Abbildung 1: Eine Sammlung verschiedener Münzen, die im weiteren Verlauf als Beispiel dienen wird.

Größe: px
Ab Seite anzeigen:

Download "Abbildung 1: Eine Sammlung verschiedener Münzen, die im weiteren Verlauf als Beispiel dienen wird."

Transkript

1 Allgemeine Chemie Computer Praktikum Herbstsemester Statistik Tutorial I Statistik und Datenauswertung - Grundbegriffe Original von Prof. Hanspeter Huber, Juni 2000, überarbeitet von Pascal Eberle, Juli Grundgesamtheit Die gesamte Menge der interessierenden Daten nennt man die Grundgesamtheit. Die Grundgesamtheit kann beispielsweise aus den Werten der Münzen im untenstehenden Bild bestehen und hat in diesem Fall den Umfang 7. Abbildung 1: Eine Sammlung verschiedener Münzen, die im weiteren Verlauf als Beispiel dienen wird. Die einzelnen Werte der Münzen - 5, 5, 10, 10, 20, 20 und 50 Rappen - sind die 7 Elemente der Grundgesamtheit. Die Grundgesamtheit kann aus einer endlichen Menge von Elementen bestehen, oder sie kann unendlich gross sein. In der Chemie haben wir es oft mit unendlichen Grundgesamtheiten zu tun. Messen wir beispielsweise den Druck in einer Vakuumlinie, so ist das Resultat mit einem gewissen Fehler behaftet. Um die Genauigkeit zu erhöhen, wiederholen wir die Messung mehrmals und bilden den Durchschnitt. Die Menge der grundsätzlich messbaren Drücke ist dann unendlich gross, da wir die Messung beliebig wiederholen können. Wir haben es in diesem Falle mit einer unendlichen Grundgesamtheit zu tun. Jedes mögliche Messresultat ist ein Element der Grundgesamtheit. Die Grundgesamtheit ist die Menge aller interessierender Daten Die Anzahl Elemente dieser Menge nennt man den Umfang der Grundgesamtheit Der Umfang kann endlich oder unendlich sein 2 Charakterisierung Eine Grundgesamtheit hat häufig soviele Elemente, dass eine Auflistung sehr aufwendig oder gar unmöglich ist. Man versucht dann, das Wesen der Grundgesamtheit durch einige wesentliche Eigenschaften der Grundgesamtheit zu erfassen. Man sagt auch, man charakterisiere die Grundgesamtheit durch diese Grössen. Typische Beispiele von solchen Eigenschaften einer Grundgesamtheit sind der Mittelwert und die Streuung. Der Mittelwert einer Grundgesamtheit wird allgemein mit dem griechischen Buchstaben µ, die Streuung durch σ abgekürzt. Abbildung 2 zeigt eine schematische Darstellung dieser zwei Werte. Die genaue Bedeutung der Begriffe wird im zweiten Teil dieses Tutorials erläutert. Abbildung 2: Beispiel von Mittelwert µ und Streuung σ an Hand einer Gauss schen Glockenkurve 1

