgrößen kene Bldung des Mnmums vornehmen. Man verglecht dann n Rchtung der Alternatvhypothese mt den Quantlen der Ordnung -α. 9. SS 08 Prof. Dr. J. Schütze Parameterfree Tests 7 SS 08 Prof. Dr. J. Schütze Parameterfree Tests 8

3 χ² - Unabhänggketstest χ² - Unabhänggketstest Zel Bem χ ²-Unabhänggketstest wrd getestet, ob zwe Zugrößen unabhängg snd. Für dskrete, nsbesondere nomnale Zugrößen basert er drekt auf dem Ch-Quadrat-Maß, das aus der Kontngenztafel berechnet wrd. Be stetgen Zugrößen st deser Test eben anwendbar. Es erfolgt zunächst ene Klassenentelung für bede Stchproben. Mt den dabe ermttelten Klassenhäufgketen erstellt man ene Kontngenztafel und verfährt dann analog we be dskreten Merkmalen. Als Alternatve für Untersuchung der Abhänggket stetger Zugrößen stehen Korrelatonstests zur Verfügung. Be Normalvertelung testet man de Pearson-Korrelaton auf Null, Ablehnung schert enen sgnfkanten lnearen Zusammenhang. Ohne NV mt Spearman-Korrelaton (monotoner Zusammenhang), s. z.b. Storm. Kontngenztafel für dskrete Merkmale, erhoben jewels am glechen Objekt Bezechnungen X, Y Zugrößen mt dskreten Werteberechen x,..., x bzw. y,..., y Stchprobe mt n Messwertpaaren ( x, y ) p n : Anzahl des Auftretens der Kombnaton ( x, y ) n der Stchprobe j j y x n n q x p n p n pq n. n.q Erwartete Zellnhalte be Unabhänggket... y p j nˆ j n. n p. n n n n.. j Randwerte: q n n, n n. j. j j j Gesamtzahl q p.. j j n n n q p SS 08 Prof. Dr. J. Schütze Parameterfree Tests 9 SS 08 Prof. Dr. J. Schütze Parameterfree Tests 0 χ² - Unabhänggketstest χ ²-Unabhänggketstest χ ²-Anpassungstest Nullhypothese: X, Y unabhängg Testgröße χ²-maß Ablehnberech be Rsko α p q ( n ˆ ) H 0 j nj T ~ χ nˆ j j T >χ( p ) ( q ), α ( p ) ( q ), α Achtung: Da de Testgröße nur näherungswese χ ²-vertelt st, sollte kene der erwarteten Klassenhäufgketen 0 und höchstens 5% klener als 5 sen. (sonst benachbarte Klassen zusammenlegen, wenn nhaltlch snnvoll) SS 08 Prof. Dr. J. Schütze Parameterfree Tests 9.3 Problem Entstammt ene beobachtete Zugröße ener bestmmten Vertelung? Vele statstsche Auswertungen setzen Normalvertelung voraus. Daher beschränken wr uns her auf den Anpassungstest an NV, das Verfahren st aber analog zur Anpassung an andere Vertelungen anwendbar. Ene erste grafsche Beurtelung kann über das Hstogramm erfolgen, das für ene NV näherungswese zu ener Glockenkurve passen sollte. En Test ermöglcht ene genauere Beurtelung. Besonderhet der Anpassungstests Nullhypothese: es legt NV vor An deser Hypothese möchte man festhalten, d.h. es st kene Ablehnung erwünscht. Allerdngs 'bewest' ene Nchtablehnung der Nullhypothese ncht das Vorlegen der vermuteten Vertelung, man hat dafür kene statstsche Scherhet. Oft werden Anpassungstest mt α 0. gerechnet, um den β-fehler zu verklenern. SS 08 Prof. Dr. J. Schütze Parameterfree Tests

