Algorithmische Bioinformatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Bioinformatik"

Transkript

1 Algorithmische Bioinformatik Hidden-Markov-Modelle Viterbi - Algorithmus Ulf Leser Wissensmanagement in der Bioinformatik

2 Inhalt der Vorlesung Hidden Markov Modelle Baum, L. E. and Petrie, T. (1966). "Statistical Inference for Probabilistic Functions of Finite State Markov Chains." Annals of Mathematical Statistics 37: Klassische Probleme Dekodierung: Viterbi-Algorithmus Ulf Leser: Algorithmische Bioinformatik 2

3 Hidden Markov-Modelle (HMM) Idee (am Beispiel CpG Islands) Wir denken uns einen Automaten mit zwei Meta-Zuständen : Einer für CpG, einer für nicht-cpg Jeder Zustand kann alle Zeichen des Alphabets mit einer bestimmten Emissions-Wsk emittieren Damit: Zustandsfolge Zeichenfolge Das ist neu: Zustände sind verborgen (hidden) Die Emissions-Wsk und Übergangs-Wsk in den beiden Metazuständen sind unterschiedlich und modellieren die Unterschiede zwischen normaler DNA und CpG-Inseln Zustandsübergänge sollen automatisch erkannt werden Keine festen Fenstergrößen mehr Ulf Leser: Algorithmische Bioinformatik 3

4 Hidden Markov Modell 1: CpG a CC a CN a NN e C ( ) C (CpG) N ( CpG) e N ( ) p(a) = p(c) = p(g) = p(t) = a NC p(a) = p(c) = p(g) = p(t) = Ulf Leser: Algorithmische Bioinformatik 4

5 Feineres Modell Wir erweitern die Anzahl der Zustände: A A+, A- Zustände s+ und s- emittieren jeweils dasselbe Zeichen M+ Modell: Übergangswsk zwischen s+ Zuständen M- Modell: Übergangswsk zwischen s- Zuständen Übergang von jedem s+ Zustand zu jedem s- Zustand und umgekehrt mit bestimmter (kleiner) Wsk erlaubt CpG Insel A+ C+ G+ T+ Keine CpG Insel A- C- G- T- Übergange s s nicht gezeigt Ulf Leser: Algorithmische Bioinformatik 5

6 Formale Definition von HMMs Definition Gegeben Σ. Ein Hidden Markov Modell ist ein sequentieller stochastischer Prozess über k Zuständen s 1,, s k mit Zustand s emittiert Zeichen x Σ mit Wahrscheinlichkeit p(x s) Die Folge der Zustände ist eine Markov-Kette, d.h.: p(z t =s t z t-1 =s t-1, z t-2 =s t-2,, z 0 =s 0 ) = p(z t =s t z t-1 =s t-1 )=a t-1,t Die a 0,1 heißen Startwahrscheinlichkeiten Die a t-1,t heißen Übergangswahrscheinlichkeiten Die e s (x)=p(x s) heißen Emissionswahrscheinlichkeiten Bemerkung Die existierenden Zustände in M sind s 1,, s k Eine konkrete Zustandsfolge ist z 0, z 1, z n Ulf Leser: Algorithmische Bioinformatik 6

7 Beispiel A C G T Zustände A+ C+ G+ T+ A- C- G- T- Übergangs- Wsk A C G T Übergange s s nicht gezeigt Emissions-Wsk (hier: Pro Zustand ist eine Wsk=1 und alle anderen=0) Ulf Leser: Algorithmische Bioinformatik 7

8 Emissionswahrscheinlichkeiten Intergenic Start End Single exon p(a)=0.01 p(c)=0.01 p(g)=0.97 p(t)=0.01 First exon G T Intron Last exon AG p(a)= p(c)= p(g)= p(t)= p(a)=0.01 p(c)=0.01 p(g)=0.01 p(t)=0.97 Internal exon Ulf Leser: Algorithmische Bioinformatik 8

9 Sequenzen und Zustandsfolgen A+ C+ G+ T+ M+ A C G T A C G T A- C- G- T- A C T G A C A+C+T-G-A-C- A C T G A C A+C+T+G+A+C+ A C T G A C A-C+T+G+A-C+ M- A C G T A C G T Alle möglich Aber nicht alle gleich wahrscheinlich Start-Wsk alle gleich, p(m+ M-): 0.01 A+C+T-G-A-C-: A+C+T+G+A+C+: A-C+T+G+A-C+: Ulf Leser: Algorithmische Bioinformatik 9

10 Inhalt der Vorlesung Hidden Markov Modelle Klassische Probleme Dekodierung: Viterbi-Algorithmus Ulf Leser: Algorithmische Bioinformatik 10

11 Die drei klassischen HMM Probleme Dekodierung/Parse: Gegeben eine Sequenz S und ein HMM M; durch welche Zustandsfolge wurde S wahrscheinlich erzeugt? Lösung: Viterbi Algorithmus Evaluation: Gegeben eine Sequenz S und ein HMM M; mit welcher Wahrscheinlichkeit wurde S durch M erzeugt? Muss alle Zustandssequenzen berücksichtigen, die S erzeugen Lösung: Forward/Backward Algorithmus Lernen/Trainieren: Gegeben eine Sequenz S; welches HMM M (mit gegebener Zustandsmenge) erzeugt S mit der größten Wsk? Lernen der Übergangs- und Emissionswahrscheinlichkeiten aus S Lösung: Baum-Welch Algorithmus Ulf Leser: Algorithmische Bioinformatik 11

12 Who s in goal? Joel Hasek Save pct = 75% Save pct = 92% Sequence (X = save, 0= goal): XOXXXXXXOXXXXXXXXXXXXXOXXXXXXXOXXXOXOXXOXXXOXXOXXO Total 50 shots, 40 saves -> Save pct = 80%; Assuming only one goalie for the whole sequence (simple Markov chain): P hasek = 0.004, P joel = 0.099, P joel /P hasek ~ 25 What if the goalie can change during the sequence? The goalie identity on each shot is the Hidden variable (the state) HMM algorithms give probabilities for the sequence of goalie, given the sequence of shots: XOXXXXXXOXXXXXXXXXXXXXOXXXXXXXOXXXOXOXXOXXXOXXOXXO jjjhhhhhhhhhhhhhhhhhhhhhhhhhhhjjjjjjjjjjjjjjjjjjjj Quelle: Graber, The Jackson Laboratory Ulf Leser: Algorithmische Bioinformatik 12

13 Example: The Dishonest Casino A casino has two dice: Fair die P(1)=P(2)=P(3)=P(4)=P(5)=P(6) = 1/6 Loaded die P(1)=P(2)=P(3)=P(4)=P(5) = 1/10 P(6) = 1/2 Casino occasionally switches between dice (and you want to know when) Game: 1. You bet $1 2. You roll (always with a fair die) 3. You may bet more or surrender 4. Casino player rolls (with some die ) 5. Highest number wins Quelle: Batzoglou, Stanford Ulf Leser: Algorithmische Bioinformatik 13

14 Model FAIR LOADED P(1 F) = 1/6 P(2 F) = 1/6 P(3 F) = 1/6 P(4 F) = 1/6 P(5 F) = 1/6 P(6 F) = 1/ P(1 L) = 1/10 P(2 L) = 1/10 P(3 L) = 1/10 P(4 L) = 1/10 P(5 L) = 1/10 P(6 L) = 1/2 Ulf Leser: Algorithmische Bioinformatik 14

15 Question # 1 Decoding GIVEN A sequence of rolls by the casino player What portion of the sequence was generated with the fair die, and what portion with the loaded die? This is the DECODING question in HMMs Ulf Leser: Algorithmische Bioinformatik 15

16 Question # 2 Evaluation GIVEN A sequence of rolls by the casino player How likely is this sequence, given our model of how the casino works? This is the EVALUATION problem in HMMs Ulf Leser: Algorithmische Bioinformatik 16

17 Question # 3 Learning GIVEN A sequence of rolls by the casino player How loaded is the loaded die? How fair is the fair die? How often does the casino player change from fair to loaded, and back? This is the LEARNING question in HMMs [Note: We need to know how many dice there are!] Ulf Leser: Algorithmische Bioinformatik 17

18 Inhalt der Vorlesung Hidden Markov Modelle Klassische Probleme Dekodierung: Viterbi-Algorithmus Ulf Leser: Algorithmische Bioinformatik 18

19 Dekodierproblem Definition Gegeben ein HMM M und eine Sequenz S. Das Dekodierproblem sucht nach der Zustandsfolge p, die mit der höchsten Wsk (unter allen Zustandsfolgen von M) S erzeugt hat p *( S M ) = max p( S, p) p paths Bemerkung Eine konkrete Zustandsfolge bezeichnen wir meistens als Pfad Ulf Leser: Algorithmische Bioinformatik 19

20 Naive Lösung Nehmen wir an, dass a ij >0 und e i (x)>0 für alle x,i,j Dann gibt es wie viele Pfade? Es gibt k n Pfade Alle aufzählen und vergleichen ist eine schlechte Idee Besser: Viterbi-Algorithmus Viterbi, A. J. (1967). "Error bounds for convolution codes and an asymptotically optimal decoding algorithm." IEEE Transactions on Information Theory IT-13: Wieder: Dynamische Programmierung Ulf Leser: Algorithmische Bioinformatik 20

21 Viterbi Algorithmus: Grundidee Beobachtung Es gibt viele Pfade, um einen Zustand s an Position i der Sequenz zu erreichen Einer davon muss der wahrscheinlichste sein Alle Fortsetzungen von Pfaden ab s an i brauchen nur diese Wsk Also: Sukzessive alle Wahrscheinlichkeiten für alle s/i berechnen C C C C C N N N N N Sequenz: A T C T. G Ulf Leser: Algorithmische Bioinformatik 21

22 Viterbi: Dynamische Programmierung Wir berechnen optimale Pfade für länger werdende Präfixe von S, die in einem der Zustände von M enden Annahme: Sei v s (i) die Wahrscheinlichkeit des optimalen Pfads für S[..i], der in Zustand s endet Wir brauchen eine Rekursionsformel für v s (i+1) und die Randbedingungen C C C C C N N N N N Sequenz: A T C T. G Ulf Leser: Algorithmische Bioinformatik 22

23 Rekursion Annahme: Sei v s (i) die Wahrscheinlichkeit des optimalen Pfad für S[..i], der in Zustand s endet Wenn wir zu Zustand t übergehen Von Zustand s gehen wir mit Wsk a st =v(t s) nach t Wir müssen alle Vorgängerzustände beachten Dann emittieren wir das Zeichen S[i+1] mit Emissionswahrscheinlichkeit e t (S[i+1]) Zusammen v t ( i + 1) = et ( S[ i + 1])*max( vs ( i)* ast s M ) Ulf Leser: Algorithmische Bioinformatik 23

24 Tabellarische Darstellung A C S A+ 0 0,2 0 T G C ,05 A- 0 0,25 0 T G C ,05 Start: s 0 hat Wsk 1, alle anderen Zustände haben Wsk 0 Wir berechnen die Tabelle spaltenweise Jedes Feld kann von jedem Feld der Vorgängerspalte erreicht werden Also aus jedem Endzustand für das um 1 Zeichen kürzere Präfix In jeder Spalte i ist die Wsk aller Zustände, die nicht S[i] emittieren, 0 (weil e(s[i])=0) Ulf Leser: Algorithmische Bioinformatik 24

25 Tabellarische Darstellung A C T G S A+ 0 0, T , G ,003 0 C , A- 0 0, T , G ,003 0 C , Gesuchte Wsk ist die höchste Zahl am rechten Rand Optimaler Pfad über Traceback Haben alle Tabellen für HMM so viele Nullen? Ulf Leser: Algorithmische Bioinformatik 25

26 Komplexität Sei S =n, HMM habe M =k Zustände Allgemein Tabelle hat n*k Zellen Für jede Zelle greifen wir auf k Vorgängerzellen zu Zusammen: O(n*k 2 ) Unser konkretes CpG-Insel Modell In unserem aktuellen Modell sind in jedem Zustand alle Emissionswsk bis auf eine 0 Damit müssen wir pro Spalte nur zwei Zellen betrachten, und die haben nur 2 Vorläufer mit Wsk 0 Damit ist der Algorithmus: ~O(4*n)=O(n) Ulf Leser: Algorithmische Bioinformatik 26

27 Numerische Schwierigkeiten Multiplikation vieler Zahlen <<1 erreicht schnell die Rechengenauigkeitsgrenze Besser: Logarithmieren Statt: v Berechnet man: t ( i + 1) = et ( S[ i + 1])*max( vs ( i)* ast )) s M ( e ( S[ i + 1]) ) + max( v ( i) log( a )) v t ( i + 1) = log t s + st s M Ulf Leser: Algorithmische Bioinformatik 27

Bioinformatik. Gene Finding Sequenzanalyse mit (Hidden) Markov Modellen. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Gene Finding Sequenzanalyse mit (Hidden) Markov Modellen. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Gene Finding Sequenzanalyse mit (Hidden) Markov Modellen Ulf Leser Wissensmanagement in der Bioinformatik Whole Genome Shotgun Zerbrechen eines kompletten Chromosoms in Einzelstücke (An)sequenzierung

Mehr

Bioinformatik. HMM Algorithmen Viterbi Forward-Backward Baum-Welch. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. HMM Algorithmen Viterbi Forward-Backward Baum-Welch. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik HMM Algorithmen Viterbi Forward-Backward Baum-Welch Ulf Leser Wissensmanagement in der Bioinformatik Gene Prediction Kann man Gene vorhersagen? Ist an der Sequenz eines Gens irgendwas anders

Mehr

Wortdekodierung. Vorlesungsunterlagen Speech Communication 2, SS Franz Pernkopf/Erhard Rank

Wortdekodierung. Vorlesungsunterlagen Speech Communication 2, SS Franz Pernkopf/Erhard Rank Wortdekodierung Vorlesungsunterlagen Speech Communication 2, SS 2004 Franz Pernkopf/Erhard Rank Institute of Signal Processing and Speech Communication University of Technology Graz Inffeldgasse 16c, 8010

Mehr

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Kursfolien Karin Haenelt 09.05002 1 Letzte Änderung 18.07002 Hidden Markov Models Besondere Form eines probabilistischen endlichen Automaten Weit verbreitet in der statistischen Sprachverarbeitung

Mehr

Der Viterbi-Algorithmus.

Der Viterbi-Algorithmus. Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript Karin Haenelt, 9..7 (.5.) Einleitung In diesem Skript wird der Viterbi-Algorithmus

Mehr

Der Viterbi Algorithmus

Der Viterbi Algorithmus M. 23.Juli.2007 Gliederung 1 2 3 Erfinder Andrew J. Viterbi 1967 zur Dekodierung von Faltungscodes entwickelt Auf Basis von entwickelt Erfinder Andrew J. Viterbi 1967 zur Dekodierung von Faltungscodes

Mehr

DAS ZUFRIEDENE GEHIRN: FREI VON DEPRESSIONEN, TRAUMATA, ADHS, SUCHT UND ANGST. MIT DER BRAIN-STATE-TECHNOLOGIE DAS LEBEN AUSBALANCIEREN (GE

DAS ZUFRIEDENE GEHIRN: FREI VON DEPRESSIONEN, TRAUMATA, ADHS, SUCHT UND ANGST. MIT DER BRAIN-STATE-TECHNOLOGIE DAS LEBEN AUSBALANCIEREN (GE DAS ZUFRIEDENE GEHIRN: FREI VON DEPRESSIONEN, TRAUMATA, ADHS, SUCHT UND ANGST. MIT DER BRAIN-STATE-TECHNOLOGIE DAS LEBEN AUSBALANCIEREN (GE READ ONLINE AND DOWNLOAD EBOOK : DAS ZUFRIEDENE GEHIRN: FREI

Mehr

Part-Of-Speech-Tagging mit Viterbi Algorithmus

Part-Of-Speech-Tagging mit Viterbi Algorithmus Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus

Mehr

Killy Literaturlexikon: Autoren Und Werke Des Deutschsprachigen Kulturraumes 2., Vollstandig Uberarbeitete Auflage (German Edition)

Killy Literaturlexikon: Autoren Und Werke Des Deutschsprachigen Kulturraumes 2., Vollstandig Uberarbeitete Auflage (German Edition) Killy Literaturlexikon: Autoren Und Werke Des Deutschsprachigen Kulturraumes 2., Vollstandig Uberarbeitete Auflage (German Edition) Walther Killy Click here if your download doesn"t start automatically

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference Syntax Semantics Parametrized Distributions Inference in Exact Inference Approximate Inference enumeration variable elimination stochastic simulation Markov Chain Monte Carlo (MCMC) 1 Includes many slides

Mehr

Algorithms & Datastructures Midterm Test 1

Algorithms & Datastructures Midterm Test 1 Algorithms & Datastructures Midterm Test 1 Wolfgang Pausch Heiko Studt René Thiemann Tomas Vitvar

Mehr

Hidden Markov Models und DNA-Sequenzen

Hidden Markov Models und DNA-Sequenzen Hidden Markov Models und DNA-Sequenzen Joana Grah Seminar: Mathematische Biologie Sommersemester 2012 Betreuung: Prof. Dr. Matthias Löwe, Dr. Felipe Torres Institut für Mathematische Statistik 28. Juni

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016 to to May 2016 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise. Click here if your download doesn"t start automatically

Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise. Click here if your download doesnt start automatically Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise Click here if your download doesn"t start automatically Wer bin ich - und wenn ja wie viele?: Eine philosophische Reise Wer bin ich - und

Mehr

A Classification of Partial Boolean Clones

A Classification of Partial Boolean Clones A Classification of Partial Boolean Clones DIETLINDE LAU, KARSTEN SCHÖLZEL Universität Rostock, Institut für Mathematik 25th May 2010 c 2010 UNIVERSITÄT ROSTOCK MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT,

Mehr

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition)

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition) Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition) Reinhold Ruthe Click here if your download doesn"t start automatically Handbuch der therapeutischen

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Reguläre Ausdrücke und reguläre Grammatiken Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Regular expressions (1) Let Σ be an alphabet. The

Mehr

Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition)

Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition) Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition) Martin Heidegger Click here if your download doesn"t start automatically Was

Mehr

Level 2 German, 2015

Level 2 German, 2015 91126 911260 2SUPERVISOR S Level 2 German, 2015 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 2.00 p.m. Friday 4 December 2015 Credits: Five

Mehr

Der Topos Mütterlichkeit am Beispiel Bertolt Brechts "Der kaukasische Kreidekreis" und "Mutter Courage und ihre Kinder" (German Edition)

Der Topos Mütterlichkeit am Beispiel Bertolt Brechts Der kaukasische Kreidekreis und Mutter Courage und ihre Kinder (German Edition) Der Topos Mütterlichkeit am Beispiel Bertolt Brechts "Der kaukasische Kreidekreis" und "Mutter Courage und ihre Kinder" (German Edition) Filio Gavriilidou Click here if your download doesn"t start automatically

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

Die UN-Kinderrechtskonvention. Darstellung der Bedeutung (German Edition)

Die UN-Kinderrechtskonvention. Darstellung der Bedeutung (German Edition) Die UN-Kinderrechtskonvention. Darstellung der Bedeutung (German Edition) Daniela Friedrich Click here if your download doesn"t start automatically Die UN-Kinderrechtskonvention. Darstellung der Bedeutung

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Listening Comprehension: Talking about language learning

Listening Comprehension: Talking about language learning Talking about language learning Two Swiss teenagers, Ralf and Bettina, are both studying English at a language school in Bristo and are talking about language learning. Remember that Swiss German is quite

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Fußballtraining für jeden Tag: Die 365 besten Übungen (German Edition)

Fußballtraining für jeden Tag: Die 365 besten Übungen (German Edition) Fußballtraining für jeden Tag: Die 365 besten Übungen (German Edition) Frank Thömmes Click here if your download doesn"t start automatically Fußballtraining für jeden Tag: Die 365 besten Übungen (German

Mehr

Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen

Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen Research Collection Doctoral Thesis Computer-gestützter Entwurf von absatzweise arbeitenden chemischen Mehrproduktanlagen Author(s): Klossner, Jürg Publication Date: 1985 Permanent Link: https://doi.org/10.3929/ethz-a-000342601

Mehr

After sales product list After Sales Geräteliste

After sales product list After Sales Geräteliste GMC-I Service GmbH Thomas-Mann-Str. 20 90471 Nürnberg e-mail:service@gossenmetrawatt.com After sales product list After Sales Geräteliste Ladies and Gentlemen, (deutsche Übersetzung am Ende des Schreibens)

Mehr

Automatentheorie und formale Sprachen reguläre Ausdrücke

Automatentheorie und formale Sprachen reguläre Ausdrücke Automatentheorie und formale Sprachen reguläre Ausdrücke Dozentin: Wiebke Petersen 6.5.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Formal language Denition A formal language L

Mehr

Analyse und Interpretation der Kurzgeschichte "Die Tochter" von Peter Bichsel mit Unterrichtsentwurf für eine 10. Klassenstufe (German Edition)

Analyse und Interpretation der Kurzgeschichte Die Tochter von Peter Bichsel mit Unterrichtsentwurf für eine 10. Klassenstufe (German Edition) Analyse und Interpretation der Kurzgeschichte "Die Tochter" von Peter Bichsel mit Unterrichtsentwurf für eine 10. Klassenstufe (German Edition) Janina Schnormeier Click here if your download doesn"t start

Mehr

Einkommensaufbau mit FFI:

Einkommensaufbau mit FFI: For English Explanation, go to page 4. Einkommensaufbau mit FFI: 1) Binäre Cycle: Eine Position ist wie ein Business-Center. Ihr Business-Center hat zwei Teams. Jedes mal, wenn eines der Teams 300 Punkte

Mehr

Hidden Markov Model ein Beispiel

Hidden Markov Model ein Beispiel Hidden Markov Model ein Beispiel Gegeben: Folge von Beobachtungen O = o 1,..., o n = nass, nass, trocken, nass, trocken Menge möglicher Systemzustände: Z = {Sonne, Regen} Beobachtungswahrscheinlichkeiten:

Mehr

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Ralf Zimmer, LMU Institut für Informatik, Lehrstuhl für Praktische

Mehr

WAS IST DER KOMPARATIV: = The comparative

WAS IST DER KOMPARATIV: = The comparative DER KOMPATATIV VON ADJEKTIVEN UND ADVERBEN WAS IST DER KOMPARATIV: = The comparative Der Komparativ vergleicht zwei Sachen (durch ein Adjektiv oder ein Adverb) The comparative is exactly what it sounds

Mehr

Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition)

Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition) Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition) Kenny Lang, Marvin Wolf, Elke Weiss Click here if your download doesn"t start automatically Konkret - der Ratgeber:

Mehr

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016 Overview The Hamburg Süd VGM Web portal is an application that enables you to submit VGM information directly to Hamburg Süd via our e-portal Web page. You can choose to enter VGM information directly,

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

v+s Output Quelle: Schotter, Microeconomics, , S. 412f The marginal cost function for a capacity-constrained firm At output levels that are lower than the firm s installed capacity of K, the marginal cost is merely the variable marginal cost of v. At higher

Mehr

Was Sie schon immer über Teneriffa wissen wollten: Erklärungen & Wissenswertes, Tipps & Highlights (German Edition)

Was Sie schon immer über Teneriffa wissen wollten: Erklärungen & Wissenswertes, Tipps & Highlights (German Edition) Was Sie schon immer über Teneriffa wissen wollten: Erklärungen & Wissenswertes, Tipps & Highlights (German Edition) Guntram Müller-Jänsch Click here if your download doesn"t start automatically Was Sie

Mehr

Flow - der Weg zum Glück: Der Entdecker des Flow-Prinzips erklärt seine Lebensphilosophie (HERDER spektrum) (German Edition)

Flow - der Weg zum Glück: Der Entdecker des Flow-Prinzips erklärt seine Lebensphilosophie (HERDER spektrum) (German Edition) Flow - der Weg zum Glück: Der Entdecker des Flow-Prinzips erklärt seine Lebensphilosophie (HERDER spektrum) (German Edition) Mihaly Csikszentmihalyi Click here if your download doesn"t start automatically

Mehr

Level 2 German, 2016

Level 2 German, 2016 91126 911260 2SUPERVISOR S Level 2 German, 2016 91126 Demonstrate understanding of a variety of written and / or visual German texts on familiar matters 2.00 p.m. Tuesday 29 November 2016 Credits: Five

Mehr

Tschernobyl: Auswirkungen des Reaktorunfalls auf die Bundesrepublik Deutschland und die DDR (German Edition)

Tschernobyl: Auswirkungen des Reaktorunfalls auf die Bundesrepublik Deutschland und die DDR (German Edition) Tschernobyl: Auswirkungen des Reaktorunfalls auf die Bundesrepublik Deutschland und die DDR (German Edition) Melanie Arndt Click here if your download doesn"t start automatically Tschernobyl: Auswirkungen

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2015 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 17.7. 10:00-11:00

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

VORANSICHT. Halloween zählt zu den beliebtesten. A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9)

VORANSICHT. Halloween zählt zu den beliebtesten. A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9) IV Exploringlifeandculture 12 Halloween(Kl.8/9) 1 von28 A spooky and special holiday Eine Lerntheke zu Halloween auf zwei Niveaus (Klassen 8/9) EinBeitragvonKonstanzeZander,Westerengel Halloween zählt

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Programmentwicklung ohne BlueJ

Programmentwicklung ohne BlueJ Objektorientierte Programmierung in - Eine praxisnahe Einführung mit Bluej Programmentwicklung BlueJ 1.0 Ein BlueJ-Projekt Ein BlueJ-Projekt ist der Inhalt eines Verzeichnisses. das Projektname heißt wie

Mehr

Statistische Verfahren:

Statistische Verfahren: Statistische Verfahren: Hidden-Markov-Modelle für Multiples Alignment Stochastic Context-Free Grammars (SCFGs) für RNA-Multiples Alignment Übersicht 1 1. Hidden-Markov-Models (HMM) für Multiples Alignment

Mehr

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN DOWNLOAD EBOOK : EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE

Mehr

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010 Stochastic Processes SS 2010 Prof. Anton Wakolbinger Klausur am 16. Juli 2010 Vor- und Nachname: Matrikelnummer: Studiengang: Tutor(in): In der Klausur können 100 Punkte erreicht werden. Die Gesamtpunktezahl

Mehr

Registration of residence at Citizens Office (Bürgerbüro)

Registration of residence at Citizens Office (Bürgerbüro) Registration of residence at Citizens Office (Bürgerbüro) Opening times in the Citizens Office (Bürgerbüro): Monday to Friday 08.30 am 12.30 pm Thursday 14.00 pm 17.00 pm or by appointment via the Citizens

Mehr

Sinn und Aufgabe eines Wissenschaftlers: Textvergleich zweier klassischer Autoren (German Edition)

Sinn und Aufgabe eines Wissenschaftlers: Textvergleich zweier klassischer Autoren (German Edition) Sinn und Aufgabe eines Wissenschaftlers: Textvergleich zweier klassischer Autoren (German Edition) Click here if your download doesn"t start automatically Sinn und Aufgabe eines Wissenschaftlers: Textvergleich

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, D-Example /home/lehre/vl-mhs-/inhalt/cover_sheet.tex. p./22 Table of contents D Example - Finite Element Method. D Setup Geometry 2. Governing equation 3. General Derivation of Finite

Mehr

DIBELS TM. German Translations of Administration Directions

DIBELS TM. German Translations of Administration Directions DIBELS TM German Translations of Administration Directions Note: These translations can be used with students having limited English proficiency and who would be able to understand the DIBELS tasks better

Mehr

Mixed tenses revision: German

Mixed tenses revision: German Mixed tenses revision: Gman Teaching notes This is a whole class game in wh one team (the red team) has to try to win hexagons in a row across the PowPoint grid from left to right, while the oth team (the

Mehr

prorm Budget Planning promx GmbH Nordring Nuremberg

prorm Budget Planning promx GmbH Nordring Nuremberg prorm Budget Planning Budget Planning Business promx GmbH Nordring 100 909 Nuremberg E-Mail: support@promx.net Content WHAT IS THE prorm BUDGET PLANNING? prorm Budget Planning Overview THE ADVANTAGES OF

Mehr

Hidden Markov Models (HMM)

Hidden Markov Models (HMM) Hidden Markov Models (HMM) Kursfolien Karin Haenelt 1 Themen Definitionen Stochastischer Prozess Markow Kette (Visible) Markov Model Hidden Markov Model Aufgaben, die mit HMMs bearbeitet werden Algorithmen

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition)

Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition) Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER spektrum) (German Edition) Ulrich Schaffer Click here if your download doesn"t start automatically Im Fluss der Zeit: Gedanken beim Älterwerden (HERDER

Mehr

Rätsel 1: Buchstabensalat klassisch, 5 5, A C (10 Punkte) Puzzle 1: Standard As Easy As, 5 5, A C (10 points)

Rätsel 1: Buchstabensalat klassisch, 5 5, A C (10 Punkte) Puzzle 1: Standard As Easy As, 5 5, A C (10 points) Rätsel 1: uchstabensalat klassisch, 5 5, (10 Punkte) Puzzle 1: Standard s Easy s, 5 5, (10 points) Rätsel 2: uchstabensalat klassisch, 5 5, (5 Punkte) Puzzle 2: Standard s Easy s, 5 5, (5 points) Rätsel

Mehr

Hallo, ich heiße! 1 Hallo! Guten Tag. a Listen to the dialogs. 1.02. b Listen again and read along.

Hallo, ich heiße! 1 Hallo! Guten Tag. a Listen to the dialogs. 1.02. b Listen again and read along. We will learn: how to say hello and goodbye introducing yourself and others spelling numbers from 0 to 0 W-questions and answers: wer and wie? verb forms: sein and heißen Hallo, ich heiße! Hallo! Guten

Mehr

Wie man heute die Liebe fürs Leben findet

Wie man heute die Liebe fürs Leben findet Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Click here if your download doesn"t start automatically Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Wie

Mehr

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich? KURZANLEITUNG Firmware-Upgrade: Wie geht das eigentlich? Die Firmware ist eine Software, die auf der IP-Kamera installiert ist und alle Funktionen des Gerätes steuert. Nach dem Firmware-Update stehen Ihnen

Mehr

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014 idden Markov Models Vorlesung omputerlinguistische Techniken Alexander Koller 8. Dezember 04 n-gramm-modelle Ein n-gramm ist ein n-tupel von Wörtern. -Gramme heißen auch Unigramme; -Gramme Bigramme; -Gramme

Mehr

Hardwarekonfiguration an einer Siemens S7-300er Steuerung vornehmen (Unterweisung Elektriker / - in) (German Edition)

Hardwarekonfiguration an einer Siemens S7-300er Steuerung vornehmen (Unterweisung Elektriker / - in) (German Edition) Hardwarekonfiguration an einer Siemens S7-300er Steuerung vornehmen (Unterweisung Elektriker / - in) (German Edition) Thomas Schäfer Click here if your download doesn"t start automatically Hardwarekonfiguration

Mehr

Top Tipp. Ref. 08.05.23 DE. Verwenden externer Dateiinhalte in Disclaimern. (sowie: Verwenden von Images in RTF Disclaimern)

Top Tipp. Ref. 08.05.23 DE. Verwenden externer Dateiinhalte in Disclaimern. (sowie: Verwenden von Images in RTF Disclaimern) in Disclaimern (sowie: Verwenden von Images in RTF Disclaimern) Ref. 08.05.23 DE Exclaimer UK +44 (0) 845 050 2300 DE +49 2421 5919572 sales@exclaimer.de Das Problem Wir möchten in unseren Emails Werbung

Mehr

FEBE Die Frontend-Backend-Lösung für Excel

FEBE Die Frontend-Backend-Lösung für Excel FEBE Die Frontend--Lösung für FEBE Die Frontend--Lösung für FEBE.pptx 8.04.206 0:43 FEBE Die Frontend--Lösung für Nutzer A alle_aufträge neuer_auftrag Auftragsänderung Nutzer B alle_aufträge neuer_auftrag

Mehr

42 Zitate großer Philosophen: Über das Leben, das Universum und den ganzen Rest (German Edition)

42 Zitate großer Philosophen: Über das Leben, das Universum und den ganzen Rest (German Edition) 42 Zitate großer Philosophen: Über das Leben, das Universum und den ganzen Rest (German Edition) Click here if your download doesn"t start automatically 42 Zitate großer Philosophen: Über das Leben, das

Mehr

Das Thema: Die Olympischen Spiele in

Das Thema: Die Olympischen Spiele in Schneesturm Tasche #1 Blizzard Bag #1 Deutsch 1 - Die Stadt ist Innsbrück The city is Innsbrück Deutsch 2 Die Stadt ist Berlin The city is Berlin Deutsch 3 Die Stadt ist Garmisch-Partenkirchen The city

Mehr

Socken stricken mit nur 2 Stricknadeln: Vier verschiedene Techniken (German Edition)

Socken stricken mit nur 2 Stricknadeln: Vier verschiedene Techniken (German Edition) Socken stricken mit nur 2 Stricknadeln: Vier verschiedene Techniken (German Edition) Birgit Grosse Click here if your download doesn"t start automatically Socken stricken mit nur 2 Stricknadeln: Vier verschiedene

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

Automatentheorie und formale Sprachen endliche Automaten

Automatentheorie und formale Sprachen endliche Automaten Automatentheorie und formale Sprachen endliche Automaten Dozentin: Wiebke Petersen 13.5.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 What we know so far about formal languages

Mehr

Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen

Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen QuickStart Guide to read a transponder with a scemtec TT reader and software UniDemo Voraussetzung: - PC mit der

Mehr

Brandbook. How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes. Version 1.0.1

Brandbook. How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes. Version 1.0.1 Brandbook How to use our logo, our icon and the QR-Codes Wie verwendet Sie unser Logo, Icon und die QR-Codes Version 1.0.1 Content / Inhalt Logo 4 Icon 5 QR code 8 png vs. svg 10 Smokesignal 11 2 / 12

Mehr

Finite Difference Method (FDM)

Finite Difference Method (FDM) Finite Difference Method (FDM) home/lehre/vl-mhs-1-e/folien/vorlesung/2a_fdm/cover_sheet.tex page 1 of 15. p.1/15 Table of contents 1. Problem 2. Governing Equation 3. Finite Difference-Approximation 4.

Mehr

Prof. S. Krauter Kombinatorik. WS Blatt03.doc

Prof. S. Krauter Kombinatorik. WS Blatt03.doc Prof. S. Krauter Kombinatorik. WS 05-06 Blatt03.doc Zahlpartitionen: 1. Gegeben ist folgende Gleichung: x 1 + x 2 + x 3 + + x s = n. a) Wie viele verschiedene Lösungen besitzt diese Gleichung mit Werten

Mehr

https://portal.microsoftonline.com

https://portal.microsoftonline.com Sie haben nun Office über Office365 bezogen. Ihr Account wird in Kürze in dem Office365 Portal angelegt. Anschließend können Sie, wie unten beschrieben, die Software beziehen. Congratulations, you have

Mehr

Kindesmisshandlung: Psychische und körperliche Folgen im Erwachsenenalter (German Edition)

Kindesmisshandlung: Psychische und körperliche Folgen im Erwachsenenalter (German Edition) Kindesmisshandlung: Psychische und körperliche Folgen im Erwachsenenalter (German Edition) Click here if your download doesn"t start automatically Kindesmisshandlung: Psychische und körperliche Folgen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Level 2 German, 2013

Level 2 German, 2013 91126 911260 2SUPERVISOR S Level 2 German, 2013 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 9.30 am Monday 11 November 2013 Credits: Five

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Materialien zu unseren Lehrwerken

Materialien zu unseren Lehrwerken Word order Word order is important in English. The word order for subjects, verbs and objects is normally fixed. The word order for adverbial and prepositional phrases is more flexible, but their position

Mehr

Das Zeitalter der Fünf 3: Götter (German Edition)

Das Zeitalter der Fünf 3: Götter (German Edition) Das Zeitalter der Fünf 3: Götter (German Edition) Trudi Canavan Click here if your download doesn"t start automatically Das Zeitalter der Fünf 3: Götter (German Edition) Trudi Canavan Das Zeitalter der

Mehr

Level 1 German, 2012

Level 1 German, 2012 90886 908860 1SUPERVISOR S Level 1 German, 2012 90886 Demonstrate understanding of a variety of German texts on areas of most immediate relevance 9.30 am Tuesday 13 November 2012 Credits: Five Achievement

Mehr

Im Zeichen der Sonne: Schamanische Heilrituale (German Edition)

Im Zeichen der Sonne: Schamanische Heilrituale (German Edition) Im Zeichen der Sonne: Schamanische Heilrituale (German Edition) Click here if your download doesn"t start automatically Im Zeichen der Sonne: Schamanische Heilrituale (German Edition) Im Zeichen der Sonne:

Mehr

Die besten Chuck Norris Witze: Alle Fakten über den härtesten Mann der Welt (German Edition)

Die besten Chuck Norris Witze: Alle Fakten über den härtesten Mann der Welt (German Edition) Die besten Chuck Norris Witze: Alle Fakten über den härtesten Mann der Welt (German Edition) Click here if your download doesn"t start automatically Die besten Chuck Norris Witze: Alle Fakten über den

Mehr

(Prüfungs-)Aufgaben zum Thema Scheduling

(Prüfungs-)Aufgaben zum Thema Scheduling (Prüfungs-)Aufgaben zum Thema Scheduling 1) Geben Sie die beiden wichtigsten Kriterien bei der Wahl der Größe des Quantums beim Round-Robin-Scheduling an. 2) In welchen Situationen und von welchen (Betriebssystem-)Routinen

Mehr

Martin Luther. Click here if your download doesn"t start automatically

Martin Luther. Click here if your download doesnt start automatically Die schönsten Kirchenlieder von Luther (Vollständige Ausgabe): Gesammelte Gedichte: Ach Gott, vom Himmel sieh darein + Nun bitten wir den Heiligen Geist... der Unweisen Mund... (German Edition) Martin

Mehr

SanStore: Kurzanleitung / SanStore: Quick reference guide

SanStore: Kurzanleitung / SanStore: Quick reference guide SanStore Rekorder der Serie MM, MMX, HM und HMX Datenwiedergabe und Backup Datenwiedergabe 1. Drücken Sie die Time Search-Taste auf der Fernbedienung. Hinweis: Falls Sie nach einem Administrator-Passwort

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt The Seasons - Spring (Erste Lernjahre)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt The Seasons - Spring (Erste Lernjahre) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt The Seasons - Spring (Erste Lernjahre) Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernwerkstatt

Mehr

Robert Kopf. Click here if your download doesn"t start automatically

Robert Kopf. Click here if your download doesnt start automatically Neurodermitis, Atopisches Ekzem - Behandlung mit Homöopathie, Schüsslersalzen (Biochemie) und Naturheilkunde: Ein homöopathischer, biochemischer und naturheilkundlicher Ratgeber (German Edition) Robert

Mehr

Hausaufgabe 1-4. Name: If homework late, explanation: Last class homework is being accepted: If correction late, explanation: Student Self-Grading

Hausaufgabe 1-4. Name: If homework late, explanation: Last class homework is being accepted: If correction late, explanation: Student Self-Grading Hausaufgabe 1-4 To Be Filled Out By Instructor Inspected Self-Grade Accepted Lateness of Homework Accepted Instructor s Grade: Name: To Be Filled Out By Student (White Fields Only) Class # due: 1-4 Turned

Mehr