Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung

Größe: px
Ab Seite anzeigen:

Download "Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung"

Transkript

1 d Gewöhnliche Differentialgleichungen Woche 0 Spezielles für zweite Ordnung 0. Phasenebene Wenn wir die autonome Differentialgleichung zweiter Ordnung u (t = f (u(t, u (t (0. studieren wollen, ist ein möglicher Ansatz, diese Gleichung als System zu betrachten: { u (t = v(t, v (0. (t = f (u(t, v(t. Wenn (u, v (v, f (u, v lokal die Lipschitz-Bedingung erfüllt, und sie ist erfüllt, wenn f differenzierbar ist, dann hat das Anfangswertproblem für (0. genau eine Lösung. Dieses Ergebnis kann man auch für (0. anwenden. Lemma 0. Nehmen wir an, dass für jedes beschränkte Gebiet Ω R eine Konstante L Ω R + existiert so, dass f (u, v f (ū, v L Ω ( u ū + v v für alle (u, v, (ū, v Ω. (0.3 Dann hat das Anfangswertproblem u (t = f (u(t, u (t, u(a = u 0, u (a = v 0, (0. für jeden Anfangswert (u 0, v 0 R genau eine Lösung u C (t, t + mit t < a < t + und (t, t + ist das maximale Existenzintervall. Beweis. Man zeigt direkt, dass (0.3 gleichwertig ist zu einer lokalen Lipschitzbedingung für (u, v (v, f (u, v. Der Existenz- und Eindeutigkeitsatz liefert uns eine eindeutige Lösung für (0. mit maximalem Existenzintervall (t, t +. Für diese Lösung t (u(t, v(t gilt u, v C (t, t + und weil u = v C (t, t + folgt u C (t, t +. Die Menge der Trajektorien zu (0. nennt man auch die Phasenebene für (0.. 05

2 06. Dezember 08 Woche 0, Spezielles für zweite Ordnung Beispiel 0. Wie wir später noch genauer sehen werden, gehört zu einem Pendel, mit Reibung proportional zur Geschwindigkeit, die folgende Differentialgleichung: θ (t = c sin θ(t c θ (t. Wir nehmen c = und c = 3. Vernünftige explizite Formeln für die Lösungen gibt es nicht. Man kann das Vektorfeld für das zugehörige System ( θ(t ψ(t = ( ψ(t c sin θ(t c ψ(t Π 3 Π skizzieren und Trajektorien darstellen, wenn man Kurven durch die Vektoren zieht. Auch numerische Approximationen lassen sich herstellen und als Trajektorien darstellen: 3 7 Π 6 Π 5 Π Π 3 Π Π Π Π Π 3 Π Π 5 Π 6 Π 7 Π 0. Differentialgleichung für Trajektorien Wenn eine Trajektorie {(u(t, u (t ; t (t, t + } für die Differentialgleichung in (0. lokal der Graph einer Funktion ist, hat man diese letzte Funktion als Lösung einer neuen Differentialgleichung. Man setze V (u(t = u (t (0.5 und finde f (u(t, u (t = u (t = t V (u(t = V (u(t u (t. Setzen wir nochmals (0.5 ein und betrachten wir nun u V (u, dann folgt f (u, V (u = V (u V (u. Das heißt, die Funktion V ist eine Lösung von V (u = f (u, V (u. (0.6 V (u Dies gibt uns eine alternative Möglichkeit, die Gleichung in (0. als System zu schreiben: { u (t = v(t ( u (t = f (u(t, u (t ( v (t = f (u(t, u (t (3 V (u = f (u, V (u V (u u (t = V (u(t (0.7

3 0.3 Feder und Pendel. Dezember Der Vorteil von (3 ist, dass dieses System zwei Gleichungen erster Ordnung hat, die man nacheinander lösen kann. Der Nachteil ist, dass V 0 gelten soll. Wenn man eine autonome Differentialgleichung zweiter Ordnung hat, die keine erste Ordnungstermen enthält, also u (t = f(u (0.8 dann ist diese Aufspaltung sehr nützlich. Die Differentialgleichung in (0.6 vereinfacht sich zu V (u = f (u V (u und diese lässt sich oft explizit lösen. Via V (uv (u = f (u findet man V (u V (u 0 = u u 0 f(sds. Bemerkung 0.. Die Gleichung (0.8 kann man auch direkt mit u (t multiplizieren u (tu (t = f(uu (t. Kennt man eine Stammfunktion F von f so folgt: ( t u (t = F (u (t t und die Abhängigkeit von u (t und u (t wird: Dann gilt u (t = V (u (t für 0.3 Feder und Pendel u (t = F (u (t + C mit C R. V (u = ± F (u + C mit C R. Einfache Modelle für eine Feder oder ein Pendel haben die Form (0.8. Aus der Physik kennt man: Das zweite Newtonsche Gesetz: Kraft gleicht Masse mal Beschleunigung: F N = m a. Bei einer perfekten Schraubenfeder nimmt man das Hookesche Gesetz: Kraft ist proportional zur Auslenkung: F H = c u. Das dritte Newtonsche Gesetz: Actio est reactio: F N + F H = 0. Weil für die Beschleunigung a gilt, dass a = u, folgt u = c u. (0.9 m Für eine Blattfeder ist das Hookesche Gesetz nicht passend. Dann hat man statt des Hookeschen Gesetzes F = f(u, wobei f ein Profil hat wie in Abbildung 0. und die Differentialgleichung wird u = f(u. (0.0

4 08. Dezember 08 Woche 0, Spezielles fu r zweite Ordnung F 5 3 u Abbildung 0.: Aus Wikipedia links einige Federkennlinien als Funktion der Kraft u ber den Federweg: progressiv Bsp. Kfz-Blattfeder; linear Bsp. Schraubenfeder; 3 degressiv; na herungsweise konstant Bsp. Kupplungsfeder Auto; 5 nicht glatt z.b. durch auf Block setzen einiger Federteile. Rechts einige Beispiele unterschiedlicher Federn. Der Floh ist von Hooke. Fu r das Pendel hat man auch die beiden Newtonschen Gesetze. Statt des Hookeschen Gesetzes wird im Modell nun die Schwerkraft FS = m g eine Rolle spielen. Im Modell beschreibt man die Auslenkung u durch den Winkel θ, also u(t = ` θ(t, und findet mit der Projektion der Schwerkraft auf der tangentialen Richtung m g sin θ, bei der ` die La nge und m die Masse des Pendels ist, dass θ ` m ` θ00 (t = m g sin (θ(t FS sin θ und vereinfacht dies zu θ θ00 (t = FS FS cos θ g sin (θ(t. ` (0. Auch diese Differentialgleichung hat die Form von (0.0, na mlich u00 = f (u. Schreibt man (0.0 als System wie in (0.7 mit v (t = u0 (t dann wird es: 0 u (t v(t =. (0. v 0 (t f (u(t Lemma 0.3 Sei f C und (u0, 0 ein Gleichgewichtspunkt fu r (0.. Dann gilt fu r die Eigenwerte λ, λ der Linearisierung in (u0, 0, dass λ = λ und λ R oder λ ir. Außerdem: Wenn λ, λ R\ {0}, dann ist (u0, 0 ein Sattelpunkt fu r (0.; Wenn λ, λ ir\ {0}, dann ist (u0, 0 neutral stabil fu r (0.. Robert Hooke ( hatte breite wissenschaftliche Interessen. Er hatte eine Professur fu r Geometrie, formulierte das nach ihm benannte Fundamentalgesetz der Elastizita t, baute eine der ersten Taschenuhren und auch einen optischen Telegrafen. Das Bild des Flohs aus seinem Micrographia (665 ist sogar heutzutage noch bekannt. Siehe

5 0.3 Feder und Pendel. Dezember Bemerkung 0.3. Man bemerke, dass v 0 = 0 kein Verlust der Allgemeinheit beinhaltet, denn für einen Gleichgewichtspunkt (u 0, v 0 von (0. gilt v 0 = 0 und f(u 0 = 0. Bemerkung 0.3. Mit einem Sattelpunkt ist gemeint, dass es bei (u 0, 0 eine stabile Richtung und eine instabile Richtung hat im Sinne von Theorem 8.7. Beweis von Lemma Die Linearisierung ist ( ( x (t 0 y = (t f (u 0 0 und für die Eigenwerte gilt λ = f (u 0 und λ = λ. Wenn f (u 0 > 0, dann gilt λ = λ = f (u 0 R + und wir können Theorem 8.7 anwenden. Betrachten wir nun den Fall f (u 0 < 0, also λ, λ ir. Auch gilt für f (u 0 < 0, dass u F (u := u u 0 f(sds in u 0 ein lokales Maximum hat, denn F (u 0 = f(u 0 = 0 und F (u 0 = f (u 0 < 0. Dann ist eine Lyapunov-Funktion: V (u 0, 0 = 0; V (u, v := v F (u Weil f C folgt F = f C 0 und es gilt F (u = F (u 0 + f(u 0 (u u 0 + f (u 0 (u u 0 + O (u u 0 = = f (u 0 (u u 0 + O (u u 0 f (u 0 (u u 0 für u u 0 genügend klein. Dann folgt in einer (kleinen Umgebung von (u 0, 0, dass V (u, v > 0; Auch gilt: ( f(u V (u, v = v ( v f(u = 0. (0.3 Theorem 9.7 liefert die Stabilität. Die Tatsache, dass der Punkt nur neutral stabil ist, folgt auch aus (0.3, denn für eine Lösung (u(t, v(t gilt t V (u(t, v(t = V (u(t, v(t = 0. Dies bedeutet V (u(t, v(t = c = V (u(0, v(0 und dass für (u(0, v(0 (0, 0 die Lösung nicht nach (0, 0 konvergiert. Beispiel 0. Wie soeben hergeleitet, gehört zu einem Pendel ohne Reibung die Differentialgleichung θ (t = c sin θ(t. Wir nehmen c = und betrachten θ (t = sin θ(t. Dies wird wie in (0.7-(3 V (θ = sin θ V (θ.

6 0. Dezember 08 Woche 0, Spezielles für zweite Ordnung Man findet via V (θ V (θ = sin θ und V (θ = c + cos θ, dass V (θ = ± c + cos θ. In drei Schritten zeichnet man einige Trajektorien. Die Funktion θ cos θ und einige vertikale Verschiebungen θ c + cos θ Man betrachtet nur die Kurven in R R + und nimmt die Wurzeln: θ c + cos θ Die Trajektorien findet man, wenn man ± c + cos θ kombiniert Reibung Reibungskräfte sind abhängig von der Geschwindigkeit und gegengesetzt zur Geschwindigkeit. Wenn u die Auslenkung darstellt ist u die Geschwindigkeit und es ändert sich die Differentialgleichung in (0.0 in u = f (u g(u. Hier ist g eine Funktion, die folgende Bedingung erfüllt: g (s > 0 für s > 0 und g (s < 0 für s < 0.

7 0.3 Feder und Pendel. Dezember 08 Wenn g stetig ist, folgt g (0 = 0. Wenn dann f (u = 0 gilt, ist (u, 0 ein Gleichgewichtspunkt für ( ( u (t v(t v = (t f(u(t g(u. (0. (t Wenn g auch noch differenzierbar ist, dann kann man bei (u, 0 linearisieren und findet als linearisiertes System ( x (t y (t ( = 0 f (u g (0 ( x(t y(t. (0.5 Wir betrachten den Fall, dass f (u < 0 ist. Wenn die Reibung bei 0 im Verhältnis klein ist, die genaue Bedingung ist g (0 < f (u, dann hat diese Matrix die Eigenwerte λ, = g (0 ± i f (u g (0. Das bedeutet, dass, wenn (u, 0 ein neutral stabiler Gleichgewichtspunkt für (0. ist, (u, 0 ein exponentiell stabiler Gleichgewichtspunkt für (0. ist. Man könnte sagen Reibung macht stabiler. Leider sind Reibungskräfte oft nicht differenzierbar und manchmal sogar nicht mal stetig abhängig von der Geschwindigkeit. 3 ' Abbildung 0.: Reibungskräfte als Funktion der Geschwindigkeit: linear (Coulombsche Reibung; Flüssigkeitsreibung und Gasreibung; 3 Reibung mit Stick-Slip-Effekt. Beispiel 0.5 Zieht man einen Block (m = mit Geschwindigkeit v = an einer Schraubfeder (lineare Federkennlinie mit Konstante c = aus Stillstand ab, dann wird dies modelliert durch das Anfangswertproblem { u (t = c (v t u(t c w f(u (t u(0 = 0 und u (0 = 0.

8 . Dezember 08 Woche 0, Spezielles für zweite Ordnung Nimmt man c w = 0 und setzt man für f Funktionen ein wie in Abbildung 0., nämlich f (s = s, f (s = 3 s3 und f 3 (s = sign(s arctan (5 s, (0.6 so findet man mit Hilfe von numerischen Approximationen die Bilder in Abbildung 0.3. Beim dritten Graphen sieht man den Slip-Stick-Effekt. Wo bei den ersten beiden der Block eine monoton wachsende Geschwindigkeit hat, sieht man im dritten, dass die Geschwindigkeit auf und ab geht. Besser gesagt, der Block schießt erst los, wenn genügend gezogen wird, bleibt kurz liegen, schießt wieder los, usw. Übrigens ist diese Funktion f 3 für s 0 nur eine Möglichkeit, wie eine solche Reibung aussehen könnte. Die Haftreibung, also die maximale Reibung bei Stillstand, ist größer als die Reibung, wenn der Block sich bewegt. Das bedeutet auch, dass die Reibungskraft bei Stillstand nicht festliegt, sondern einen Wert zwischen einer positiven oberen Schranke und einer negativen unteren Schranke annimmt. Schaut man das Anfangswertproblem mit f 3 an, dann sieht man, dass es so auch überhaupt keine Lösung gibt. Es kann nur eine Lösung geben, wenn man den Sprung von f 3 bei 0 auffüllt. Das heißt, sowohl aus physikalischen als auch aus mathematischen Gründen brauchen wir statt f 3 eine mehrwertige Funktion: f 3 (s = arctan(5 s für s > 0, [, ] für s = 0, arctan(5 s für s < Abbildung 0.3: In rot die Position vt und in blau u(t bei den verschiedenen f i, i =,, 3 aus (0.6 und Abbildung 0..

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung Gewöhnliche Differentialgleichungen Woche 7 Globale Existenz einer Lösung 7.1 Von lokal zu global Wir betrachten wiederum das Anfangswertproblem { y (x = f (x, y(x, y( = y 0. (7.1 Eine erste Erweiterung

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung,

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, Phasenebene Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, können als Kurven u = f (u, u ), t (u(t), v(t)), v = u, in der sogenannten Phasenebene visualisiert werden. Dabei verläuft

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Mathematik Teil 2: Differentialgleichungen

Mathematik Teil 2: Differentialgleichungen Mathematik Teil 2: Differentialgleichungen M. Gutting Fakultät IV, Department Mathematik 19. Juni 2017 Natürliches Wachstum/Zerfall Wachstum/Zerfall (Zinsen, Population / Radioaktiver Zerfall) verhält

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

32.8 Die lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

32.8 Die lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten 3 Die lineare Differentialgleichung. Ordnung mit konstanten Koeffizienten 3.1 Lösungsbegriff für explizite Differentialgleichungen n-ter Ordnung 3. Das Anfangswertproblem für explizite Differentialgleichungen

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Februar 07 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am 22.11.2008 Universität des Saarlandes Aufgabe 1.1: Gegeben ist der schematische Aufbau eines Mischers: Auf den Antriebsstrang Antriebsstrang

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 6/7 7. Vorlesung Michael Karow Themen heute:. Die rechte Seite einer DGL als Vektorfeld.. Stabilität Die Ableitung einer Kurve Sei J R ein Intervall und y : J

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Projektarbeit Simulation eines Mathematischen Pendel

Projektarbeit Simulation eines Mathematischen Pendel Vorlesung: Numerische Mathematik SS04 Projektarbeit Simulation eines Mathematischen Pendel Heinrich Mellmann Matey Mateev Leiter: Dr. René Lamour 15. Oktober 2004 2 Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Übungsaufgaben Mathematik III MST