2 3 Stichprobe Bisher haben wir die Grundgesamtheit und Möglichkeiten, sie durch Mittelwert und Streuung zu charakterisieren, behandelt. Eine Aufgabe der Statistik ist es jedoch, Verfahren anzugeben, die die Charakterisierung der Grundgesamtheit mit weniger Aufwand ermöglichen. Ist man zum Beispiel an den Grössen aller Baslerinnen und Basler interessiert, so ist es sehr aufwendig, deren Mittelwert und Streuung durch Messen aller Baslerinnen und Basler zu ermitteln. Die Statistik zeigt, dass man eine Schätzung für den Mittelwert und die Streuung der Grundgesamtheit erhalten kann, indem man eine Stichprobe aus der Grundgesamtheit entnimmt, und deren Charakteristiken bestimmt. Es genügt also beispielsweise 1000 zufällig ausgewählte Baslerinnen und Basler zu messen, um dann näherungsweise Aussagen über Mittelwert und Streuung der Grössen aller Baslerinnen und Basler zu machen. Diese Stichprobe hat dann den Umfang Der Mittelwert einer Stichprobe wird meist mit x, die Streuung durch s(x) abgekürzt Die Stichprobe ist eine Teilmenge der Grundgesamtheit Die Anzahl Elemente dieser Teilmenge nennt man den Umfang der Stichprobe Der Umfang der Stichprobe ist im allgemeinen endlich Grundgesamtheit und Stichprobe können charakterisiert werden, indem man einige wesentlichen Eigenschaften, wie ihren Mittelwert und ihre Streuung bestimmt 4 Darstellungen Eine Grundgesamtheit oder eine Stichprobe wird dargestellt, indem man alle ihre Elemente beschreibt. Handelt es sich um eine kleine Grundgesamtheit oder Stichprobe, wie am Beispiel der Münzen gezeigt, so kann man die Elemente in einer Tabelle darstellen: Wert der Münzen Sind sehr viele Werte, darunter auch gleich grosse, vorhanden, so ist die platzsparende Möglichkeit, jeden Wert der Eigenschaft zusammen mit seiner Häufigkeit zu tabellieren, vorzuziehen, wie hier am kleinen Beispiel oben gezeigt: Wert/Rappen Häufigkeit Dies trifft im allgemeinen für grosse Grundgesamtheiten von diskreten Werten zu. Oft zeigt eine Graphik besser als jede Tabelle, wie die Elemente sich auf die möglichen Werte verteilen. In Abbildung 3 sind auf der x-achse die möglichen Werte aufgetragen und auf der y-achse die Häufigkeit mit der sie in der Grundgesamtheit oder Stichprobe vertreten sind. Abbildung 3: Dargestellt ist die Häufigkeit der Elemente in Abhängigkeit des Wertes. Ist eine Grundgesamtheit kontinuierlich, teilt man sie am besten in Intervalle ein und untersucht, wieviele Werte in jedes Intervall fallen. Das ergibt wieder eine Tabelle mit 2 Kolonnen bzw. Zeilen, in Tabelle 1 am Beispiel der Geschwindigkeiten von 1 mol Wassermolekülen gezeigt. 2

3 Tabelle 1: Geschwindigkeit der Wassermoleküle in einem Mol mit Intervallbreite 100 m/s v/(m/s) f/(100m/s)/1e v/(m/s) f/(100m/s)/1e Eine entsprechende Darstellung, in der die Balkenbreite die gewählte Intervallbreite, und die Balkenhöhe die Zahl der Elemente im Intervall wiedergibt, nennt man ein Histogramm. Abbildung 4: Histogramm mit absoluten y-werten Dividiert man die Anzahl Elemente pro Balken durch den Umfang der Grundgesamtheit, d.h. normiert man, so stellt die Balkenhöhe die relative Häufigkeit, d.h. die Wahrscheinlichkeit dar, dass ein Wert in dem betreffenden Intervall liegt. Abbildung 5: Histogramm mit relativen y-werten Die Intervallbreite kann willkürlich festgelegt werden. Macht man sie aber zu klein, so fallen so wenige Elemente in ein Intervall, so dass deren Zahl ziemlich zufällig wird. Ist die Zahl der Elemente hingegen sehr gross oder gar unendlich, so kann die Intervallbreite sehr schmal, im Grenzfall unendlich klein, gemacht werden. Das Histogramm wird immer feiner aufgelöst und geht im Grenzfall in eine kontinuierliche Funktion, die Verteilungsdichte, über (Abbildung 6). Die Fläche unter der Kurve muss die Wahrscheinlichkeit 1 ergeben, da alle Moleküle irgendeine Geschwindigkeit haben müssen. Beachten Sie, dass die y-koordinate die inverse Dimension der x-koordinate haben muss, da die Fläche unter der Kurve multiplikativ aus x und y entsteht, und eine dimensionslose Grösse - eine Wahrscheinlichkeit - ist. 3

4 Abbildung 6: Beispiel einer Verteilungsfunktion. Gegeben ist die sogenannte Maxwell-Boltzmann Verteilung im Falle von molekularem Stickstoff N 2 bei 298 K. Grundgesamtheit und Stichproben können auf verschiedene Arten dargestellt wer- den. Endliche Grundgesamtheiten (auch diskrete Grundgesamtheiten genannt) oder Stichproben beispielsweise als: gewöhnliche Tabelle Tabelle der Elemente mit ihren Häufigkeiten Strichgraphik Histogramm Unendliche Grundgesamtheiten als: Tabelle mit Bereichen und deren Häufigkeiten Histogramm Verteilungsdichte 5 Fehlermodell Einfaches Fehlermodell Die wiederholte Messung des Drucks oder der Temperatur wurde als Beispiel erwähnt, bei dem eine unendliche Grundgesamtheit vorliegt, nämlich die prinzipiell beliebig oft wiederholbare Messung. Die effektiv durchgeführten Messungen bilden dann eine Stichprobe daraus. Eine Säure-Base-Titration ist ein weiteres Beispiel für eine solche Grundgesamtheit bzw. Stichprobe. Abbildung 7: Bildliche Erklärung von systematischem und zufälligem Fehler. Wäre die Messanordnung perfekt, würden alle Messwerte gleich dem exakten oder wahren Wert sein. In Wirklichkeit streuen sie bedingt durch den zufälligen Fehler um diesen Wert (oder um einen andern 4

5 Wert, wenn zusätzlich ein systematischer Fehler vorliegt), schematisch dargestellt in Abbildung 7. Es liegt also eine Verteilung der Messwerte vor. Wie sieht diese Verteilung, d.h. das Fehlermodell aus? Wir können uns einen Fehler aus vielen kleinen Teilfehlern zusammengesetzt denken und nehmen der Einfachheit halber an, dass diese kleinen Fehler alle absolut gleich gross seien, mit zufälligem Vorzeichen. Man kann sich dies als Serie von links/rechts Entscheidungen vorstellen, wie zum Beispiel auf einem Nagelbrett oder Galtonbrett ( Die so entstehende Verteilung wird Binomialverteilung genannt. Jenachdem wieviele links/rechts Entscheidungen getroffen werden, nähert sich die Verteilung immer mehr einer Normalverteilung an, wie in Abbildung 8 gezeigt. Abbildung 8: Wahrscheinlichkeitsverteilungen bei steigender Anzahl links/rechts Entscheidungen. Die folgende Formel zeigt die Normalverteilung für die Messgrösse x. ( ) 1 x a 2 ϕ(x) = 1 b 2π e 2 b Die Normalverteilung hat ihr Maximum für das x, das dem Mittelwert entspricht. Die Kurve ist schmal für kleine Werte von b und breit für grosse Werte. Abbildung 9 zeigt Normalverteilungen für verschiedene Werte a und b. (1) Abbildung 9: Links: a = 0, b = 1, 1.5, 2, 2.5, 3 (von schmal zu breit), rechts: a = 2, 1, 0, 1, 2 (von links nach rechts), b = 1. Abbildung 9 zeigt, was die Parameter a und b in der Normalverteilung bedeuten. Mit dem Mittelwert µ und der Streuung σ geht diese über in ( ) 1 x µ 2 ϕ(x) = 1 σ 2π e 2 σ. (2) Ausblick Das vorliegende Fehlermodell, resultierend in einer Normalverteilung der Messwerte, gibt die theoretische Grundlage dafür, dass wir bei der Mittelwertbildung und der Linearen Regression die Summe der Fehlerquadrate minimieren werden (ohne Beweis). Das Modell trifft häufig zu, aber nicht immer. In kritischen Fällen muss deshalb zuerst dessen Gültigkeit geprüft werden, beispielsweise durch sehr viele Messungen, deren Histogramm sich einer Normalverteilung angleichen sollte. Die Normalverteilung hat eine enorme Bedeutung in vielen Bereichen der Naturwissenschaften. Sie gilt häufig als Prototyp bzw. einfachste Annahme für eine Verteilung. So wie wir das hier am Beispiel 5