4 χ ²-Anpassungstest auf NV Man nmmt ene Entelung der Stchprobe n k Klassen vor, wobe de Randklassen halboffen gewählt werden. De Klassenhäufgketen seen O (observed), k. Dann berechnet man unter NV de Wahrschenlchketen deser Klassen und erhält nach Multplkaton mt dem Stchprobenumfang n de erwarteten Klassenhäufgketen E (expected). Testgröße k ( O E) T E Ablehnberech be Rsko α: De Testgröße st unter der Nullhypothese näherungswese χ²-vertelt, wobe de Anzahl der Frehetsgrade aus der Klassenanzahl k und der Anzahl p der geschätzten Parameter der Vertelung berechnet wrd, FG k - -p T >χ k p, α Bespel Entstammen folgende Blutgernnungszeten von 30 Patenten (n s) ener NV?,70 7,00 9,00 4,00 7,70 9,00 4,40 7,80 30,00 5,80 8,00 30,0 5,90 8,00 30,0 6,00 8,0 3,80 6,40 8,70 3,00 6,60 8,70 33,00 6,60 8,80 33,70 6,80 9,00 35,00 Klassenanzahl (Faustregel) k n: n 30 ergbt k 5 oder k 6 xmax xmn 35.0,7 Klassenbrete (Faustregel) b + 3.3logn + 3.3log30 Kompromss: Wahl von 7 Klassen der Brete, begnnend be SS 08 Prof. Dr. J. Schütze Parameterfree Tests 3 SS 08 Prof. Dr. J. Schütze Parameterfree Tests 4 Grafsches Verfahren: Hstogramm Blutgernnungszeten,70 7,00 9,00 4,00 7,70 9,00 4,40 7,80 30,00 5,80 8,00 30,0 5,90 8,00 30,0 6,00 8,0 3,80 6,40 8,70 3,00 6,60 8,70 33,00 6,60 8,80 33,70 6,80 9,00 35,00 untere absolute Häufgket Hstogramm Abwechung von NV Dabe gehört de Untergrenze stets zur Klasse dazu, de Obergrenze ncht (wllkürlche Festlegung). Testdee: de Flächen der Balken werden mt den entsprechenden Flächen unter der Dchte verglchen. Kann de Grafk ncht per Computer erstellt werden, schätzt man aus der Stchprobe de Parameter der NV. Das Maxmum der Kurve legt be μ, de Wendepunkte be μ ± σ. SS 08 Prof. Dr. J. Schütze Parameterfree Tests 5 SS 08 Prof. Dr. J. Schütze Parameterfree Tests 6

5 Blutgernnungszeten, dabe Modfzerung der Randklassen als halboffen untere absolute Häufgket Schätzung der Parameter der NV durch Mttelwert und emprsche Streuung x 8.36 für μ s.86 für σ Berechnung der Klassenwahrschenlchketen als Intervallwktn. der NV mt desen Parametern: b μ a μ Pa ( < X< b) φ φ σ σ z.b P(,4) Φ Φ( ) P(4, 6) Φ Φ Blutgernnungszeten, dabe Modfzerung der Randklassen Untere Wkt. der Klassen erwartete Häufgket Aus den Klassenwahrschenlchketen erhält man nach Multplkaton mt dem Stchprobenumfang n 30 de erwarteten Klassenhäufgketen, z.b Der Test arbetet unzuverlässg, wenn zu vele dünn besetzte Klassen mt erwarteter Häufgket E < 5 auftreten (Faustregel: maxmal 5%). Daher legt man her de ersten und de letzten beden Klassen jewels zusammen. SS 08 Prof. Dr. J. Schütze Parameterfree Tests 7 SS 08 Prof. Dr. J. Schütze Parameterfree Tests 8 Blutgernnungszeten, jewels zusammengelegte Randklassen Klasse beob. Häuf. O erwart. Häuf. E / / S Ablehnung der NV be T >χ k p, α (O - E )²/E Berechnung der Testgröße T Σ (O - E )²/E Frehetsgrade: Be k 5 Klassen und p geschätzten Parametern ergbt sch FG k - -p. Damt st der Schwellwert für den Test be Rsko α 0.05glech χ Entschedung: wegen T.0853 < 5.99 kann de Normalvertelungsannahme ncht verworfen werden., SS 08 Prof. Dr. J. Schütze Parameterfree Tests Achtung De Testgröße st unter der Nullhypothese nur näherungswese χ²-vertelt, und zwar mt k - - p Frehetsgraden be k Klassen und p geschätzten Parametern. Be Test auf NV werden oft de beden Parameter μ, σ² geschätzt, daher hat man be k Klassen k - 3 Frehetsgrade. Man braucht also mndestens 4 Klassen, von denen mndestens n 75% ene erwartete Besetzung E 5 haben sollten, d.h. mnd. 6 Werte n der Stchprobe. Für zu klene Stchproben funktonert der Test also ncht. Besser st dann en Test, der ohne Klassenbldung arbetet, etwa der Kolmogorov-Smrnov-Test oder der Shapro-Wlks-Test, s. Lteratur. SS 08 Prof. Dr. J. Schütze Parameterfree Tests 0