Übungsaufgaben Mathematik III MST Übungsaufgaben Mathematik III MST Lösungen zu Blatt Differentialgleichungen Prof. Dr. B.Grabowski Zu Aufgabe ) Zu a) lassifizieren Sie folgende Differentialgleichungen nach folgenden riterien: -Ordnung

Mehr

Analysis 2, Woche 3. Differentialgleichungen I. 3.1 Eine Einleitung

Analysis 2, Woche 3. Differentialgleichungen I. 3.1 Eine Einleitung Analysis, Woche 3 Differentialgleichungen I 3 Eine Einleitung Eine Differentialgleichung beschreibt eine Beziehung zwischen Ableitungen einer Funktion oder Vektorfunktion und dieser Funktion selbst Die

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

8.1 Begriffsbestimmung

8.1 Begriffsbestimmung 8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA : Table of Contents 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik: 5 Deskriptive Statistik

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 2

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 2 Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt Aufgabe : a Zeigen Sie: Für alle Anfangsdaten u 0, t 0 R R hat das Anfangswertproblem

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1/3 Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am 06. 10. 2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer:

Mehr

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung:

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung: H.J. Oberle Differentialgleichungen I WiSe 2012/13 A. Allgemeines. 8. Stabilität Wir betrachten ein allgemeines DGL-System erster Ordnung: y (t) = f(t, y(t)) (8.1) mit y(t) R n, hinreichend glatter rechter

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994.

Numerische Verfahren für gewöhnliche Differentialgleichungen. Literaturliste. P.Deuflhard, F.Bornemann: Numerische Mathematik II, De Gruyter, 1994. Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 37 Wir haben schon im ersten Semester gewöhnliche Differentialgleichungen samt einiger Lösungsverfahren besprochen. Dort ging

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen

Numerische Verfahren für gewöhnliche Differentialgleichungen Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

Gleichgewicht in nichtlinearen Systemen

Gleichgewicht in nichtlinearen Systemen Gleichgewicht in nichtlinearen Systemen 15.Juni.2015 Inhaltsverzeichnis 1 Einleitung 1 2 Einleitende Beispiele 1 3 Nichtlineare Quellen und Senken 4 4 Nichtlineare Sättel 6 5 Stabilität und Gradientensysteme

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1 Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dnamische Ssteme Musterlösungen zu Aufgabenblatt Aufgabe : Sei A 0 4. a Bestimmen Sie für jeden Anfangswert 0 R das Verhalten

Mehr

Differentialgleichungen I

Differentialgleichungen I Universität Hamburg Fachbereich Mathematik Differentialgleichungen I Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2012/13 Literatur. R. Ansorge, H.J. Oberle, K. Rothe, Th. Sonar: Mathematik

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur Physik I für Chemiker Prof. Dr. M. Agio Lösung zu Aufgabe 1: Schiefe Ebene i) Siehe Zeichnung

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

3. Ebene Systeme und DGL zweiter Ordnung

3. Ebene Systeme und DGL zweiter Ordnung H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 2. Vorlesung Themen heute: Michael Karow 1. Explizite Differentialgleichungen 1.Ordnung 2. Geometrische Deutung: Richtungsfelder und Integralkurven 3. Anfangswertprobleme

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Satz von Peano. Sei f stetig und beschränkt auf

Satz von Peano. Sei f stetig und beschränkt auf Satz von Peano Sei f stetig und beschränkt auf { } Q ab := (t,y) R n+1 : t t 0 a; y y 0 b mit f(t,y) M und α := min(a, b M ). Dann besitzt das Anfangswertproblem y = f(t,y), y(t 0 ) = y 0 Giuseppe Peano

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Skript zur Vorlesung Analysis 3

Skript zur Vorlesung Analysis 3 Skript zur Vorlesung Analysis 3 Herbstsemester 204 Prof. Benjamin Schlein Inhaltsverzeichnis Gewöhnliche Differentialgleichungen 2. Differentialgleichungen erster Ordnung, elementare Lösungsmethoden..

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr