Affine Koordinatentransformationen

Größe: px
Ab Seite anzeigen:

Download "Affine Koordinatentransformationen"

Transkript

1 Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 1 / 0

2 Überblick: Affine Koordinatentransformationen Was ist eine Koordinatentransformation? Änderung der Koordinaten eines (geometrischen) Objektes Aktive vs. passive Transformationen Was ist Affinität (leicht vereinfacht)? Erhält Seitenverhältnisse Erhält Parallelität Wofür affine Koordinatentransformationen? Elementare, kombinierbare Veränderungsoperationen Basis für komplexere Veränderungsoperationen Affine Koordinatentransformationen: Spiegelung, Rotation, Translation, Skalierung, Scherung Beschränkung: Rechtshändige Koordinatensysteme (im R und R 3 ) Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 / 0

3 Wiederholung: Matrizenrechnung Matrix mit m Zeilen und n Spalten reeller Koeffizienten: A R m n Koeffizienten a i,j R, i {x N 1 x m}, j {x N 1 x n} Einheitsmatrix E R n n (quadratisch) mit a i,j = δ i,j, sodass A R n n : A E = E A = A Rechenoperationen Addition und Subtraktion (elementweise) Multiplikation (assoziativ, aber nicht kommutativ) Inverse zu A (keine Division!): A 1, sodass A A 1 = A 1 A = E Determinante (nur quadratische Matrizen): det(a) : R n n R Weitere relevante Konzepte Eigenwerte Eigenvektoren Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 3 / 0

4 Transformationen als Matrizen I Gegeben: Ein Punkt P im R n Gesucht: Der transformierte Punkt P in Abhängigkeit von P Bekannt: Zusammenhang zwischen alten und neuen Koordinaten ( ) ( ) 3 3 Beispiel: P = mit Spiegelung an x-achse P = x = x y = y x = 1 x + 0 y y = 0 x 1 y Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 4 / 0

5 Transformationen als Matrizen II x = 1 x + 0 y y = 0 x 1 y Idee: Zusammenhang zwischen Koordinaten als Matrix anschreiben: ( ) ( ) ( ) x 1 0 x y = 0 1 y }{{} T P = T P (Transformations-)Matrix T transformiert P in P Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 5 / 0

6 Transformationen als Matrizen III Vorteile durch Transformationen als Matrizen Einfach zu implementieren Relativ schnell (vor allem bei komplexeren Zusammenhängen) Matrizenoperationen erlauben Umkehr und Kombination Umkehrbarkeit von Transformationen: P = T P P = T 1 P Hintereinanderausführung von Transformationen (erst T 1, dann T ): P = (T T 1 ) P = T (T 1 P) = T }{{} P = P P Standardnotation für passive Transformationen: T 1 statt T Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 6 / 0

7 Spiegelung an einer Ursprungsgeraden im R Winkel zwischen Gerade und x-achse: α = 150 (Freiheitsgrad) y α d g S g P x 1 3 P d g 1 3 g Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 7 / 0

8 Spiegelung an einer Ebene im R 3 Ebene ist x-y-ebene y P 1 P P 1 d z d z d x d y P x z P 3 P 3 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 8 / 0

9 Spiegelungsmatrizen im R und R 3 S 1 ( cos(α) D (α) = sin(α) S 1 3D xy = S 1 3D xz = S 1 3D yz = sin(α) cos(α) ) Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 9 / 0

10 Rotation um den Ursprung im R Rotationswinkel ϕ = 165 (Freiheitsgrad) y P ϕ x P 6 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 10 / 0

11 Rotation um eine Koordinatenachse im R 3 Rotationswinkel ϕ = 135 (Freiheitsgrad) um die z-achse y d xy d xy P x d xy z ϕ M R P d xy d xy Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 11 / 0

12 Rotationsmatrizen im R und R 3 R 1 ( cos(ϕ) D (ϕ) = sin(ϕ) R 1 3D x (ϕ) = R 1 3D y (ϕ) = R 1 3D z (ϕ) = ) sin(ϕ) cos(ϕ) cos(ϕ) sin(ϕ) 0 sin(ϕ) cos(ϕ) cos(ϕ) 0 sin(ϕ) sin(ϕ) 0 cos(ϕ) cos(ϕ) sin(ϕ) 0 sin(ϕ) cos(ϕ) Rotationen um verschiedene Achsen sind voneinander unabhängig Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 1 / 0

13 Skalierung im R Skalierungsfaktor a = (Freiheitsgrad) y y 1 M r r P r 1 x 1 M r r 1 P r x Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 13 / 0

14 Skalierungsmatrizen im R und R 3 ( Z 1 a 0 D (a) = 0 a Z 1 3D (a) = a a a ), a 0, a 0 Wichtiger Sonderfall: Die Multiplikation von Skalierungsmatrizen ist kommutativ (nicht mit beliebigen anderen Matrizen kombinierbar!) Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 14 / 0

15 Translation im R Verschiebungsvektor v = ( 5 3 y ) (zwei Freiheitsgrade) P -3 P -1 x Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 15 / 0

16 Einschub: Homogene Koordinaten I Problem: Verschiebung nicht durch gezeigte Matrizenmultiplikationen abbildbar (neue Koordinaten sind immer von alten abhängig) Lösung: Homogene Koordinaten (zusätzliche Dimension, deren Werte immer konstant sind koordinatenunabhängige Änderung möglich) T 1 = x = 1 x + 0 y = x + 5 y = 0 x + 1 y 3 1 = y 3 1 = 0 x + 0 y = 1 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 16 / 0

17 Einschub: Homogene Koordinaten II Zusätzliche Dimension vergrößert Matrix Dimension der Punkte muss angepasst werden (vereinfacht): Vor der Transformation Dimension hinzufügen (Wert 1) ( ) 3 P = P homogen = 3 1 Nach der Transformation Dimension entfernen (Wert 1) P homogen = ( ) 1 P = 1 1 Analog im R 3 : Vier Dimensionen in homogenen Koordinaten Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 17 / 0

18 Translationsmatrizen im R und R 3 T 1 D (t x, t y ) = T 1 3D (t x, t y, t z ) = 1 0 t x 0 1 t y t x t y t z Wichtiger Sonderfall: Die Multiplikation von Translationsmatrizen ist kommutativ (nicht mit beliebigen anderen Matrizen kombinierbar!) n Freiheitsgrade im R n Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 18 / 0

19 Verkettung von Transformationsmatrizen Ausschließlich nicht homogene Matrizen: Einfache Multiplikation Ausschließlich homogene Matrizen: Einfache Multiplikation Mischung von homogenen und nicht homogenen Matrizen: Nicht homogene Matrizen homogen machen: A = a 11 a 1 a 13 a 1 a a 3 a 31 a 3 a 33 A homogen = a 11 a 1 a 13 0 a 1 a a 3 0 a 31 a 3 a Achtung: Reihenfolge bei Umkehr der Verkettung ebenso umkehren: (A 1 A... A n 1 A n ) 1 = A 1 n A 1 n 1... A 1 A 1 1 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 19 / 0

20 Danke für die Aufmerksamkeit! Fragen? Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen Wintersemester 017/18 0 / 0

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

2D-Punkt-Transformationen

2D-Punkt-Transformationen Zur Erinnerung Drehung eines beliebigen Punktes B um den Winkel θ um den Koordinaten-Ursprung zum Punkt B : x B r cosα y B r sin α [r, α: Hilfsgrößen ] x B r cos(α+θ) r (cosα cosθ sinα sinθ) x B cosθ y

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Mathematiklabor 2. Übungsblatt

Mathematiklabor 2. Übungsblatt Dr. Jörg-M. Sautter 3.4.7 Mathematiklabor. Übungsblatt Aufgabe : (Wiederholung) Laden Sie die Dateien mlintro?.m herunter und gehen Sie diese Schritt für Schritt durch. Aufgabe : (Matrix- und Vektoroperationen,

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem y + z = 1 + y z

Mehr

Bernhard Strigel Gymnasium Kollegstufe 2009/11 Leistungskurs Mathematik M2 Klemens Schölhorn. Facharbeit

Bernhard Strigel Gymnasium Kollegstufe 2009/11 Leistungskurs Mathematik M2 Klemens Schölhorn. Facharbeit Bernhard Strigel Gymnasium Kollegstufe 2009/11 Memmingen Leistungskurs Mathematik M2 Klemens Schölhorn Facharbeit Das Rechnen mit Matrizen und Anwendungen in der Abbildungsgeometrie (Mathematische Grundlagen

Mehr

4 Matrixdarstellung von Symmetrieoperationen

4 Matrixdarstellung von Symmetrieoperationen 4 MATRIXDARSTELLUNG VON SYMMETRIEOPERATIONEN 4 Konsistenz der minimalen Symmetrieanalyse: fehlende Symmetrieelemente? Beispiel 3: Punktgruppe D h Im Schema (3.1) wird die Punktgruppe D h durch Auffinden

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Computergrafik 1 Übung

Computergrafik 1 Übung Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Transformationen. 09-Transformationen

Transformationen. 09-Transformationen Transformationen 9-Transformationen Als Transformationen werden affine Transformationen im R n betrachtet. Alle derartigen Transformationen lassen sich darstellen als: A + b wobei A die quadratische Transformationsmatri

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

Affine Koordinatentransformationen eine Zusammenfassung ausgewählter Aspekte

Affine Koordinatentransformationen eine Zusammenfassung ausgewählter Aspekte Affine Koordinatentransformationen eine Zusammenfassung ausgewählter Aspekte Andreas Unterweger, FH Salzburg. Februar 3 Inhalt: Dieses Skriptum fasst einige relevante Aspekte zum Thema Affine Koordinatentransformationen

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

IV. Affine Abbildungen

IV. Affine Abbildungen IV. Affine IV. Abbildungen Affine Abbildungen 2 22 IV. Af ne Abbildungen. Kongruenzabbildungen Bei einer Kongruenzabbildung wird jedem Punkt P( der zweidimensionalen Ebene R 2 in eindeutiger Weise ein

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Die Gruppe der affinen Abbildungen A

Die Gruppe der affinen Abbildungen A H. Burkhardt, Institut für Informatik, Universität Freiburg ME-I, Kap. 2b 1 Die Gruppe der affinen Abbildungen A Die Gruppe der affinen Abbildungen entsteht durch Wahl einer beliebigen regulären Matrix

Mehr

ABC ABC. Affine Abbildungen. Definition und Anwendungsbeispiele. Prof. Dr. Andreas de Vries. Fachhochschule Südwestfalen, Standort Hagen

ABC ABC. Affine Abbildungen. Definition und Anwendungsbeispiele. Prof. Dr. Andreas de Vries. Fachhochschule Südwestfalen, Standort Hagen ABC ABC Affine Abbildungen Definition und Anwendungsbeispiele Prof. Dr. Andreas de Vries Fachhochschule Südwestfalen, Standort Hagen 22. März 2017 1 / 30 Übersicht 1 Einführung Motivation Mathematische

Mehr

Koordinaten, Transformationen und Roboter

Koordinaten, Transformationen und Roboter Koordinaten, Transformationen und Roboter Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 48 Einleitung Seit Anbeginn der

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Gliederung 4 Invarianten Isometrien (Kongruenzen) Ähnlichkeitsabbildungen Affine Transformationen Projektive Transformationen 2 von

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Matrizen. Jörn Loviscach. Versionsstand: 14. April 2009, 00:25

Matrizen. Jörn Loviscach. Versionsstand: 14. April 2009, 00:25 Matrizen Jörn Loviscach Versionsstand: 14. April 2009, 00:25 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten (typischerweise Zahlen) heißt Matrix (Mehrzahl: Matrizen) [matrix, matrices].

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Was ist Robotik? Robotik heute:

Was ist Robotik? Robotik heute: Grundlagen Was ist Robotik? Das Wort Robot / Roboter entstand 92 in einer Geschichte von Karel Ċapek und geht auf das tschechische Wort robota (rbeit, Fronarbeit) zurück. Dessen Ursprung ist das altkirchenslawische

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 29. April 2011

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 29. April 2011 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 29. April 2011 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen!

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen! Studiengang: PT/LOT/PVHT Semester: WS 9/ lgebra Serie: 2 Thema: Matrizen, Determinanten. ufgabe Gegeben sind die Matrizen = µ 2 3 2 µ 3 2 4, B = 2 Berechnen Sie: a) 2 + 3B b) B 2 c) B T d) B T e) T B f)

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen 1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 006/07 en Blatt 3.0.006 Einführung in die Matrizenrechnung Zentralübungsaufgaben

Mehr

Potenzen der Linearen Algebra

Potenzen der Linearen Algebra Potenzen der Linearen Algebra Stufen der Verallgemeinerung und ihre didaktische Umsetzung in der Lehre Fakultät für Ingenieurwissenschaften Prof. Dr. Dieter Schott E-Post: dieter.schott@hs-wismar.de www.et.hs-wismar.de/schott

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

XIII Geometrische Abbildungen und Matrizen

XIII Geometrische Abbildungen und Matrizen XIII Geometrische Abbildungen und Matrizen Geometrische Abbildungen und Abbildungsgleichungen 0 8 k= R' 6 S' R S P' Q' Q x P Z=O 6 8 0 Fig. Bei einer zentrischen Streckung wird von einem Punkt, dem Zentrum,

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 12 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 12.1 3D-Koordinatensystem Weit

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten

Mehr