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Menhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzet nach Verenbarung und nach der Vorlesung. Mathematsche und statstsche Methoden II Dr. Malte Perske perske@un-manz.de

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Parameterfreie Tests. ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen

Parameterfreie Tests. ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen Parameterfreie Tests ²- Unabhängigkeitstest Test auf Unabhängigkeit von zwei Zufallsgrößen ²- Anpassungstest Test auf Vorliegen einer bestimmten Verteilung Binomialtest Vergleich von unbekannten Anteilen

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alternatve Darstellung des -Stchprobentests für Antele DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Response No Response Total absolut DCF 43 68 111 CF 6 86 11 69 154

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

ANOVA (Analysis of Variance) Varianzanalyse. Statistik Methoden. Ausgangssituation ANOVA. Ao.Prof.DI.Dr Josef Haas

ANOVA (Analysis of Variance) Varianzanalyse. Statistik Methoden. Ausgangssituation ANOVA. Ao.Prof.DI.Dr Josef Haas Ao.Prof.DI.Dr Josef Haas josef.haas@medungraz.at ANOVA (Analyss of Varance) Varanzanalyse Statstk Methoden Verglech von Mttelwerten Ao.Unv.Prof.DI.Dr. Josef Haas josef.haas@medungraz.at Ausgangsstuaton

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Multivariate Analysemethoden

Multivariate Analysemethoden Multvarate Analysemethoden q-q-plot Methode zur Prüfung der Multvaraten Normalvertelung Günter Menhardt Johannes Gutenberg Unverstät Manz Prüfung der NV-Annahme Vertelungsanpassung/Prüfung Prüfung der

Mehr

Ursache der Ungewissheit kann dabei z.b. unvollständige Information sein oder unbekannte bzw. nicht beeinflussbare Bedingungen.

Ursache der Ungewissheit kann dabei z.b. unvollständige Information sein oder unbekannte bzw. nicht beeinflussbare Bedingungen. SS 2013 Prof. Dr. J. Schütze/ J. Puhl/ FB GW Deskr.1 1 Warum Stochastk? Stochastk: Kunst des Mutmaßens (grech.) Mathematsche Stochastk beschäftgt sch mt der Beschrebung und Untersuchung von Erschenungen,

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Carlton, M., Devore, J. Probability with Applications in Engineering, Science, and Technology, Springer 2014

Carlton, M., Devore, J. Probability with Applications in Engineering, Science, and Technology, Springer 2014 Lteratur Moon Jung Cho, Wendy L. Martnez Statstcs n MATLAB: A Prmer, Chapman and Hall/CRC 2014 Carlton, M., Devore, J. Probablty wth Applcatons n Engneerng, Scence, and Technology, Sprnger 2014 Sheldon

Mehr

Nichtparametrische Statistik. Verteilungsfreie Tests. Nichtparametrische Statistik. Verteilungsfreie Tests. Parametrische und Nichtparametrische Tests

Nichtparametrische Statistik. Verteilungsfreie Tests. Nichtparametrische Statistik. Verteilungsfreie Tests. Parametrische und Nichtparametrische Tests TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Nchtparametrsche Statstk Vertelungsfree Tests Bometrsche und Ökonometrsche Methoden II SS

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur

Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur Musterklausur Wrtschaftsmathematk und Statstk Zusatzstudum für Wrtschaftsngeneur Telnehmer (Name, Vorname): Datum:.2006 Prüfer: Böhm-Retg Matrkelnummer: REGELN 1. Zum Bestehen der Klausur snd mndestens

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik Grundlagen sportwssenschaftlcher Forschung Deskrptve Statstk Dr. Jan-Peter Brückner jpbrueckner@emal.un-kel.de R.6 Tel. 880 77 Deskrptve Statstk - Zele Beschreben der Daten Zusammenfassen der Daten Überblck

Mehr

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit BINARY CHOICE MODELS 1 mt Pr( Y = 1) = P Y = 0 mt Pr( Y = 0) = 1 P Bespele: Wahlentschedung Kauf langlebger Konsumgüter Arbetslosgket Schätzung mt OLS? Y = X β + ε Probleme: Nonsense Predctons ( < 0, >

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

1.1 Beispiele zur linearen Regression

1.1 Beispiele zur linearen Regression 1.1. BEISPIELE ZUR LINEAREN REGRESSION 0 REGRESSION 1: Multple neare Regresson 1 Enführung n de statstsche Regressonsrechnung 1.1 Bespele zur lnearen Regresson b Bespel Sprengungen. Erschütterung Funkton

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung)

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung) LÖSUNG KLAUSUR STATISTIK I Berufsbegletender Studengang Betrebswrtschaftslehre Sommersemester 016 Aufgabentel I: Theore (10 Punkte) Snd de nachfolgenden Aussagen rchtg oder falsch? (1 Punkt pro korrekter

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht.

14 Schätzmethoden. Eigenschaften von Schätzungen ˆθ. Sei ˆθ n eine Schätzung eines Parameters θ, die auf n Beobachtungen beruht. 14 Schätzmethoden Egenschaften von Schätzungen ˆθ Se ˆθ n ene Schätzung enes Parameters θ, de auf n Beobachtungen beruht. ˆθn n θ Konsstenz (Mnmalforderung) Eˆθ n = θ Erwartungstreue Eˆθ n n θ Asymptotsche

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik 0 Lneare Regresson Tel des Weterbldungskurses n angewandter Statstk der ETH Zürch Folen Werner Stahel, September 2017 1.1 Bespele zur lnearen Regresson 1 1 Enführung n de statstsche Regressonsrechnung

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 =

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 = Hochschule Harz Fachberech Automatserung und Informatk Prof. Dr. T. Schade Ft for Ab & Study - Aprl 2014 Lösungen zu den Aufgaben zu elementarer Wahrschenlchketsrechnung 1. a 12 11 10 9 = 33 = 0.102 20

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert.

An dem Ergebnis eines Zufallsexperiments interessiert oft nur eine spezielle Größe, meistens ein Messwert. SS 2013 Prof. Dr. J. Schütze/ J. Puhl FB GW Ds. ZG 1 Zufallsgrößen An dem Ergebns enes Zufallsexperments nteressert oft nur ene spezelle Größe, mestens en Messwert. Bespel 1. Zufällge Auswahl enes Studenten,

Mehr

Datenaufbereitung und -darstellung III

Datenaufbereitung und -darstellung III Datenafberetng nd Darstellng 1 Glederng: Zel der Datenafberetng nd Darstellng Datenverdchtng Tabellen nd grafsche Darstellngen Darstellng nvarater Datenmengen (Abschntt 4.4 Darstellng mltvarater Daten

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren Mehrfachregresson: Enfluss mehrerer Merkmale auf en metrsches Merkmal Desgnmatrx Bestmmthetsmaß F-Test T-Test für enzelne Regressoren Mehrfachregresson Bvarat: x b b y + = 0 ˆ k k x b x b x b b y + + +

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Statistische Kennzahlen für die Lage

Statistische Kennzahlen für die Lage Statstsche Kennzahlen für de Lage Bsher: gernge Informatonsverdchtung durch Vertelungsbeschrebung Jetzt: stärere Zusammenfassung der Daten auf hr Zentrum ls Raabe: Wahrschenlchetsrechnung und Statstsche

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastk, 11.5.13 Wr gehen stets von enem Maßraum (, A, µ) bzw. enem Wahrschenlchketsraum (,A,P) aus. De Borel σ-algebra auf R n wrd mt B n bezechnet, das Lebesgue Maß auf R n wrd mt

Mehr

Hausübung 1 Lösungsvorschlag

Hausübung 1 Lösungsvorschlag Hydrologe und Wasserwrtschaft Hausübung Lösungsvorschlag NIDRSCHLAG Hnwes: Be dem vorlegenden Dokument handelt es sch ledglch um enen Lösungsvorschlag und ncht um ene Musterlösung. s besteht ken Anspruch

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

3.1 Häufigkeiten bei diskreten Merkmalen Absolute und relative Häufigkeiten Graphische Darstellungen 40

3.1 Häufigkeiten bei diskreten Merkmalen Absolute und relative Häufigkeiten Graphische Darstellungen 40 3 Häufgketen 3. Häufgketen be dskreten Merkmalen 39 3.. Absolute und relatve Häufgketen 39 3..2 Graphsche Darstellungen 40 3.2 Häufgketen be stetgen Merkmalen 42 3.2. Das Prnzp der Klassenbldung 42 3.2.2

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

Statistik der Extremwertverteilungen

Statistik der Extremwertverteilungen KAPITEL 6 Statstk der Extremwertvertelungen In desem Kaptel beschäftgen wr uns mt statstschen Anwendungen der Extremwertvertelungen. Wr werden zwe verschedene Zugänge zur Modellerung von Extremwerten betrachten.

Mehr

Streuungs-, Schiefe und Wölbungsmaße 1

Streuungs-, Schiefe und Wölbungsmaße 1 aptel IV Streuung-, Schefe und Wölbungmaße B... Lagemaße von äufgketvertelungen geben allen weng Aukunft über ene äufgketvertelung. Se bechreben zwar en Zentrum deer Vertelung, geben aber kenen Anhaltpunkt

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement 13.11.010 Hydrologe und Flussgebetsmanagement o.unv.prof. DI Dr. H.P. Nachtnebel Insttut für Wasserwrtschaft, Hydrologe und konstruktver Wasserbau Glederung der Vorlesung Statstsche Grundlagen Extremwertstatstk

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Ein metrisches Merkmal

Ein metrisches Merkmal En metrsches Merkmal 170 171 Bespel Ntratbelastung n NÖ-Trnkwasser Quelle NösWAG/WWF 1998 526 Meßstellen, Angaben n mg/l, Grenzwert st 50mg/l 23 23 32 32 32 12 12 12 12 12 12 12 23 12 12 12 12 23 23 23

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen

Verteilungen eindimensionaler diskreter Zufallsvariablen Vertelungen endmensonaler dskreter Zufallsvarablen Enführung Dskrete Vertelungen Dskrete Glechvertelung Bernoull-Vertelung Bnomalvertelung Bblografe: Prof. Dr. Kück Unverstät Rostock Statstk, Vorlesungsskrpt,

Mehr

Analyse von Querschnittsdaten. Bivariate Regression

Analyse von Querschnittsdaten. Bivariate Regression Analse von Querschnttsdaten Bvarate Regresson Warum geht es n den folgenden Stzungen? Kontnuerlche Varablen Deskrptve Modelle kategorale Varablen Datum 3.0.2004 20.0.2004 27.0.2004 03..2004 0..2004 7..2004

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 2. Übung (05.02.2009) Agenda Agenda Datenbsp. scalefactors.dat Berechnen der Varanzen der Latent Response Varablen Berechnen der modellmplzerten

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Verteilungen, sondern nur, wenn ein. Eignet sich nicht bei flachen. Bei starker Streuung wenig. Wert eindeutig dominiert.

Verteilungen, sondern nur, wenn ein. Eignet sich nicht bei flachen. Bei starker Streuung wenig. Wert eindeutig dominiert. Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 Kenngrössen der Statstk Für de Auswertung von Datenrehen werden verschedene Kenngrössen

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Prof. Dr. Barbara Grabowski: Statistische Methoden der Prozessund Qualitätskontrolle, Versuchsplanung und Zuverlässigkeit

Prof. Dr. Barbara Grabowski: Statistische Methoden der Prozessund Qualitätskontrolle, Versuchsplanung und Zuverlässigkeit Prof. Dr. Barbara Grabowsk: Statstsche Methoden der Prozessund Qualtätskontrolle, Versuchsplanung und Zuverlässgket Enletung 17.4.2014 Prof.Dr.B.Grabowsk Wahlfach StatMeth. PK u. QK, VP und Zuverlässgket,

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr