Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor

Größe: px
Ab Seite anzeigen:

Download "Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor"

Transkript

1 Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor reibungsfreie Strömung: Grenzschicht A(x) u a ρu a x = p x A(x) x > ; u a x < Konti p x > x 1

2 Strömung mit Ablösung δ(x) u a (x 1 ) Stromlinie u a (x 2 ) u a (x 3 ) x 1 Ablösepunkt x 2 Rückströmgebiet x 3 2

3 Strömung mit Ablösung In der Regel: Rezirkulationsgebiet ist wesentlich dicker als die Grenzschicht Reibungskräfte sind nicht mehr auf einen dünnen Bereich beschränkt Grenzschichtapproximation ist nicht mehr gültig Der Ablösepunkt kann dennoch mit der Kàrmàn-Pohlhausen-Methode bestimmt werden. Randbedingungen für den Ablösepunkt 1. Haftbedingung (Stokes) für y δ = u = v = (u B = u w ) 2. Grenzschichtrand y δ = 1 u = U 3

4 Strömung mit Ablösung 3. Druckverteilung unbekannt Wandbindung nicht möglich aber die Ablösebedingung gilt u y = y= 4. y δ > 1 u y = kontinuierlicher Übergang von der Grenzschicht zur äußeren Strömung 5. y δ = 1 2 u y 2 = reibungsfreie Strömung 4

5 Folge der Ablösung Der Druck im Ablösegebiet erreicht nicht den Druck der reibungsfreien Strömung (siehe Kreiszylinder) Widerstandserhöhung (Druckwiderstand) Bei Tragflügelprofilen kann sich zusätzlich der Auftrieb stark verringern (Stall) 5

6 Vermeidung oder Verschiebung der Ablösung 1. Erzwingen des laminar-turbulenten Umschlags Stolperdraht Rauigkeitsveränderung der Oberfläche bei Flügeln: Vortex Generator turbulente Strömung: Durch Mischbewegung ist mehr Energie in Wandnähe turbulente Grenzschicht kann mehr Druckanstieg überwinden als die laminare Grenzschicht 6

7 Vermeidung oder Verschiebung der Ablösung 2. Mitbewegen der Wand Ausbildung der Grenzschicht wird vermieden keine Geschwindigkeitsdifferenz zwischen Wand (Haftbedingung) und Außenströmung für gekrümmte Körperformen schwer technisch zu verwirklichen Untersuchung an einem Tragflügel mit Endlosband auf der Profiloberseite: Anstellwinkel bis ca. α = 55 maximaler Auftriebsbeiwert: c a 3.5 7

8 Vermeidung oder Verschiebung der Ablösung 2. Mitbewegen der Wand Ablöseformen für u w u a ; u a (x) p x > Ablösekriterium u = ; u y = nicht an der Wand 8 u w

9 Eine Gitter von ebenen Platten wird längs mit der Geschwindigkeit angeströmt. Ein Teil der Grenzschicht wird an der Platte abgesaugt. Die Absauggeschwindigkeit v A wird so gewählt, dass die Außengeschwindigkeit am Grenzschichtrand gleich der Anströmgeschwindigkeit ist. Die Strömung ist laminar. Bestimmen Sie a) den Zusammenhang zwischen v A und δ 1 b) den Verlauf der Grenzschichtdicke δ(x) c) die Absauggeschwindigkeit v A (x) d) den Widerstandsbeiwert einer Platte u geg.: = y δ ; ; L; H; η; ρ 9

10 8u y η, ρ = konst x H δ (x) v a (x) L 1

11 a) Bilanz am differentiellen Element y δ (x) δ 1 (x) dx v= v = H/2 δ U δ 1 u v A Flaechen sind gleich Definition von δ 1 11

12 Q = H/2 udy = = H/2 H 2 u dy = H/2 H 2 u dy = H/2 H 2 1 u dy = = ( H 2 δ 1 ) 12

13 Volumenbilanz für das Element ( ) H 2 δ 1(x) + v A (x + dx 2 ) = Bemerkung: wegen v(x, H/2) = : kein Volumenstrom über die Symmetrieebene y = H/2 v A (x),δ 1 (x) mit Talorreihe entwickeln: v A (x + dx 2 ) = v A(x) + dv A dx dx 2 + δ 1 (x + dx) = δ 1 (x) + dδ 1 dx dx + ( ) H 2 δ 1(x + dx) 13

14 = einsetzen in Volumenbilanz δ 1 + v A dx + dv A dx O(dx 2 ) dx 2 dx = u dδ δ 1 u 1 dx dx dδ = v A = u 1 dx b) Verlauf der Grenzschichtdicke δ(x) von Kàrmàn-Pohlhausen für Grenzschicht mit Absaugen Integration von v u y von y = bis y = δ dδ 2 dx + 1 d dx (2δ τ(y = ) 2 + δ 1 ) = ρu 2 dδ 2 dx v A τ(y = ) = ρu 2 14 = dδ 2 dx + dδ 1 dx + v A(x) = τ(y = ) ρu 2

15 Bestimmung von δ 2 (δ) und δ 1 (δ) δ 2 = δ u ( 1 u ) dy Linearer Ansatz für das Geschwindigkeitsprofile u = y δ Transformation der unabhängigen Variable η = y δ dy dη = δ dy = δ dη δ 2 = 1 u ( 1 u ) δdη 15

16 = δ 2 δ = 1 η η 2 dη = 1 2 η η 3 1 = 1 6 ebenso für δ 1 δ 1 δ = 1 δ 1 = 1 1 u dy 1 η dη = η 1 2 η 2 1 =

17 Berechnung von τ(y = ): allgemein τ(y = ) ρu 2 = η u y 1 ρu 2 = η (u/ ) ρu 2 (y/δ) δ aus Ansatz für Profil (u/ ) (y/δ) = 1 = τ(y = ) ρu 2 = η ρ δ Einsetzen in Kàrmàn-Pohlhausen dδ 2 dx = dδ 2 dδ dδ 1 dx = dδ 1 dδ dδ dx = 1 dδ 6dx dδ dx = 1 dδ 2dx 17

18 = 1 dδ 6dx + 1 dδ 2dx = η ρ δ 2 3 δ dδ = Anfangsbedingung für δ η ρ dx = 1 3 δ2 = x = δ(x) = = C = η ρ x + C = δ(x) = 3 ηx ρ = δ x = 3 1 Rex 18

19 c) Absauggeschwindigkeit v A aus b) δ 1 δ = 1 2 aus a) v A (x) = dδ 1 dx = 1 2 d dx ( 3 1 Rex ) = 1 2 3η ρ 1 2 x = Rex 19

20 d) Definition von c w y c w = F w 1 2 ρu2 LB F p = n x p n da und n x = = F wp = Druckkräfte haben keinen Anteil am Widerstand. Widerstandskraft resultiert aus Reibungskräften auf der Plattenoberfläche. 2

21 F w = L (τ wo + τ wu ) B dx B: Breite der Platte Die Strömung ist symmetrisch zur Platte τ wo = τ wu = τ w c w = 4 L L τ w ρu 2 dx = 4 L L η ρ δ dx δ aus b) 4 η L ρ 3 L 1 dx = 4 η 2 x x L 3ρ L = ReL 21

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor reibungsfreie Strömung: Grenzschicht A(x) u a ρu a x = p x A(x) x

Mehr

laminare Grenzschichten Wofür Grenzschichttheorie?

laminare Grenzschichten Wofür Grenzschichttheorie? laminare Grenzschichten Wofür Grenzschichttheorie? mit der Potentialtheorie können nur Druckverteilungen berechnet werden Auftriebskraft Die Widerstandskräfte können nicht berechnet werden. Reibungskräfte

Mehr

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0 ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 07. 03. 2012 1. Aufgabe a Vereinfachungen: stationär: t 0, inkompressibel: ϱ konst 2-dimensionales Problem: w 0, z 0, Druck in x-richtung

Mehr

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck 000000000000000 111111111111111 000000000000000 111111111111111 u 000000000000000 111111111111111 000000000000000

Mehr

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti:

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti: ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 05. 08. 011 1. Aufgabe a Konti: Impuls: Energie: u x + v = 0 ρ u u x + v u ρ c p u T x + v T = η u = λ T dimensionslose Größen: ū = u u

Mehr

Praktikum Flugzeugaerodynamik. 3. Versuch Profilwiderstand eines Rechteckflügels

Praktikum Flugzeugaerodynamik. 3. Versuch Profilwiderstand eines Rechteckflügels 3. Versuch Profilwiderstand eines Rechteckflügels Dipl.-Ing. Jan-Ulrich Klar PD Dr.-Ing. C. Breitsamter Betrachtet wird ein Profil bei α 0 (kein Auftrieb) Widerstand Gesamt = Widerstand Profil + Widerstand

Mehr

laminare Grenzschichten Wofür Grenzschichttheorie?

laminare Grenzschichten Wofür Grenzschichttheorie? laminare Grenzschichten Wofür Grenzschichttheorie? mit der Potentialtheorie können nur Druckverteilungen berechnet werden Auftriebskraft Die Widerstandskräfte können nicht berechnet werden. Reibungskräfte

Mehr

Musterlösung Klausur Strömungslehre SS05

Musterlösung Klausur Strömungslehre SS05 Musterlösung Klausur Strömungslehre SS5. Aufgabe a M Platte = m g cosα h 2 sin α L ρ h D m g p a α L ebelarm: h 2 tan α s ξ g pz = p a + ρ g z ξ sin α = z ξ = z sin α pξ = p a + ρ g ξ sin α M Wasser =

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

3. Grenzschichtströmungen Grenzschichtablösung

3. Grenzschichtströmungen Grenzschichtablösung 3. Grenzschichtströmungen - 3. Grenzschichtablösung Eine Strömung ist nicht in der Lage sehr schnellen Konturänderungen zu folgen, da dies sehr hohe Beschleunigungen und daher sehr hohe Druckgradienten

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

2. Potentialströmungen

2. Potentialströmungen 2. Potentialströmungen Bei der Umströmung schlanker Körper ist Reibung oft nur in einer dünnen Schicht um den Körper signifikant groß. Erinnerung: Strömung um ein zweidimensionales Tragflügelprofil: 1

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 08. 08. 2014 1. Aufgabe (11 Punkte) Ein Fluid strömt über eine beheizte Platte. Die Temperatur des Fluids weit entfernt von der Platte

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Aerodynamik (Nr. 1022) Aerodynamik (Nr. 1026) Aerodynamik (Nr. 1030)

Aerodynamik (Nr. 1022) Aerodynamik (Nr. 1026) Aerodynamik (Nr. 1030) Aerodynamik (Nr. 1020) Aerodynamik (Nr. 1021) Aerodynamik (Nr. 1022) Aerodynamik (Nr. 1023) Wie entsteht statischer Auftrieb? (Nr. 1020) (II: dem Verständnis R Archimedisches Prinzip: Ein Körper gewinnt

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Klausur Technische Strömungslehre

Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömunslehre 2. 8. 25. Aufabe ( Punkte) Die Ausflussöffnun (Spalthöhe h, Tiefe T ) eines Wasserbehälters wird, wie in der Zeichnun darestellt,

Mehr

Film: Abhebender Porsche, Petit Le Mans Strömungsbereiche Zweiphasenströmung Tacoma-Brücke. Reibung

Film: Abhebender Porsche, Petit Le Mans Strömungsbereiche Zweiphasenströmung Tacoma-Brücke. Reibung Strömungsbereiche, Reibung, Oberflächenspannung 1. Tafelübung Strömungen in der Technik Dampfabscheider Film: Abhebender BMW, Petit Le Mans Anlagen-Fließschema Gasfraktionierung Film: Abhebender Mercedes,

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 16. 08. 018 1. Aufgabe (14 Punkte) Das Kräftegleichgewicht in einer ausgebildeten, laminaren Rohrströmung unter Gravitationseinfluss wird

Mehr

Einfluss von Grenzschichten auf das Strömungsverhalten

Einfluss von Grenzschichten auf das Strömungsverhalten Einfluss von Grenzschichten auf das Strömungsverhalten Eine Seminararbeit von Catharina Meyer Betreuer: Thomas Fetzer Inhaltsverzeichnis: Motivation Historischer Hintergrund Haftbedingung Grundlagen zur

Mehr

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg VORLESUNGEN Strömungslehre 5 Angewandte Strömungsmechanik Math. Methoden der Strömungslehre 6 Numerische Strömungsmechanik 7 Trainings-Kurs 8 Diplomarbeit Strömungsmechanik Kolleg Mathematische Methoden

Mehr

Numerische Grenzschichtberechnung mit FDM

Numerische Grenzschichtberechnung mit FDM Technische Universität Berlin Wintersemester 2009/200 Institut für Mathematik Projekt Praktische Mathematik Numerische Grenzschichtberechnung mit FDM Dirk Griesing, 20565 Jens Gottfried, 22252 9. November

Mehr

Klausur und Lösung Strömungsmechanik 1 Frühjahr 2012

Klausur und Lösung Strömungsmechanik 1 Frühjahr 2012 Klausur und Lösung Strömungsmechanik 1 Frühjahr 2012 29. Februar 2012, Beginn 15:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne

Mehr

Aerodynamik des Flugzeuges

Aerodynamik des Flugzeuges Aerodynamik des Flugzeuges Von H. Schlichting und E.Truckenbr odt Erster Band Grundlagen aus der Strömungsmechanik Aerodynamik des Tragflügels (Teil I) Zweite neubearbeitete Auflage Mit 275 Abbildungen

Mehr

Bild 1.1: Geschwindigkeitsverteilung einer zšhen FlŸssigkeit zwischen zwei parallelen ebenen WŠnden (Couette-Stršmung) u(y)

Bild 1.1: Geschwindigkeitsverteilung einer zšhen FlŸssigkeit zwischen zwei parallelen ebenen WŠnden (Couette-Stršmung) u(y) Einführung Die Grenzschichttheorie ist ein Sondergebiet der Strömungsmechanik, das sich mit Flüssigkeitsbewegung bei sehr kleiner Reibung beschäftigt. Dies ist der Titel eines Vortrags, den Ludwig Prandtl

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

Technik. Dieter Kohl - Flight Training 1. Aerodynamik und Fluglehre.ppt. Aerodynamik und Fluglehre

Technik. Dieter Kohl - Flight Training 1. Aerodynamik und Fluglehre.ppt. Aerodynamik und Fluglehre Aerodynamik und Fluglehre Technik Dieter Kohl - Flight Training 1 Grundlagen der Aerodynamik - Themen 1. Bezeichnungen am Tragflügelprofil 2. Auftrieb in der Strömung 3. Druckverteilung am Tragflügelprofil

Mehr

Aerodynamische Verhältnisse an modernen Segelflugzeugen

Aerodynamische Verhältnisse an modernen Segelflugzeugen Aerodynamische Verhältnisse an modernen Segelflugzeugen Johannes Achleitner TU München, Lehrstuhl für Luftfahrtsysteme Fluglehrerfortbildung Bergkirchen 12.10.2018 1 Oliver Betz Aerodynamische Verhältnisse

Mehr

Messung der Druckverteilung am Profil NACA

Messung der Druckverteilung am Profil NACA Gemeinschaftsfachlabor Energietechnik Messung der Druckverteilung am Profil NACA 64-012 Abb. 1: Anliegende und abgerissene Tragflügelströmung. Aufnahmen von Prof. F.N.M. Brown [Quelle: L. Böswirth; S.

Mehr

Grundlagen der Hydromechanik

Grundlagen der Hydromechanik Berichte aus der Umweltwissenschaft Rainer Helmig, Holger Class Grundlagen der Hydromechanik / Shaker Verlag Aachen 2005 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Aerodynamik von Hochleistungsfahrzeugen. Gliederung.

Aerodynamik von Hochleistungsfahrzeugen. Gliederung. WS10/11 Folie 6.1 Hochleistungsfahrzeugen. Gliederung. 1. Einführung (Typen, Rennserien) 2. Aerodynamische Grundlagen 3. Aerodynamik und Fahrleistung 4. Entwicklung im Windkanal 5. Entwicklung mit CFD

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

3 Aufgabe: Traglinientheorie (15 Punkte)

3 Aufgabe: Traglinientheorie (15 Punkte) 3 Aufgabe: Traglinientheorie (5 Punkte Die Zirkulationverteilung um eine Tragflügel endlicher Spannweite soll mit Hilfe eines Fourier-Ansatzes beschrieben werden: Γ(ϕ = bu A n sin(nϕ. Nennen und beschreiben

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 12.02.2004 Lerstul für Fluiddynamik und Strömungstecnik Aufgabe Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Frage... Aufg. 1)... Beurteilung:...

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

AERODYNAMIK DES FLUGZEUGS I

AERODYNAMIK DES FLUGZEUGS I TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Aerodynamik und Strömungsmechanik AERODYNAMIK DES FLUGZEUGS I WS 213/214 Prof. Dr.-Ing. C. Breitsamter 4 Skelett Theorie Lösung Aufgabe 1 1. Nach der Theorie

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Versuch 9. Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das

Versuch 9. Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das Versuch 9 Bestimmung des Auftriebs, der Zirkulation und des Widerstandes für das Tragflächenprofil Gö 818 Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und Raumfahrt Georg-August-Universität

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

1 3.4 Polardiagramme enthalten die Beiwerte c a, c w und c m, die für verschiedene Anstellwinkel α dargestellt sind. Die c a = f(w) gilt als eigentliche Polare, wobei diese in unserem Diagramm einen untypischen

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 16. 3. 006 1. Aufgabe (6 Punkte) Eine starre, mit Luft im Umgebungszustand gefüllte Boje hat die Form eines Kegels (Höhe h 0, Radius

Mehr

Aufgaben zur. Klausur Aerodynamik II

Aufgaben zur. Klausur Aerodynamik II AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Klausur Aerodynamik II 3.. 16 Matr.-Nr. :... Name :... Unterschrift :...

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Klausur Aerodynamik II M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik II M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik II 8. 9. 7 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik Frühjahr 205 5. März 205, Beginn 6:30 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

3. Laminar oder turbulent?

3. Laminar oder turbulent? 3. Laminar oder turbulent? Die Reynoldszahl Stokes- Gleichung Typisch erreichbare Reynoldszahlen in der Mikrofluik Laminare Strömung Turbulente Strömung 1 Durchmesser L Dichte ρ TrägheitskraG: F ρ ρu 2

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Nachklausur Strömungslehre Grundlagen Am Mittwoch, den 04. April 2018 12:00 14:00 Raum EB 301 Max. mögliche Punktzahl 80 Fakultät V Verkehrs- und Maschinensysteme Institut

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Musterlösung Klausur Aerodynamik

Musterlösung Klausur Aerodynamik Aerodynamisches Institut Rheinisch - Westfälische Technische Hochschule Aachen Institutsleiter: Univ.-Prof. Dr.-Ing. W. Schröder Musterlösung Klausur Aerodynamik.08.006 ------------------------------------

Mehr

Technische Strömungsmechanik für Studium und Praxis

Technische Strömungsmechanik für Studium und Praxis Albert Jogwich Martin Jogwich Technische Strömungsmechanik für Studium und Praxis 2. Auflage

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 9: Turbulente Strömungen, Grenzflächen, Schwingungen Dr. Daniel Bick 30. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 30. November 2016

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD

Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD Masterarbeit Studiendepartment Fahrzeugtechnik und Flugzeugbau Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD Michael Fehrs 04. Oktober 2011 VI Inhaltsverzeichnis Kurzreferat Aufgabenstellung

Mehr

Kontinuitätsgleichung und Bernoulli Gleichung

Kontinuitätsgleichung und Bernoulli Gleichung Kontinuitätsgleichung und Bernoulli Gleichung Kontinuitätsgleichung: Stromlinie Stromröhre C m& konst inkomressible (dichtebest. ) Fluide m& V& (Massenstrom) V & m& (Volumenstrom) Bs. : Durch eine Rohrleitung

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik der Kontinua 60 Feste Körer 60 Flüssigkeiten und Gase um was geht es? Beschreibung on Bewegungen (hys. Verhalten) des nicht-starren Körers (elastisch, lastisch) Kontinuum Hydro- und Aerodynamik

Mehr

Erzeugung von Schallsignalen. Werkstoffzerstörung

Erzeugung von Schallsignalen. Werkstoffzerstörung Bedeutung 5.1 Auswirkungen der Kavitation Erzeugung von Schallsignalen Veränderung des Strömungsfeldes Werkstoffzerstörung 170 5.1 Schallakustische Auswirkungen (1/11) Kavitationsinduzierte Schallsignale

Mehr

Klausur Strömungsmechanik II x y. ηl y. yref ρ u. x v. y ref L. ηu Lρ. T v. u y. y = ρ c p u L

Klausur Strömungsmechanik II x y. ηl y. yref ρ u. x v. y ref L. ηu Lρ. T v. u y. y = ρ c p u L ...... Name, Matr.-Nr, Unterschrift) Klasr Strömngsmechanik II 6. 3. 213 1. Afgabe a) Grenzschicht: OTrägheit) OReibng), ρ 2 2 geeignete Referenzgrößen: ref, ρ ref ρ, ref L, ref δ? ρ 2 L L ref 2 ref ρ

Mehr

Klausur Strömungsmechanik 1 WS 2010/2011

Klausur Strömungsmechanik 1 WS 2010/2011 Klausur Strömungsmechanik 1 WS 2010/2011 09. März 2011, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

1D-Transportgleichung

1D-Transportgleichung Analytische Lösungen der Transportgleichung 1-Transportgleichung Wenn ein gelöster Stoff sich sowohl advektiv, als auch diffusiv in einer Flüssigkeit bewegt, dann gilt folgende Gleichung ( nc t + x x &

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Aerodynamik des Abreißverhaltens Von Kunstflugzeugen

Aerodynamik des Abreißverhaltens Von Kunstflugzeugen Aerodynamik des Abreißverhaltens Von Kunstflugzeugen Forschungsprojekt für die Mü 32 Reißmeister der Akaflieg München Regine Pattermann, Weiterbildungslehrgang für Fluglehrer des Luftsportverband Bayern

Mehr

Klausur Strömungslehre (Diplom)

Klausur Strömungslehre (Diplom) ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre (Diplom) 5. 8. 11 1. Aufgabe (1 Punkte) Zwischen den Polschuhen zweier Magnete befindet sich eine magnetisierbare Flüssigkeit der Dichte ρ F.

Mehr

KLAUSUR STRÖMUNGSLEHRE Fragenteil

KLAUSUR STRÖMUNGSLEHRE Fragenteil Prof. Dr.-Ing. Holger Foysi 30.01.2012 Lehrstuhl Strömungsmechanik Name:...... Vorname:...... Punkte:... Matr.-Nr.:...... MB-DI / MB-DII / IP-DII / WIW-DII BSc-MB / BSc-MBD / BSc-BIBME KLAUSUR STRÖMUNGSLEHRE

Mehr

Experimentalphysik. Prof. Karsten Heyne. Fachbereich Physik

Experimentalphysik. Prof. Karsten Heyne. Fachbereich Physik Experimentalphysik Prof. Karsten Heyne Fachbereich Physik Archimedische Prinzip - Auftrieb C15: Aufrieb F1 s1 F4 F3 s2 F2 H 2 O Ist der Auftrieb: F R < 0, dann schwimmt der Körper F R = 0, dann schwebt

Mehr

Verbesserung der Langsamflugeigenschaften des Doppeldeckers FK-12 Comet mit Hilfe von Strömungssimulationen

Verbesserung der Langsamflugeigenschaften des Doppeldeckers FK-12 Comet mit Hilfe von Strömungssimulationen Verbesserung der Langsamflugeigenschaften des Doppeldeckers FK-12 Comet mit Hilfe von Strömungssimulationen Tim Federer, Peter Funk, Michael Schreiner, Christoph Würsch, Ramon Zoller Institut für Computational

Mehr

Keimgehalt (15/16) - Einsatz der in-situ-düse am Prüfstand

Keimgehalt (15/16) - Einsatz der in-situ-düse am Prüfstand 3..1.1 Keimgehalt (15/16) - Einsatz der in-situ-düse am Prüfstand Versuchsobjekt für Kavitationsuntersuchungen Messdüse Kugelhahn 1 Seitenkanalpumpe MID Kugelhahn 115 statischer Druck [bar] 3..1.1 Keimgehalt

Mehr

Aufgaben und Lösungen zur Klausur. Aerodynamik II M U S T E R L Ö S U N G E I N S I C H T N A H M E

Aufgaben und Lösungen zur Klausur. Aerodynamik II M U S T E R L Ö S U N G E I N S I C H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik II, Bachelor Fragenteil, kompressible Strömung, Skelett-Theorie

Mehr

Strömungslehre, Gasdynamik

Strömungslehre, Gasdynamik Egon Krause Strömungslehre, Gasdynamik und Aerodynamisches Laboratorium Mit 656 Abbildungen, 42 Tabellen, 208 Aufgaben mit Lösungen sowie 11 ausführlichen Versuchen im Aerodynamischen Laboratorium Teubner

Mehr

Profilentwurf. Wintersemester 2008 / Skript zu Vorlesung und Seminar. Dr. Ing. Thorsten Lutz.

Profilentwurf. Wintersemester 2008 / Skript zu Vorlesung und Seminar. Dr. Ing. Thorsten Lutz. Profilentwurf Wintersemester 2008 / 2009 Skript zu Vorlesung und Seminar Dr. Ing. Thorsten Lutz lutz@iag.uni-stuttgart.de Das vorliegende Skript stellt keine vollständige Abhandlung der in der Vorlesung

Mehr

1. Wirbelströmungen 1.2 Gesetz von Biot-Savart

1. Wirbelströmungen 1.2 Gesetz von Biot-Savart 1. Wirbelströmungen 1.2 Gesetz von Biot-Savart Das Biot-Savart-Gesetz ist formuliert für unbeschränkte Gebiete. Wie können Ränder beschrieben werden (z.b. feste Wände)? Randbedingung für eine reibungsfreie

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Numerische und experimentelle Untersuchung von Entwurfssensitivitäten am Profil mit Zirkulationskontrolle

Numerische und experimentelle Untersuchung von Entwurfssensitivitäten am Profil mit Zirkulationskontrolle Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerische und experimentelle Untersuchung von Entwurfssensitivitäten am Profil mit Zirkulationskontrolle C. Jensch, 17.06.2010 Übersicht

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 9: Turbulente Strömungen, Grenzflächen, Schwingungen Dr. Daniel Bick 30. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 30. November 2016

Mehr

7 Zusammenfassung Zusammenfassung

7 Zusammenfassung Zusammenfassung 107 Es wurden mit dem Lattice-Boltzmann-Verfahren dreidimensionale numerische Simulationen der Partikelumströmung unter verschiedenen Bedingungen durchgeführt und der Widerstands-, der dynamische Auftriebs-

Mehr

Aufgaben zur Probeklausur. Aerodynamik II

Aufgaben zur Probeklausur. Aerodynamik II AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Probeklausur Aerodynamik II 1. 2. 212 Matr.-Nr. :... Name :... Unterschrift

Mehr

Klausur Strömungsmechanik 1 Herbst August 2016, Beginn 16:00 Uhr

Klausur Strömungsmechanik 1 Herbst August 2016, Beginn 16:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfstel sind: Klausur Strömungsmechanik Herbst 206 6. August 206, Beginn 6:00 Uhr Taschenrechner nicht programmierbar) Lineal und Schreibmaterial nur dokumentenecht

Mehr

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER Heinz Herwig Strömungsmechanik Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER vii 0 Das methodische Konzept dieses Buches 1 A Einführung

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 7. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung Auswertung Parameter und Kennzahlen

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Grenzschicht- Theorie

Grenzschicht- Theorie H.Schlichting K.Gersten Grenzschicht- Theorie Unter Mitarbeit von Egon Krause und Herbert Oertel Jr. 10., überarbeitete Auflage Mit 286 Abbildungen und 22Tabellen fyj Springer Einleitung xix Teil A: Grundlagen

Mehr

Grenzschicht-Theorie

Grenzschicht-Theorie Herrmann Schlichting * Klaus Gersten 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Grenzschicht-Theorie Unter Mitarbeit

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Wellen, Dispersion, Brechnung, stehende Wellen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 7. Feb. 016 Bernoulli-Gleichung Die Reynoldszahl

Mehr

Freie Konvektion und Wärmeübertragung

Freie Konvektion und Wärmeübertragung Ulrich Müller/ Peter Ehrhard Freie Konvektion und Wärmeübertragung C. F. Müller Verlag, Heidelberg Freie Konvektion und Wärmeübertragung Inhaltsverzeichnis 1 Einführung 1 1 Konvektion in offenen Systemen

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

7 Turbulenz (7.1) L. L oder ausgerückt durch das Verhältnis (7.2)

7 Turbulenz (7.1) L. L oder ausgerückt durch das Verhältnis (7.2) 7 Turbulenz In einer laminaren Strömung fliessen die Flüssigkeitselemente in benachbarten Stromlinien aneinander vorbei ohne sich zu mischen. Im Gegensatz dazu hat die turbulente Strömung einen stark unregelmässigen,

Mehr

Fahrzeug- und Windradaerodynamik

Fahrzeug- und Windradaerodynamik Fahrzeug- und Windradaerodynamik Geometrisch einfache Körper Dr.-Ing. A. Henze, Prof. Dr.-Ing. W. Schröder Institute of Aerodynamics, RWTH Aachen University Versuchsbedingungen für große Re-Zahlen braucht

Mehr

Klausur Aerodynamik II M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik II M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik II 3.. 9 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

Aufgaben zur. Klausur Aerodynamik I

Aufgaben zur. Klausur Aerodynamik I AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Klausur Aerodynamik I 3. 8. 16 Matr.-Nr. :... Name :... Unterschrift :...

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr