Algorithmische Bioinformatik

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Bioinformatik"

Transkript

1 Algorithmische Bioinformatik Hidden-Markov-Modelle Viterbi - Algorithmus Ulf Leser Wissensmanagement in der Bioinformatik

2 Inhalt der Vorlesung Hidden Markov Modelle Baum, L. E. and Petrie, T. (1966). "Statistical Inference for Probabilistic Functions of Finite State Markov Chains." Annals of Mathematical Statistics 37: Klassische Probleme Dekodierung: Viterbi-Algorithmus Ulf Leser: Algorithmische Bioinformatik 2

3 Hidden Markov-Modelle (HMM) Idee (am Beispiel CpG Islands) Wir denken uns einen Automaten mit zwei Meta-Zuständen : Einer für CpG, einer für nicht-cpg Jeder Zustand kann alle Zeichen des Alphabets mit einer bestimmten Emissions-Wsk emittieren Damit: Zustandsfolge Zeichenfolge Das ist neu: Zustände sind verborgen (hidden) Die Emissions-Wsk und Übergangs-Wsk in den beiden Metazuständen sind unterschiedlich und modellieren die Unterschiede zwischen normaler DNA und CpG-Inseln Zustandsübergänge sollen automatisch erkannt werden Keine festen Fenstergrößen mehr Ulf Leser: Algorithmische Bioinformatik 3

4 Hidden Markov Modell 1: CpG a CC a CN a NN e C ( ) C (CpG) N ( CpG) e N ( ) p(a) = p(c) = p(g) = p(t) = a NC p(a) = p(c) = p(g) = p(t) = Ulf Leser: Algorithmische Bioinformatik 4

5 Feineres Modell Wir erweitern die Anzahl der Zustände: A A+, A- Zustände s+ und s- emittieren jeweils dasselbe Zeichen M+ Modell: Übergangswsk zwischen s+ Zuständen M- Modell: Übergangswsk zwischen s- Zuständen Übergang von jedem s+ Zustand zu jedem s- Zustand und umgekehrt mit bestimmter (kleiner) Wsk erlaubt CpG Insel A+ C+ G+ T+ Keine CpG Insel A- C- G- T- Übergange s s nicht gezeigt Ulf Leser: Algorithmische Bioinformatik 5

6 Formale Definition von HMMs Definition Gegeben Σ. Ein Hidden Markov Modell ist ein sequentieller stochastischer Prozess über k Zuständen s 1,, s k mit Zustand s emittiert Zeichen x Σ mit Wahrscheinlichkeit p(x s) Die Folge der Zustände ist eine Markov-Kette, d.h.: p(z t =s t z t-1 =s t-1, z t-2 =s t-2,, z 0 =s 0 ) = p(z t =s t z t-1 =s t-1 )=a t-1,t Die a 0,1 heißen Startwahrscheinlichkeiten Die a t-1,t heißen Übergangswahrscheinlichkeiten Die e s (x)=p(x s) heißen Emissionswahrscheinlichkeiten Bemerkung Die existierenden Zustände in M sind s 1,, s k Eine konkrete Zustandsfolge ist z 0, z 1, z n Ulf Leser: Algorithmische Bioinformatik 6

7 Beispiel A C G T Zustände A+ C+ G+ T+ A- C- G- T- Übergangs- Wsk A C G T Übergange s s nicht gezeigt Emissions-Wsk (hier: Pro Zustand ist eine Wsk=1 und alle anderen=0) Ulf Leser: Algorithmische Bioinformatik 7

8 Emissionswahrscheinlichkeiten Intergenic Start End Single exon p(a)=0.01 p(c)=0.01 p(g)=0.97 p(t)=0.01 First exon G T Intron Last exon AG p(a)= p(c)= p(g)= p(t)= p(a)=0.01 p(c)=0.01 p(g)=0.01 p(t)=0.97 Internal exon Ulf Leser: Algorithmische Bioinformatik 8

9 Sequenzen und Zustandsfolgen A+ C+ G+ T+ M+ A C G T A C G T A- C- G- T- A C T G A C A+C+T-G-A-C- A C T G A C A+C+T+G+A+C+ A C T G A C A-C+T+G+A-C+ M- A C G T A C G T Alle möglich Aber nicht alle gleich wahrscheinlich Start-Wsk alle gleich, p(m+ M-): 0.01 A+C+T-G-A-C-: A+C+T+G+A+C+: A-C+T+G+A-C+: Ulf Leser: Algorithmische Bioinformatik 9

10 Inhalt der Vorlesung Hidden Markov Modelle Klassische Probleme Dekodierung: Viterbi-Algorithmus Ulf Leser: Algorithmische Bioinformatik 10

11 Die drei klassischen HMM Probleme Dekodierung/Parse: Gegeben eine Sequenz S und ein HMM M; durch welche Zustandsfolge wurde S wahrscheinlich erzeugt? Lösung: Viterbi Algorithmus Evaluation: Gegeben eine Sequenz S und ein HMM M; mit welcher Wahrscheinlichkeit wurde S durch M erzeugt? Muss alle Zustandssequenzen berücksichtigen, die S erzeugen Lösung: Forward/Backward Algorithmus Lernen/Trainieren: Gegeben eine Sequenz S; welches HMM M (mit gegebener Zustandsmenge) erzeugt S mit der größten Wsk? Lernen der Übergangs- und Emissionswahrscheinlichkeiten aus S Lösung: Baum-Welch Algorithmus Ulf Leser: Algorithmische Bioinformatik 11

12 Who s in goal? Joel Hasek Save pct = 75% Save pct = 92% Sequence (X = save, 0= goal): XOXXXXXXOXXXXXXXXXXXXXOXXXXXXXOXXXOXOXXOXXXOXXOXXO Total 50 shots, 40 saves -> Save pct = 80%; Assuming only one goalie for the whole sequence (simple Markov chain): P hasek = 0.004, P joel = 0.099, P joel /P hasek ~ 25 What if the goalie can change during the sequence? The goalie identity on each shot is the Hidden variable (the state) HMM algorithms give probabilities for the sequence of goalie, given the sequence of shots: XOXXXXXXOXXXXXXXXXXXXXOXXXXXXXOXXXOXOXXOXXXOXXOXXO jjjhhhhhhhhhhhhhhhhhhhhhhhhhhhjjjjjjjjjjjjjjjjjjjj Quelle: Graber, The Jackson Laboratory Ulf Leser: Algorithmische Bioinformatik 12

13 Example: The Dishonest Casino A casino has two dice: Fair die P(1)=P(2)=P(3)=P(4)=P(5)=P(6) = 1/6 Loaded die P(1)=P(2)=P(3)=P(4)=P(5) = 1/10 P(6) = 1/2 Casino occasionally switches between dice (and you want to know when) Game: 1. You bet $1 2. You roll (always with a fair die) 3. You may bet more or surrender 4. Casino player rolls (with some die ) 5. Highest number wins Quelle: Batzoglou, Stanford Ulf Leser: Algorithmische Bioinformatik 13

14 Model FAIR LOADED P(1 F) = 1/6 P(2 F) = 1/6 P(3 F) = 1/6 P(4 F) = 1/6 P(5 F) = 1/6 P(6 F) = 1/ P(1 L) = 1/10 P(2 L) = 1/10 P(3 L) = 1/10 P(4 L) = 1/10 P(5 L) = 1/10 P(6 L) = 1/2 Ulf Leser: Algorithmische Bioinformatik 14

15 Question # 1 Decoding GIVEN A sequence of rolls by the casino player What portion of the sequence was generated with the fair die, and what portion with the loaded die? This is the DECODING question in HMMs Ulf Leser: Algorithmische Bioinformatik 15

16 Question # 2 Evaluation GIVEN A sequence of rolls by the casino player How likely is this sequence, given our model of how the casino works? This is the EVALUATION problem in HMMs Ulf Leser: Algorithmische Bioinformatik 16

17 Question # 3 Learning GIVEN A sequence of rolls by the casino player How loaded is the loaded die? How fair is the fair die? How often does the casino player change from fair to loaded, and back? This is the LEARNING question in HMMs [Note: We need to know how many dice there are!] Ulf Leser: Algorithmische Bioinformatik 17

18 Inhalt der Vorlesung Hidden Markov Modelle Klassische Probleme Dekodierung: Viterbi-Algorithmus Ulf Leser: Algorithmische Bioinformatik 18

19 Dekodierproblem Definition Gegeben ein HMM M und eine Sequenz S. Das Dekodierproblem sucht nach der Zustandsfolge p, die mit der höchsten Wsk (unter allen Zustandsfolgen von M) S erzeugt hat p *( S M ) = max p( S, p) p paths Bemerkung Eine konkrete Zustandsfolge bezeichnen wir meistens als Pfad Ulf Leser: Algorithmische Bioinformatik 19

20 Naive Lösung Nehmen wir an, dass a ij >0 und e i (x)>0 für alle x,i,j Dann gibt es wie viele Pfade? Es gibt k n Pfade Alle aufzählen und vergleichen ist eine schlechte Idee Besser: Viterbi-Algorithmus Viterbi, A. J. (1967). "Error bounds for convolution codes and an asymptotically optimal decoding algorithm." IEEE Transactions on Information Theory IT-13: Wieder: Dynamische Programmierung Ulf Leser: Algorithmische Bioinformatik 20

21 Viterbi Algorithmus: Grundidee Beobachtung Es gibt viele Pfade, um einen Zustand s an Position i der Sequenz zu erreichen Einer davon muss der wahrscheinlichste sein Alle Fortsetzungen von Pfaden ab s an i brauchen nur diese Wsk Also: Sukzessive alle Wahrscheinlichkeiten für alle s/i berechnen C C C C C N N N N N Sequenz: A T C T. G Ulf Leser: Algorithmische Bioinformatik 21

22 Viterbi: Dynamische Programmierung Wir berechnen optimale Pfade für länger werdende Präfixe von S, die in einem der Zustände von M enden Annahme: Sei v s (i) die Wahrscheinlichkeit des optimalen Pfads für S[..i], der in Zustand s endet Wir brauchen eine Rekursionsformel für v s (i+1) und die Randbedingungen C C C C C N N N N N Sequenz: A T C T. G Ulf Leser: Algorithmische Bioinformatik 22

23 Rekursion Annahme: Sei v s (i) die Wahrscheinlichkeit des optimalen Pfad für S[..i], der in Zustand s endet Wenn wir zu Zustand t übergehen Von Zustand s gehen wir mit Wsk a st =v(t s) nach t Wir müssen alle Vorgängerzustände beachten Dann emittieren wir das Zeichen S[i+1] mit Emissionswahrscheinlichkeit e t (S[i+1]) Zusammen v t ( i + 1) = et ( S[ i + 1])*max( vs ( i)* ast s M ) Ulf Leser: Algorithmische Bioinformatik 23

24 Tabellarische Darstellung A C S A+ 0 0,2 0 T G C ,05 A- 0 0,25 0 T G C ,05 Start: s 0 hat Wsk 1, alle anderen Zustände haben Wsk 0 Wir berechnen die Tabelle spaltenweise Jedes Feld kann von jedem Feld der Vorgängerspalte erreicht werden Also aus jedem Endzustand für das um 1 Zeichen kürzere Präfix In jeder Spalte i ist die Wsk aller Zustände, die nicht S[i] emittieren, 0 (weil e(s[i])=0) Ulf Leser: Algorithmische Bioinformatik 24

25 Tabellarische Darstellung A C T G S A+ 0 0, T , G ,003 0 C , A- 0 0, T , G ,003 0 C , Gesuchte Wsk ist die höchste Zahl am rechten Rand Optimaler Pfad über Traceback Haben alle Tabellen für HMM so viele Nullen? Ulf Leser: Algorithmische Bioinformatik 25

26 Komplexität Sei S =n, HMM habe M =k Zustände Allgemein Tabelle hat n*k Zellen Für jede Zelle greifen wir auf k Vorgängerzellen zu Zusammen: O(n*k 2 ) Unser konkretes CpG-Insel Modell In unserem aktuellen Modell sind in jedem Zustand alle Emissionswsk bis auf eine 0 Damit müssen wir pro Spalte nur zwei Zellen betrachten, und die haben nur 2 Vorläufer mit Wsk 0 Damit ist der Algorithmus: ~O(4*n)=O(n) Ulf Leser: Algorithmische Bioinformatik 26

27 Numerische Schwierigkeiten Multiplikation vieler Zahlen <<1 erreicht schnell die Rechengenauigkeitsgrenze Besser: Logarithmieren Statt: v Berechnet man: t ( i + 1) = et ( S[ i + 1])*max( vs ( i)* ast )) s M ( e ( S[ i + 1]) ) + max( v ( i) log( a )) v t ( i + 1) = log t s + st s M Ulf Leser: Algorithmische Bioinformatik 27

Bioinformatik. Gene Finding Sequenzanalyse mit (Hidden) Markov Modellen. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Gene Finding Sequenzanalyse mit (Hidden) Markov Modellen. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Gene Finding Sequenzanalyse mit (Hidden) Markov Modellen Ulf Leser Wissensmanagement in der Bioinformatik Whole Genome Shotgun Zerbrechen eines kompletten Chromosoms in Einzelstücke (An)sequenzierung

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

Der Viterbi-Algorithmus.

Der Viterbi-Algorithmus. Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript Karin Haenelt, 9..7 (.5.) Einleitung In diesem Skript wird der Viterbi-Algorithmus

Mehr

Part-Of-Speech-Tagging mit Viterbi Algorithmus

Part-Of-Speech-Tagging mit Viterbi Algorithmus Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus

Mehr

Statistische Verfahren:

Statistische Verfahren: Statistische Verfahren: Hidden-Markov-Modelle für Multiples Alignment Stochastic Context-Free Grammars (SCFGs) für RNA-Multiples Alignment Übersicht 1 1. Hidden-Markov-Models (HMM) für Multiples Alignment

Mehr

Hidden Markov Models und DNA-Sequenzen

Hidden Markov Models und DNA-Sequenzen Hidden Markov Models und DNA-Sequenzen Joana Grah Seminar: Mathematische Biologie Sommersemester 2012 Betreuung: Prof. Dr. Matthias Löwe, Dr. Felipe Torres Institut für Mathematische Statistik 28. Juni

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2015 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 17.7. 10:00-11:00

Mehr

Algorithms & Datastructures Midterm Test 1

Algorithms & Datastructures Midterm Test 1 Algorithms & Datastructures Midterm Test 1 Wolfgang Pausch Heiko Studt René Thiemann Tomas Vitvar

Mehr

Maschinelles Lernen in der Bioinformatik

Maschinelles Lernen in der Bioinformatik Maschinelles Lernen in der Bioinformatik Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) VL 2 HMM und (S)CFG Jana Hertel Professur für Bioinformatik Institut für Informatik

Mehr

Top Tipp. Ref. 08.05.23 DE. Verwenden externer Dateiinhalte in Disclaimern. (sowie: Verwenden von Images in RTF Disclaimern)

Top Tipp. Ref. 08.05.23 DE. Verwenden externer Dateiinhalte in Disclaimern. (sowie: Verwenden von Images in RTF Disclaimern) in Disclaimern (sowie: Verwenden von Images in RTF Disclaimern) Ref. 08.05.23 DE Exclaimer UK +44 (0) 845 050 2300 DE +49 2421 5919572 sales@exclaimer.de Das Problem Wir möchten in unseren Emails Werbung

Mehr

HIR Method & Tools for Fit Gap analysis

HIR Method & Tools for Fit Gap analysis HIR Method & Tools for Fit Gap analysis Based on a Powermax APML example 1 Base for all: The Processes HIR-Method for Template Checks, Fit Gap-Analysis, Change-, Quality- & Risk- Management etc. Main processes

Mehr

Corporate Digital Learning, How to Get It Right. Learning Café

Corporate Digital Learning, How to Get It Right. Learning Café 0 Corporate Digital Learning, How to Get It Right Learning Café Online Educa Berlin, 3 December 2015 Key Questions 1 1. 1. What is the unique proposition of digital learning? 2. 2. What is the right digital

Mehr

After sales product list After Sales Geräteliste

After sales product list After Sales Geräteliste GMC-I Service GmbH Thomas-Mann-Str. 20 90471 Nürnberg e-mail:service@gossenmetrawatt.com After sales product list After Sales Geräteliste Ladies and Gentlemen, (deutsche Übersetzung am Ende des Schreibens)

Mehr

Programmentwicklung ohne BlueJ

Programmentwicklung ohne BlueJ Objektorientierte Programmierung in - Eine praxisnahe Einführung mit Bluej Programmentwicklung BlueJ 1.0 Ein BlueJ-Projekt Ein BlueJ-Projekt ist der Inhalt eines Verzeichnisses. das Projektname heißt wie

Mehr

GRIPS - GIS basiertes Risikoanalyse-, Informations- und Planungssystem

GRIPS - GIS basiertes Risikoanalyse-, Informations- und Planungssystem GRIPS - GIS basiertes Risikoanalyse-, Informations- und Planungssystem GIS based risk assessment and incident preparation system Gregor Lämmel TU Berlin GRIPS joined research project TraffGo HT GmbH Rupprecht

Mehr

Challenges for the future between extern and intern evaluation

Challenges for the future between extern and intern evaluation Evaluation of schools in switzerland Challenges for the future between extern and intern evaluation Michael Frais Schulentwicklung in the Kanton Zürich between internal evaluation and external evaluation

Mehr

DOWNLOAD. Englisch in Bewegung. Spiele für den Englischunterricht. Britta Buschmann. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Englisch in Bewegung. Spiele für den Englischunterricht. Britta Buschmann. Downloadauszug aus dem Originaltitel: DOWNLOAD Britta Buschmann Englisch in Bewegung Spiele für den Englischunterricht auszug aus dem Originaltitel: Freeze Hör-/ und Sehverstehen Folgende Bewegungen werden eingeführt: run: auf der Stelle rennen

Mehr

Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health)

Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health) Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health) 1 Utilitarian Perspectives on Inequality 2 Inequalities matter most in terms of their impact onthelivesthatpeopleseektoliveandthethings,

Mehr

Hallo, ich heiße! 1 Hallo! Guten Tag. a Listen to the dialogs. 1.02. b Listen again and read along.

Hallo, ich heiße! 1 Hallo! Guten Tag. a Listen to the dialogs. 1.02. b Listen again and read along. We will learn: how to say hello and goodbye introducing yourself and others spelling numbers from 0 to 0 W-questions and answers: wer and wie? verb forms: sein and heißen Hallo, ich heiße! Hallo! Guten

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

FOR ENGLISCH VERSION PLEASE SCROLL FORWARD SOME PAGES. THANK YOU!

FOR ENGLISCH VERSION PLEASE SCROLL FORWARD SOME PAGES. THANK YOU! FOR ENGLISCH VERSION PLEASE SCROLL FORWARD SOME PAGES. THANK YOU! HELPLINE GAMMA-SCOUT ODER : WIE BEKOMME ICH MEIN GERÄT ZUM LAUFEN? Sie haben sich für ein Strahlungsmessgerät mit PC-Anschluss entschieden.

Mehr

Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft. Lars Melchior

Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft. Lars Melchior Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft Lars Melchior Theoretische Grundlagen Theoretische Grundlagen Genetik Genetische Algorithmen NK

Mehr

Einkommensaufbau mit FFI:

Einkommensaufbau mit FFI: For English Explanation, go to page 4. Einkommensaufbau mit FFI: 1) Binäre Cycle: Eine Position ist wie ein Business-Center. Ihr Business-Center hat zwei Teams. Jedes mal, wenn eines der Teams 300 Punkte

Mehr

Mitglied der Leibniz-Gemeinschaft

Mitglied der Leibniz-Gemeinschaft Methods of research into dictionary use: online questionnaires Annette Klosa (Institut für Deutsche Sprache, Mannheim) 5. Arbeitstreffen Netzwerk Internetlexikografie, Leiden, 25./26. März 2013 Content

Mehr

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis Historische Aspekte Data Mining als Teildisziplin

Mehr

Übungsblatt 23. Alle Aufgaben, die Lösungen zu den Aufgaben und eine Übersicht zu den Grammatiken findest du im Internet:

Übungsblatt 23. Alle Aufgaben, die Lösungen zu den Aufgaben und eine Übersicht zu den Grammatiken findest du im Internet: Übungsblatt Name: Abgabedatum:..00 Alle Aufgaben, die Lösungen zu den Aufgaben und eine Übersicht zu den Grammatiken findest du im Internet: http://www-i.informatik.rwth-aachen.de/infoki/englk/index.htm

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= Error: "Could not connect to the SQL Server Instance" or "Failed to open a connection to the database." When you attempt to launch ACT! by Sage or ACT by Sage Premium for

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

WAS IST DER KOMPARATIV: = The comparative

WAS IST DER KOMPARATIV: = The comparative DER KOMPATATIV VON ADJEKTIVEN UND ADVERBEN WAS IST DER KOMPARATIV: = The comparative Der Komparativ vergleicht zwei Sachen (durch ein Adjektiv oder ein Adverb) The comparative is exactly what it sounds

Mehr

Frequently asked Questions for Kaercher Citrix (apps.kaercher.com)

Frequently asked Questions for Kaercher Citrix (apps.kaercher.com) Frequently asked Questions for Kaercher Citrix (apps.kaercher.com) Inhalt Content Citrix-Anmeldung Login to Citrix Was bedeutet PIN und Token (bei Anmeldungen aus dem Internet)? What does PIN and Token

Mehr

Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen

Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen QuickStart Guide to read a transponder with a scemtec TT reader and software UniDemo Voraussetzung: - PC mit der

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!!

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!! REPORT OF INVENTION Please send a copy to An die Abteilung Technologietransfer der Universität/Hochschule An die Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH Ettlinger Straße

Mehr

(Prüfungs-)Aufgaben zum Thema Scheduling

(Prüfungs-)Aufgaben zum Thema Scheduling (Prüfungs-)Aufgaben zum Thema Scheduling 1) Geben Sie die beiden wichtigsten Kriterien bei der Wahl der Größe des Quantums beim Round-Robin-Scheduling an. 2) In welchen Situationen und von welchen (Betriebssystem-)Routinen

Mehr

BA63 Zeichensätze/ Character sets

BA63 Zeichensätze/ Character sets BA63 Zeichensätze/ Character sets Anhang/ Appendix We would like to know your opinion on this publication. Ihre Meinung/ Your opinion: Please send us a copy of this page if you have any contructive criticism.

Mehr

Critical Chain and Scrum

Critical Chain and Scrum Critical Chain and Scrum classic meets avant-garde (but who is who?) TOC4U 24.03.2012 Darmstadt Photo: Dan Nernay @ YachtPals.com TOC4U 24.03.2012 Darmstadt Wolfram Müller 20 Jahre Erfahrung aus 530 Projekten

Mehr

The English Tenses Die englischen Zeitformen

The English Tenses Die englischen Zeitformen The English Tenses Die englischen Zeitformen Simple Present (Präsens einfache Gegenwart) Handlungen in der Gegenwart die sich regelmäßig wiederholen oder einmalig geschehen I go you go he goes she goes

Mehr

Thema: Sonnenuhren (7.Jahrgangsstufe)

Thema: Sonnenuhren (7.Jahrgangsstufe) Thema: Sonnenuhren (7.Jahrgangsstufe) Im Rahmen des Physikunterrichts haben die Schüler der Klasse 7b mit dem Bau einfacher Sonnenuhren beschäftigt. Die Motivation lieferte eine Seite im Physikbuch. Grundidee

Mehr

ANNA: OK. It's definitely the bloke who was smiling at me in the cafe, with the little silver violin.

ANNA: OK. It's definitely the bloke who was smiling at me in the cafe, with the little silver violin. Episode 05 Haven't We Met Before? Anna takes the music box to the clockmaker for repairs. But it's more than just a job for Paul Winkler. He tells Anna he knows her from way back. But how can this be?

Mehr

Klausur Verteilte Systeme

Klausur Verteilte Systeme Klausur Verteilte Systeme SS 2005 by Prof. Walter Kriha Klausur Verteilte Systeme: SS 2005 by Prof. Walter Kriha Note Bitte ausfüllen (Fill in please): Vorname: Nachname: Matrikelnummer: Studiengang: Table

Mehr

There are 10 weeks this summer vacation the weeks beginning: June 23, June 30, July 7, July 14, July 21, Jul 28, Aug 4, Aug 11, Aug 18, Aug 25

There are 10 weeks this summer vacation the weeks beginning: June 23, June 30, July 7, July 14, July 21, Jul 28, Aug 4, Aug 11, Aug 18, Aug 25 Name: AP Deutsch Sommerpaket 2014 The AP German exam is designed to test your language proficiency your ability to use the German language to speak, listen, read and write. All the grammar concepts and

Mehr

SanStore: Kurzanleitung / SanStore: Quick reference guide

SanStore: Kurzanleitung / SanStore: Quick reference guide SanStore Rekorder der Serie MM, MMX, HM und HMX Datenwiedergabe und Backup Datenwiedergabe 1. Drücken Sie die Time Search-Taste auf der Fernbedienung. Hinweis: Falls Sie nach einem Administrator-Passwort

Mehr

Parameter-Updatesoftware PF-12 Plus

Parameter-Updatesoftware PF-12 Plus Parameter-Updatesoftware PF-12 Plus Mai / May 2015 Inhalt 1. Durchführung des Parameter-Updates... 2 2. Kontakt... 6 Content 1. Performance of the parameter-update... 4 2. Contact... 6 1. Durchführung

Mehr

Weiterbildungskolleg der Stadt Bielefeld Abendrealschule Fachbereich Englisch Frachtstraße 8 33602 Bielefeld

Weiterbildungskolleg der Stadt Bielefeld Abendrealschule Fachbereich Englisch Frachtstraße 8 33602 Bielefeld Weiterbildungskolleg der Stadt Bielefeld Abendrealschule Fachbereich Englisch Frachtstraße 8 33602 Bielefeld Requirements for Entering the First Term in English, Exercises to Prepare Yourself / Anforderungen

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

My Reading-Log. Eine Hilfe beim Lesen von englischen Ganzschriften in der Schule. Hinweise zur technischen Umsetzung:

My Reading-Log. Eine Hilfe beim Lesen von englischen Ganzschriften in der Schule. Hinweise zur technischen Umsetzung: Eine Hilfe beim Lesen von englischen Ganzschriften in der Schule Hinweise zur technischen Umsetzung: Die Tagebuch-Seiten werden in der vorgebenen Reihenfolge beidseitig auf A4 Papier gedruckt. Das vierte

Mehr

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes.

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes. Prediction Market, 28th July 2012 Information and Instructions S. 1 Welcome, and thanks for your participation Sensational prices are waiting for you 1000 Euro in amazon vouchers: The winner has the chance

Mehr

On the List Update Problem

On the List Update Problem DISS. ETH No. 14529, 2002 On the List Update Problem A dissertation submitted to the Swiss Federal Institute of Technology, ETH Zürich for the degree of Doctor of Technical Sciences presented by Christoph

Mehr

Draft. Draft Specimen 2018 Morning Time allowed: 2 hours

Draft. Draft Specimen 2018 Morning Time allowed: 2 hours SPECIMEN MATERIAL A-level GERMAN Paper 2 Writing Specimen 2018 Morning Time allowed: 2 hours Materials For this paper you must have: Answer book Instructions Use black ink or black ball-point pen. Answer

Mehr

The process runs automatically and the user is guided through it. Data acquisition and the evaluation are done automatically.

The process runs automatically and the user is guided through it. Data acquisition and the evaluation are done automatically. Q-App: UserCal Advanced Benutzerdefinierte Kalibrierroutine mit Auswertung über HTML (Q-Web) User defined calibration routine with evaluation over HTML (Q-Web) Beschreibung Der Workflow hat 2 Ebenen eine

Mehr

miditech 4merge 4-fach MIDI Merger mit :

miditech 4merge 4-fach MIDI Merger mit : miditech 4merge 4-fach MIDI Merger mit : 4 x MIDI Input Port, 4 LEDs für MIDI In Signale 1 x MIDI Output Port MIDI USB Port, auch für USB Power Adapter Power LED und LOGO LEDs Hochwertiges Aluminium Gehäuse

Mehr

Vermessene Wissenschaft. Etablierte und alternative Ansätze der Bibliometrie

Vermessene Wissenschaft. Etablierte und alternative Ansätze der Bibliometrie Vermessene Wissenschaft Etablierte und alternative Ansätze der Bibliometrie http://www.uni-hamburg.de/biologie/bioz/zis/hb/dieckhof.html LunchLesson zur Bibliometrie 19.03.2015 S. 2 http://www.uniklinikum-saarland.de/forschung/lom/

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorthmche Bonformatk HMM Algorthmen: Forward-Backward Baum-Welch Anwendung m equenzalgnment Ulf Leer Wenmanagement n der Bonformatk Formale Defnton von HMM Defnton Gegeben Σ. En Hdden Markov Modell t

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Selbstlernmodul bearbeitet von: begonnen: Inhaltsverzeichnis:

Selbstlernmodul bearbeitet von: begonnen: Inhaltsverzeichnis: bearbeitet von: begonnen: Fach: Englisch Thema: The Future Deckblatt des Moduls 1 ''You will have to pay some money soon. That makes 4, please.'' ''Oh!'' Inhaltsverzeichnis: Inhalt bearbeitet am 2 Lerntagebuch

Mehr

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich? KURZANLEITUNG Firmware-Upgrade: Wie geht das eigentlich? Die Firmware ist eine Software, die auf der IP-Kamera installiert ist und alle Funktionen des Gerätes steuert. Nach dem Firmware-Update stehen Ihnen

Mehr

Häufigkeit des Vorlesens innerhalb einer Woche

Häufigkeit des Vorlesens innerhalb einer Woche Anteil der Eltern Anteil der Eltern Anteil der Eltern 6. Anhang Auswertung Umfrage Eltern England/Deutschland Tabelle 1: Frage 2 Wie oft lesen Sie Ihrem Kind unter der Woche vor? Häufigkeit des Vorlesens

Mehr

Field Librarianship in den USA

Field Librarianship in den USA Field Librarianship in den USA Bestandsaufnahme und Zukunftsperspektiven Vorschau subject librarians field librarians in den USA embedded librarians das amerikanische Hochschulwesen Zukunftsperspektiven

Mehr

USB Treiber updaten unter Windows 7/Vista

USB Treiber updaten unter Windows 7/Vista USB Treiber updaten unter Windows 7/Vista Hinweis: Für den Downloader ist momentan keine 64 Bit Version erhältlich. Der Downloader ist nur kompatibel mit 32 Bit Versionen von Windows 7/Vista. Für den Einsatz

Mehr

Quadt Kunststoffapparatebau GmbH

Quadt Kunststoffapparatebau GmbH Quadt Kunststoffapparatebau GmbH Industriestraße 4-6 D-53842 Troisdorf/Germany Tel.: +49(0)2241-95125-0 Fax.: +49(0)2241-95125-17 email: info@quadt-kunststoff.de Web: www.quadt-kunststoff.de Page 1 1.

Mehr

Bachelorarbeit. Informatik. Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre

Bachelorarbeit. Informatik. Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre Bachelorarbeit Informatik Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre Eingereicht von Chris Jacobs Matrikel Nr.: 184239 Datum: 8. Mai 2012 Eidesstattliche

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

KOBIL SecOVID Token III Manual

KOBIL SecOVID Token III Manual KOBIL SecOVID Token III Manual Einführung Vielen Dank, dass Sie sich für das KOBIL SecOVID Token entschieden haben. Mit dem SecOVID Token haben Sie ein handliches, einfach zu bedienendes Gerät zur universellen

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

August Macke 1887-1914 Abschied, 1914 Museum Ludwig, Köln

August Macke 1887-1914 Abschied, 1914 Museum Ludwig, Köln August Macke 1887-1914 Abschied, 1914 Museum Ludwig, Köln Ideas for the classroom 1. Introductory activity wer?, was?, wo?, wann?, warum? 2. Look at how people say farewell in German. 3. Look at how people

Mehr

Tuesday 10 May 2011 Afternoon Time: 30 minutes plus 5 minutes reading time

Tuesday 10 May 2011 Afternoon Time: 30 minutes plus 5 minutes reading time Write your name here Surname Other names Edexcel IGCSE German Paper 1: Listening Centre Number Candidate Number Tuesday 10 May 2011 Afternoon Time: 30 minutes plus 5 minutes reading time You do not need

Mehr

Preisliste für The Unscrambler X

Preisliste für The Unscrambler X Preisliste für The Unscrambler X english version Alle Preise verstehen sich netto zuzüglich gesetzlicher Mehrwertsteuer (19%). Irrtümer, Änderungen und Fehler sind vorbehalten. The Unscrambler wird mit

Mehr

a lot of, much und many

a lot of, much und many Aufgabe 1, und In bejahten Sätzen verwendest du für die deutschen Wörter viel und viele im Englischen Bsp.: I have got CDs. We have got milk. There are cars on the street. Bei verneinten Sätzen und Fragen

Mehr

TomTom WEBFLEET Tachograph

TomTom WEBFLEET Tachograph TomTom WEBFLEET Tachograph Installation TG, 17.06.2013 Terms & Conditions Customers can sign-up for WEBFLEET Tachograph Management using the additional services form. Remote download Price: NAT: 9,90.-/EU:

Mehr

Sepiola Mockups. Overview. Show notes. Primäre Navigation anklicken um zum gewünschten Mockups zu gehen. Backup usage. Overview.

Sepiola Mockups. Overview. Show notes. Primäre Navigation anklicken um zum gewünschten Mockups zu gehen. Backup usage. Overview. Show notes usage Incremental s Free 35% 30% 35% 711 MB 598 MB 739 MB Quota: 2 GB change quota under Settings schedule Last s Successfull Tuesday, 19.3.09 12:16 Successfull Wednesday, 19.3.09 12:25 Successfull

Mehr

Mul$media im Netz (Online Mul$media) Wintersemester 2014/15. Übung 02 (Nebenfach)

Mul$media im Netz (Online Mul$media) Wintersemester 2014/15. Übung 02 (Nebenfach) Mul$media im Netz (Online Mul$media) Wintersemester 2014/15 Übung 02 (Nebenfach) Mul=media im Netz WS 2014/15 - Übung 2-1 Organiza$on: Language Mul=ple requests for English Slides Tutorial s=ll held in

Mehr

Werbemittel-Spezifikationen

Werbemittel-Spezifikationen Werbemittel-Spezifikationen Ein Angebot der Ein Angebot der Inhalt Allgemeines Seite 3 Allgemeine Flash-Spezifikationen Seite 4 Flash FunctionsforTracking Seite 5 Flash Functions for Expandable Banners

Mehr

https://portal.microsoftonline.com

https://portal.microsoftonline.com Sie haben nun Office über Office365 bezogen. Ihr Account wird in Kürze in dem Office365 Portal angelegt. Anschließend können Sie, wie unten beschrieben, die Software beziehen. Congratulations, you have

Mehr

B I N G O DIE SCHULE. Bingo card: Classroom Items. 2007 abcteach.com

B I N G O DIE SCHULE. Bingo card: Classroom Items. 2007 abcteach.com Bingo call sheet: Classroom Items Das Klassenzimmer die Tafel die Kreide die Uhr die Landkarte das Buch das Heft der Kugelschreiber die Füllfeder der Stuhl der Bleistift das Papier der Schreibtisch der

Mehr

Efficient Design Space Exploration for Embedded Systems

Efficient Design Space Exploration for Embedded Systems Diss. ETH No. 16589 Efficient Design Space Exploration for Embedded Systems A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Sciences presented by

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

How to develop and improve the functioning of the audit committee The Auditor s View

How to develop and improve the functioning of the audit committee The Auditor s View How to develop and improve the functioning of the audit committee The Auditor s View May 22, 2013 Helmut Kerschbaumer KPMG Austria Audit Committees in Austria Introduced in 2008, applied since 2009 Audit

Mehr

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena http://www.im.uni-jena.de Contents I. Learning Objectives II. III. IV. Recap

Mehr

AEZ Yacht & Yacht SUV highgloss high gloss. DOTZ MUGELLO schwarz glänzend / hornpoliert black / polished

AEZ Yacht & Yacht SUV highgloss high gloss. DOTZ MUGELLO schwarz glänzend / hornpoliert black / polished Top Seller AEZ Yacht & Yacht SUV highgloss high gloss DOTZ MUGELLO schwarz glänzend / hornpoliert black / polished Dimensionen / dimensions CHF x100 x10 x108 x110 x112 x114.3 x11 x x127 x130 6. x 1 38

Mehr

USBASIC SAFETY IN NUMBERS

USBASIC SAFETY IN NUMBERS USBASIC SAFETY IN NUMBERS #1.Current Normalisation Ropes Courses and Ropes Course Elements can conform to one or more of the following European Norms: -EN 362 Carabiner Norm -EN 795B Connector Norm -EN

Mehr

Informeller Brief Schreiben

Informeller Brief Schreiben preliminary note Every letter is something special and unique. It's difficult to give strict rules how to write a letter. Nevertheless, there are guidelines how to start and finish a letter. Like in English

Mehr

Wie bekommt man zusätzliche TOEFL-Zertifikate? Wie kann man weitere Empfänger von TOEFL- Zertifikaten angeben?

Wie bekommt man zusätzliche TOEFL-Zertifikate? Wie kann man weitere Empfänger von TOEFL- Zertifikaten angeben? Wie bekommt man zusätzliche TOEFL-Zertifikate? Wie kann man weitere Empfänger von TOEFL- Zertifikaten angeben? How do I get additional TOEFL certificates? How can I add further recipients for TOEFL certificates?

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan

Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan by Prof. Dr. Heinz-Dietrich Steinmeyer Introduction Multi-level pension systems Different approaches Different

Mehr

NEWSLETTER 25.03.2005 [ for english version click here ] Frohe Ostern! In dieser Ausgabe des Newsletters :

NEWSLETTER 25.03.2005 [ for english version click here ] Frohe Ostern! In dieser Ausgabe des Newsletters : NEWSLETTER 25.03.2005 [ for english version click here ] Frohe Ostern! In dieser Ausgabe des Newsletters : - ict (InCar Terminal) Update verfügbar mit vielen neuen Funktionen - ict Skin-Promo - MiniKey,

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

ReadMe zur Installation der BRICKware for Windows, Version 6.1.2. ReadMe on Installing BRICKware for Windows, Version 6.1.2

ReadMe zur Installation der BRICKware for Windows, Version 6.1.2. ReadMe on Installing BRICKware for Windows, Version 6.1.2 ReadMe zur Installation der BRICKware for Windows, Version 6.1.2 Seiten 2-4 ReadMe on Installing BRICKware for Windows, Version 6.1.2 Pages 5/6 BRICKware for Windows ReadMe 1 1 BRICKware for Windows, Version

Mehr

Kybernetik Intelligent Agents- Decision Making

Kybernetik Intelligent Agents- Decision Making Kybernetik Intelligent Agents- Decision Making Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 03. 07. 2012 Intelligent Agents Environment Agent Intelligent

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

microkontrol/kontrol49 System Firmware Update

microkontrol/kontrol49 System Firmware Update microkontrol/kontrol49 System Firmware Update Update Anleitung (für Windows) Dieses Update ist lediglich mit Windows XP kompatibel, versuchen Sie dieses nicht mit Windows 98/ME und 2000 auszuführen. 1.

Mehr

Group and Session Management for Collaborative Applications

Group and Session Management for Collaborative Applications Diss. ETH No. 12075 Group and Session Management for Collaborative Applications A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of Doctor of Technical Seiences

Mehr

Listening Comprehension: Talking about language learning

Listening Comprehension: Talking about language learning Talking about language learning Two Swiss teenagers, Ralf and Bettina, are both studying English at a language school in Bristo and are talking about language learning. Remember that Swiss German is quite

Mehr

Technical Thermodynamics

Technical Thermodynamics Technical Thermodynamics Chapter 1: Introduction, some nomenclature, table of contents Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building

Mehr

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

AS Path-Prepending in the Internet And Its Impact on Routing Decisions (SEP) Its Impact on Routing Decisions Zhi Qi ytqz@mytum.de Advisor: Wolfgang Mühlbauer Lehrstuhl für Netzwerkarchitekturen Background Motivation BGP -> core routing protocol BGP relies on policy routing

Mehr

Ingenics Project Portal

Ingenics Project Portal Version: 00; Status: E Seite: 1/6 This document is drawn to show the functions of the project portal developed by Ingenics AG. To use the portal enter the following URL in your Browser: https://projectportal.ingenics.de

Mehr

Einführung in die Robotik Steuerungsarchitekturen. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Steuerungsarchitekturen. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Einführung in die Robotik Steuerungsarchitekturen Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 29. 01. 2013 Steuerungsarchitekturen - Deliberative

Mehr

Lesen Sie die Bedienungs-, Wartungs- und Sicherheitsanleitungen des mit REMUC zu steuernden Gerätes

Lesen Sie die Bedienungs-, Wartungs- und Sicherheitsanleitungen des mit REMUC zu steuernden Gerätes KURZANLEITUNG VORAUSSETZUNGEN Lesen Sie die Bedienungs-, Wartungs- und Sicherheitsanleitungen des mit REMUC zu steuernden Gerätes Überprüfen Sie, dass eine funktionsfähige SIM-Karte mit Datenpaket im REMUC-

Mehr

Exkurs: Dynamische Optimierung

Exkurs: Dynamische Optimierung Exkurs: Dynamische Optimierung Kapitel 4 Literatur Optimierung Mathematical Methods and Models for Economists, Angel de la Fuente, Cambridge University Press Bibliothekssignatur: QH 000FUE Seite 549 580

Mehr

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler Decision Support for Learners in Mash-Up Personal Learning Environments Dr. Hendrik Drachsler Personal Nowadays Environments Blog Reader More Information Providers Social Bookmarking Various Communities

Mehr