6 des Fehlers besprochen haben, ist sie oft der Grenzfall für die Verteilung einer Grösse, die sich aus vielen kleinen Teilen zusammensetzt. Beispielweise bewirken die vielen Stösse zwischen den Molekülen eines Gases, dass die Geschwindigkeitskomponenten entlang einer Richtung normalverteilt sind. Man unterscheidet den systematischen und den zufälligen (statistischen) Fehler Der systematische Fehler ergibt sich durch eine Abweichung vom wahren Wert in immer gleicher Richtung und um den gleichen Betrag, z.b. durch eine Fehleichung des Messinstruments Der zufällige Fehler entsteht durch Summierung vieler kleiner Fehlerquellen mit Abweichungen in positiver wie negativer Richtung, z.b. Ablesefehler, Temperaturschwankungen etc. Diese zufälligen Fehler (in unserem vereinfachten Modell von gleicher absoluter Grösse) ergeben eine Binomialverteilung, die bei vielen Fehlerquellen in eine Normalverteilung übergeht 6 Richtige Anzahl signifikanter Stellen Da beim wissenschaftlichen Rechnen die Anzahl signifikanter Stellen essentiell ist, wird hier noch kurz darauf eingegangen. Die signifikanten Stellen sind die Anzahl angegebener Ziffern ohne führende Nullen. Endende Nullen können je nach Fall signifikant sein. Die Stellen nach dem Komma in der Dezimalschreibweise werden als Nachkommastellen bezeichnet und sollten nicht mit den signifikanten Stellen verwechselt werden. Zahl signifikante Stellen Nachkommastellen Um mögliche Fehler zu vermeiden, wird empfohlen Messwerte in der wissenschaftlichen Schreibweise darzustellen. So ist zum Beispiel eindeutig, dass drei signifikante Stellen hat, dafür ist bei der Schreibweise 2100 die richtige Anzahl signifikanter Stellen nicht direkt ersichtlich. Falls der Wert eine Einheit hat, kann auch mit der richtigen Wahl des Einheitenvorsatzes sicher gestellt werden, dass die Anzahl signifikanter Stellen eindeutig ist. So ist die Angabe 2.10 km eindeutig (3 signifikante Stellen), 2100 m allerdings nicht (2, 3 oder 4 signifikante Stellen möglich). Als Beispiel soll der Umfang U eines Kreises berechnet werden. Für den Radius r des Kreises wurden 17.5 cm erhalten. Von π sind deutlich mehr signifikante Stellen bekannt. Der Umfang wird nun mit U = 2πr berechnet und nach dem Runden auf 3 signifikante Stellen wird der Wert U = 110 cm, beziehungsweise eindeutiger 1.10 m, erhalten. Obwohl der Radius auf einen Millimeter bekannt war, ist das Ergebnis nur auf einen Zentimeter genau! Dieses Modell der Fortpflanzung der signifikanten Stellen ist nur gültig, wenn die Werte in einem linearen Zusammenhang stehen. Bei komplexeren Zusammenhängen (z.b. exponetielle Abhängigkeit) muss die Fortpflanzung der Anzahl signifikanter Stellen mit anderen Methoden hergeleitet werden. Sie werden dazu im fünften Semester im Praktikum die sogenannte Fehlerrechnung kennenlernen, womit die Fortpflanzung der Genauigkeit, beziehungsweise des Fehlers, hergeleitet werden kann. 6

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung Einführung Fehlerrechnung Bei jeder Messung, ob Einzelmessung oder Messreihe, muss eine Aussage über die Güte ( Wie groß ist der Fehler? ) des Messergebnisses gemacht werden. Mögliche Fehlerarten 1. Systematische

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2

Maurizio Musso, Universität Salzburg, ver Physikalische Grundlagen der Meßtechnik. Teil 2 Teil 2 Auswertung von Messungen, zufällige oder statistische Abweichungen Auswertung direkter Messungen Häufigkeitsverteilung, Häufigkeitsfunktion Mittelwert, Standardabweichung der Einzelwerte Standardabweichung

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Einführung. Fehlerarten

Einführung. Fehlerarten Einführung Jede Messung ist mit einer Messunsicherheit behaftet. Die Unsicherheit bezieht sich dabei nicht auf eine falsche Durchführung der Messung, sondern auf die Tatsache, dass jede von einem Menschen

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Begleitmaterial zur Vorlesung. Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen

Begleitmaterial zur Vorlesung. Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen Institut für Technische Thermodynamik und Kältetechnik Leiter: Prof. Dr.-Ing. K. Schaber Begleitmaterial zur Vorlesung Fehlerrechnung und Fehlerabschätzung bei physikalischen Messungen Verfasst von Dr.

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

Kapitel III: Einführung in die schließende Statistik

Kapitel III: Einführung in die schließende Statistik Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab Enrico Mank. Praktikumsbericht: Galton-Brett Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Enrico Mank Praktikumsbericht: Galton-Brett Inhaltsverzeichnis Inhaltsverzeichnis I. Theoretische Grundlagen 2 1. Zentraler Grenzwertsatz 2 2. Binomialverteilung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

1 Verteilungsfunktionen, Zufallsvariable etc.

1 Verteilungsfunktionen, Zufallsvariable etc. 4. Test M3 ET 27 6.6.27 4. Dezember 27 Regelung für den.ten Übungstest:. Wer bei den Professoren Dirschmid, Blümlinger, Vogl oder Langer die UE aus Mathematik 2 gemacht hat, sollte dort die WTH und Statistik

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

In den letzten zwei Abschnitten wurde die tatsächliche Häufigkeitsverteilung bzw. prozentuale Häufigkeitsverteilung abgehandelt.

In den letzten zwei Abschnitten wurde die tatsächliche Häufigkeitsverteilung bzw. prozentuale Häufigkeitsverteilung abgehandelt. .3.3 Theoretisch-prozentuale Häufigkeitsverteilung In den letzten zwei Abschnitten wurde die tatsächliche Häufigkeitsverteilung bzw. prozentuale Häufigkeitsverteilung abgehandelt. Charakteristisch für

Mehr

Binomialverteilung Vertrauensbereich für den Anteil

Binomialverteilung Vertrauensbereich für den Anteil Übungen mit dem Applet Binomialverteilung Vertrauensbereich für den Anteil Binomialverteilung Vertrauensbereich für den Anteil 1. Statistischer Hintergrund und Darstellung.... Wie entsteht der Vertrauensbereich?...

Mehr

Übungen mit dem Applet Wahrscheinlichkeitsnetz

Übungen mit dem Applet Wahrscheinlichkeitsnetz Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund... 1.1 Verteilungen... 1. Darstellung von Daten im Wahrscheinlichkeitsnetz...4 1.3 Kurzbeschreibung

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

4L Die Normalverteilung

4L Die Normalverteilung L. Normalverteilung L Die Normalverteilung Zufallsverteilungen lassen sich in der Natur gut beobachten, denn die Natur setzt bei ihrer Fortpflanzungsstrategie auf den totalen Überfluss. So ergab zum Beispiel

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten.

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten. Seite 1 / 6 H.C. iehuus Fehlerrechnung Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten. Systematische Fehler erzeugen systematische Effekte. Falsch kalibrierte

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1 SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter Erwartsungswert und Varianz

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.3 Kinetische Gastheorie................................. 4.1 4.3.1

Mehr

Einführung in die Fehlerrechnung. Einleitung. Die Unvermeidbarkeit von Unsicherheiten. Warum muss man die Grösse der Unsicherheit kennen?

Einführung in die Fehlerrechnung. Einleitung. Die Unvermeidbarkeit von Unsicherheiten. Warum muss man die Grösse der Unsicherheit kennen? Einführung in die Fehlerrechnung Einleitung Die Fehlerrechnung hat den Zweck, Unsicherheiten in Messungen zu untersuchen und zu evaluieren. Die Erfahrung zeigt, dass jede, auch die am sorgfältigsten ausgeführte

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 5: statistische Auswertung gleichgenauer Messungen Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich 3 Inhaltsverzeichnis

Mehr

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900 Was ist Physik? Das Studium der uns umgebenden Welt vom Universum bis zum Atomkern, bzw. vom Urknall bis weit in die Zukunft, mit Hilfe von wenigen Grundprinzipien. Diese gesetzmäßigen Grundprinzipien

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Notgepäck Genauigkeit

Notgepäck Genauigkeit Notgepäck Genauigkeit Beat Hulliger Dienst Statistische Methoden, Bundesamt für Statistik 20.4.2006 1 Was ist Genauigkeit genau? Um zu beschreiben, was Genauigkeit in der Statistik ist, müssen wir untersuchen,

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert

Normalverteilung. Erwartungswert, Median und Modus sind identisch. Symmetrieeigenschaft um den Erwartungswert Normalverteilung Stetige Wahrscheinlichkeitsverteilung, die zahlreiche natur, wirtschafts und sozialwissenschaftliche Merkmalsausprägungen mit guter Näherung abbilden kann und somit von elementarer Bedeutung

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Bevölkerungs-Mittelwert 99 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

STATISTISCHE METHODEN UND IHRE ANWENDUNGEN

STATISTISCHE METHODEN UND IHRE ANWENDUNGEN STATISTISCHE METHODEN UND IHRE ANWENDUNGEN Von Dr. rer. nat. Erwin Kreyszig o. Professor für Statistik an der Universität Karlsruhe mit 82 Abbildungen und zahlreichen Tabellen Vierter, unveränderter Nachdruck

Mehr

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung

Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung 1 Schnellkurs und Übersicht zur Gröÿtfehlerabschätzung und Fehlerrechnung Zum Messergebnis gehören immer eine Fehlerangabe und nur signikante Stellen 1 Beim Messen arbeiten wir mit Näherungswerten! Selbst

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Statistische Inferenz

Statistische Inferenz Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet, dass sie repräsentativ

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Noémie Becker & Dirk Metzler 15. April 2016 Inhaltsverzeichnis 1 Der Standardfehler 1 1.1 Ein Versuch............................................

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

PRAKTIKUM Grundlagen der Messtechnik. VERSUCH GMT 01 Auswertung von Messreihen

PRAKTIKUM Grundlagen der Messtechnik. VERSUCH GMT 01 Auswertung von Messreihen 1 Fachbereich: Fachgebiet: Maschinenbau Mess-, Steuerungs- und Regelungstechnik Prof. Dr.-Ing. habil. Michael Kaufmann PRAKTIKUM Grundlagen der Messtechnik VERSUCH GMT 01 Auswertung von Messreihen Version

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

IF0. Modul Fehlerrechnung. Fehleranalyse

IF0. Modul Fehlerrechnung. Fehleranalyse IF0 Modul Fehlerrechnung Fehleranalyse In diesem einführenden Versuch wird mittels eines Pendels die sinnvolle Durchführung und Auswertung eines wissenschaftlichen Experimentes veranschaulicht. Des Weiteren

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung 1 Einführung in die Fehlerrechnung liederung 1. Motivation. Fehlerarten 1. robe Fehler. Systematische Fehler 3. Zufällige Fehler 3. Rechnerische Erfassung der Messabweichungen 1. Fehlerabschätzung einmaliges

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Physik Fehlerrechnung

Physik Fehlerrechnung Physik Fehlerrechnung 1. Abschätzung des wahren Messwertes 1.1. Systematische/zufällige Fehler 1.. Mittelwert, Varianz 3 1.3. Gaußverteilung 5 1.4. Vertrauensbereich 6 1.5. Vergleich von Messwerten 8 1.6.

Mehr

Pkt. Aufg.1: Aufg.2: Aufg.3: Aufg.4: Aufg.5:

Pkt. Aufg.1: Aufg.2: Aufg.3: Aufg.4: Aufg.5: Klausurbeispiel zu den Vorlesungen Statistik für Ingenieure/Stochastik sowie Datenanalyse und Statistik (Herbstsemester 00/003) Die Lösungen der Aufgaben sind jeweils in dieser grünen Farbe dargestellt!

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Statistische Inferenz

Statistische Inferenz Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation (meistens) Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet,

Mehr

ELEMENTARE EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK

ELEMENTARE EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK DIETER RASCH ELEMENTARE EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK MIT 53 ABBILDUNGEN UND 111 TABELLEN ZWEITE, BERICHTIGTE UND ERWEITERTE AUFLAGE s-~v VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1970

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, FB 1, Fach Soziologie Das Problem SozialwissenschaftlerInnen erheben sehr oft Daten aus Stichproben. Es

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr