Lineares Gleichungssystem - n = 3

Größe: px
Ab Seite anzeigen:

Download "Lineares Gleichungssystem - n = 3"

Transkript

1 Lineares Gleichungssystem - n = 3. Problemstellung Für Unbekannte ist das Gleichungssystem geometrisch äquivalent der Suche nach einem Schnittpunkt zweier Geraden in R. Für 3 Unbekannte ist das Äquivalent die Suche nach einem Schnittpunkt dreier Ebenen in R 3. Für n = gab es nur 3 Möglichkeiten: a) die Geraden schneiden sich, b) sind parallel, c) sind äquivalent. Für n = 3 gibt es Möglichkeit für gemeinsamen Punkt, den Schnittpunkt. Die Lösung des Linearen Gleichungssystems enthält dann keinen Parameter. Es gibt Möglichkeit, dass 3 Ebenen identisch sind. Dazu kommt eine Reihe anderer Situation, zwei parallele Ebenen, verschiedene Schnittgeraden, usw.. Allgemein gültige Entscheidung n = Anzahl der Unbekannten rang(a) = rang(a c) = n Lösung rang(a) = rang(a c) < n Lösungen (freie Parameter) rang(a) rang(a c) keine Lösung "Lösung" bedeutet geometrisch Schnittpunkt. Damit ist vor einer detaillierten Angabe klar, dass " Lösung" einem Schnittpunkt der 3 Ebenen entspricht, " Lösungen" Schnittgerade oder identische Ebene bedeuten muss und unter "keine Lösung" die parallele Ebene vorkommen muss. Die verschiedenen geometrischen Möglichkeiten werden konkret gezeigt und mit jeweils einem Zahlenbeispiel vorgerechnet. Welche Ränge sind bei überbestimmten Gleichungssystemen - entsprechend mehr als drei Ebenen - möglich? Der Rang der Koeffizientenmatrix ist maximal 3. Es liegen 3 Spalten vor. Damit ist der Spaltenrang maximal 3. Für mehr als 3 Zeilen ist daher der Zeilenrang auch maximal 3. (Rang = Spaltenrang = Zeilenrang!) Es liegt lineare Abhängigkeit vor, die nur "mit einem Blick" nicht mehr einfach zu erkennen ist. Der Rang der erweiteren Matrix ist maximal 4. Es liegen 4 Spalten vor. Auch hier muss für mehr als 4 Zeilen eine lineare Abhängigkeit bestehen. Eine vorhandene Lösung (gleiche Ränge) kann durch eine weitere Zeile verschwinden, aber nicht neu durch eine weitere Zeile entstehen. Die geometrischen Situationen bei überbestimmten Gleichungssystemen enthalten Kombinationen der 8 Grundtypen des Systems mit 3 Zeilen. Z5 Lineares Gleichungssystem, n = 3 - Seite (von 8)

2 3. Detaillierte Entscheidung (3 Gleichungen, also 3 Ebenen) Fall rang(a) rang(a c) geometrisch (Lage Ebenen) verschieden Schnittpunkt A 3 parallel, 3. schneidet parallele Schnittgeraden B 3 3 verschieden 3 verschiedene Schnittgeraden 3A 3 verschieden gemeinsame Schnittgerade 3B identisch, 3. schneidet Schnittgerade 4A 3 parallel kein Schnitt-Objekt 4B identisch, 3. parallel Schnittebene 5 3 identisch gemeinsame Schnittebene Z5 Lineares Gleichungssystem, n = 3 - Seite (von 8)

3 4. Beispiele Die Ebenen entsprechen den Zeilen des Linearen Gleichungssystems, sind damit also als Koordinatengleichung definiert. Die verschiedenen Ebenen werden den Zeilen zugeordnet, Zeile steht also für E, usw. Bekannt ist, dass eine parallele Ebene vorliegt, wenn die Koeffizienten (linke Seite in der Koordinatengleichung) einer Ebene Vielfache der Koeffizienten der anderen Ebene sind. Identisch sind Ebenen dann, wenn alle Koeffizienten (linke + rechte Seite) Vielfache sind. Bekannt ist, dass in R 3 eine Gerade nicht als Koordinatengleichung definiert werden kann. Es muss als Ergebnis der Rechnung eine Parameterform g: x = a + t u entstehen. Bei linear abhängigen Zeilen kann irgendein Vielfaches in den Zeilen, z.b. "4 8 6" anstelle von " 3 4", stehen oder eine Linearkombination der anderen Zeilen. In den Beispielen wird jeweils eine einfache Möglichkeit angeschrieben. Bei der Erzeugung der Stufenform kann ein Umsortieren der Zeilen nötig sein. In den Beispielen wird die Ausgangsmatrix so angegeben, dass "ohne langes Überlegen" eine sinnvolle Stufenform entsteht. ) 3 verschiedene Ebenen - Schnittpunkt ) ( ( ) rang (A) = 3, rang(a c) = 3 z = 5; y = = 8; x = = ; Schnittpunkt S( 8 5) L = {Schnittpunkt S} Nur als Kontrolle und zur "Illustration", nicht als vorgeschlagener Rechenweg: Jeweils Ebenen haben eine Schnittgerade, dann Schnittpunkt dieser Geraden. Schnittgeraden g : ( ) ( freier Parameter, sei z = t y = -7 + t; x = t - 3 t = -5 t +; g : x = ( g 3 : ( ) ( freier Parameter, sei y = t z = t; x = 6 - t t = -7 t +36; g 3 : x = ( g 3 : ( ) ( freier Parameter, sei y = t z = t; x = 54-3 t t = -9 t +7; g 3 : x = ( 7 3 Z5 Lineares Gleichungssystem, n = 3 - Seite 3 (von 8)

4 Schnittpunkt (g /g 3 ): ( )+ s ( -5 s + 7 t = 6 / s - t = 7 / s - 5 t = = ( Zeile,: s = 7 + t; t + 7 t = 6; t = 8; s = 5; 3. Zeile: 5-4 = -5 Schnittpunkt (g /g 3 ): s = ( Schnittpunkt (g /g 3 ): ( )+ s ( )+ 5 ( -5 s + 9 t = -3 / s - t = 7 / s - 3 t = -9 = ( = ( ); s = ( )+ 8 ( 7 = ( 8 ) 5 5 Zeile,: s = 7 + t; t + 9 t = -3; t = 8; s = 5; 3. Zeile: 5-4 = -9 Schnittpunkt (g /g 3 ): s = ( Schnittpunkt (g 3 /g 3 ): ( 36 5 )+ 5 ( )+ s ( = ( = ( 5-7 s + 9 t = -64 / s - t = / 5 s - 3 t = 6 ); s = ( 3 7 )+ 8 ( Zeile,: s = t; -7 t + 9 t = -64; t = 8; s = 8; 3. Zeile: 4-4 = 6 Schnittpunkt (g 3 /g 3 ): s = ( 36 5 )+ 8 ( 7 = ( ); s = ( 7 )+ 8 ( = ( 8 ) 3 5 = ( 8 ) 3 5 A) parallele Ebenen, 3. schneidet - Schnittgeraden ) ( ) 3 5 rang (A) =, rang(a c) = 3 Widerspruch, Lösungsmenge L = {} Lösung mit freiem Parameter für E und E z = ; x + y + 6 = 4; Parameter y = t; x = - t - geordnet: Schnittgerade g : x = ( Das ist die Schnittgerade der Ebenen E und E. Weil E 3 parallel zu E ist, gibt es auch noch eine Schnittgerade E und E 3. ( ) ( 4 6 geordnet: g : x = ( ) z = ; x + y + 4 = 6; y = t; x = - t ) Dies ist eine zu g parallele Schnittgerade. Z5 Lineares Gleichungssystem, n = 3 - Seite 4 (von 8)

5 Kontrolle: E und E 3 schneiden sich nicht: ( ) ( 4 6 ) Widerspruch erhalten, kein Schnitt-Objekt. B) 3 verschiedene Ebenen, - 3 Schnittgeraden ) ( 5 ) ( 5 ) Zeile 3 enthält einen Widerspruch, keine Lösung, L = {} rang(a) =, rang(a c) = 3 rang(a) =, rang(a c) = 3: 3 verschiedene Ebenen liegen vor, bei den Normalen muss aber eine lineare Abhängigkeit bestehen. Hier ist z.b. E 3 = 4 E - E. Schnittgeraden zwischen jeweils Ebenen: g : ( ) ( 3 4 ) freier Parameter, sei z = t. 5 5 y + t = ; y = - /5 t; x /5 t + 3 t = 4; x = -3/5 t geordnet: x = ( 3/5 /5 ) g : x = ( 3 g 3 : ( ) ( 3 4 ) freier Parameter, sei z = t y + 3 t = ; y = /5 - /5 t; x + /5 - /5 t + 3 t = 4; x = -3/5 t + 38/5 geordnet: x = ( 38/5 /5 3/5 /5 ) g 3 : x = ( 38/5 /5 3 (Eine "schönere" Angabe für den Aufpunkt wäre möglich, ist aber nicht nötig für diese Aufgabe.) g 3 : ( 5 5 ) ( ) freier Parameter, sei z = t. 5 y + t = -9; y = -9/5 - /5 t; x + 9/5 + /5 t + 5 t = -; x = -3/5 t -9/ geordnet: x = ( / /5 3/5 /5 ) g 3 : x = ( / /5 3 Geometrisch: Drei parallele Schnittgeraden (zwischen jeweils Ebenen) Allgemeine Aussage dazu: Unten, "6. Anhang" 3A) 3 verschiedene Ebenen - Schnittgerade ) ( ) ( 3 4) freier Parameter, sei y = t 3z = 4; z = 4/3; x + t + 4 = 4; x = - t rang(a) =, rang(a c) = rang(a) = rang(a c) = und keine parallelen Ebenen: nur linear unabhängige Ebenen liegen vor, eine Ebene muss also von den zwei anderen linear abhängig sein. Hier ist z.b. E 3 = 4 E - E. Z5 Lineares Gleichungssystem, n = 3 - Seite 5 (von 8)

6 geordnet: Schnittgerade g: x = ( ; L = {Schnittgerade g} 4/3 Nur als Kontrolle und zur "Illustration", nicht als vorgeschlagener Rechenweg: Wie bei. wäre es möglich, auch jeweils die einzelnen Schnittgeraden zweier Ebenen zu berechnen. Man erhält dann dreimal dieselbe Gerade wie im Gesamt-Schritt. Beispiel g 3 : ( ) ( 3 4 ) gleiche Gerade wie vorher 3 4 3B) identische Ebenen, 3. schneidet - Schnittgerade ) ( ) 3 4 rang (A) =, rang(a c) = rang(a) = ist bei identischen Ebenen erklärbar: nur linear unabhängige Ebenen liegen vor. Lösung mit freiem Parameter z = ; x + y + 3 = 4; Parameter y = t; x = - t + geordnet: Schnittgerade g: x = ( ) ; L = {Schnittgerade g} Geometrisch: Schnittgerade einer Ebene mit den zwei identischen anderen Ebenen 4A) 3 parallele Ebenen - kein Schnitt-Objekt ) ( ) ( ) 3 6 rang (A) =, rang(a c) = Widerspruch keine Lösung, L = {}, kein Schnitt-Objekt 4B) identische Ebenen, 3. parallel - Schnittebene ) ( ) 3 4 rang (A) =, rang(a c) = Einmal Widerspruch, Einmal Lösung mit Parametern Lösungsmenge L = {} Geometrisch Schnittebene E: x + y + 3z = 4 für E und E 3 E parallel zu E (und E 3 ) Z5 Lineares Gleichungssystem, n = 3 - Seite 6 (von 8)

7 5) 3 identische Ebenen - gemeinsame Schnittebene ) ( ) 3 4 rang (A) =, rang(a c) = Wegen linearer Abhängigkeit folgt eine Lösung mit Parametern L = {(x,y,z) x + y + 3z = 4} Geometrisch: Ebene, E: x + y + 3z = 4. (E E E E 3 ) 5. Alternative Einteilung der Lösungsmöglichkeiten Anstelle der Anordnung nach dem Rang ist auch eine Anordnung nach den geometrischen Objekten möglich. (Die vorige Einteilung wird zum Vergleich genannt.}. 3 parallele oder identische Ebenen. 3 identische Eb. [5]. identische Eb., parallele Eb. [4B].3 3 parallele Eb. [4A]. parallele oder identische Ebenen. identische Eb., 3. Eb. schneidet [3B]. parallele Eb., 3. Eb. schneidet [A] 3. keine parallelen oder identischen Ebenen 3. keine gemeinsame Gerade, kein gemeinsamer Punkt [B] 3. gemeinsame Schnittgerade [3A] 3.3 gemeinsamer Schnittpunkt [] 6. Anhang: Zum Fall B, 3 verschiedene Ebenen. Wenn 3 Schnittgeraden vorkommen, müssen diese parallel sein. Eine Schnittgerade liegt in zwei Ebenen, aus der Koordinatengleichung ist die Normale auf die Ebene bekannt. Sei die Schnittgerade g : x = f + t u. Dann ist u n und u n. Für eine direkte, parameterfreie Lösung u = n x n. (Trivial ist, dass das Vektorprodukt einen eventuell kollinearen Vektor zum Ergebnis der obigen Rechnung liefern kann.) Die Normale der Ebene E 3 ist linear abhängig von E und E. (Nicht von einer Ebene allein, weil dann eine parallele Ebene vorliegen würde.) Sei die Schnittgerade g 3 : x = f 3 + t 3 u 3. Dann ist u 3 n und u 3 n 3, u 3 = n x n 3. mit n 3 = r n + s n folgt u 3 = n x (r n + s n ) = r n x n + s n x n = s n x n (n x n = ) u 3 ist kollinear zu u, g 3 also parallel zu g. Als "Kontrolle der Idee" (evtl. auch als Kontrolle der Rechnung) kann der Aufpunkt der Schnittgeraden f ij durch Einsetzen von g ij überprüft werden. Für jede Ebene gilt E i : x n i = a i n i. Wenn eine Schnittgerade dieser Ebene E i eingesetzt wird, folgt (f ij + t ij u ij ) n i = a i n i = f ij n i + t ij u ij n i = f ij n i (wegen u n). Z5 Lineares Gleichungssystem, n = 3 - Seite 7 (von 8)

8 Zahlenbeispiel (Ebenen von B) n = ( 3 ), n = ( u = n x n = ) 5 i j k 3 5 = i j k = 3 i + j - 5 k = 3 ( Aufpunkt von g ij F ( ), F 3 (-9/ -9/5 ), a n = 4, a n = - f n = ( ) ( 3 ) = 4 ; f 3 n = ( / /5 ) ( 5 ) = -9/5 + 9/5 = - 7. Beispiele zu überbestimmten Linearen Gleichungssystemen ) Hinzufügen einer weiteren Ebene, identisch zu einer vorhandenen, ändert weder den Rang noch die prinzipielle geometrische Situation. Hinzufügen einer parallelen oder nicht parallelen Ebene ändert meistens die Art der Lösung, kann aber nie aus einer "Nicht-Lösung" (A, B, 4A, 4B) eine "Lösung" (, 3A, 3B, 5) erzeugen. Fall - rang(a) = 3, rang(a c) = 3 - Schnittpunkt Neu = parallel rang(a) = 3, rang(a c) = 4 5 Schnittgeraden, darunter Parallelenpaare. Neu = nicht parallel rang(a) = 3, rang(a c) = 4 5 verschiedene Schnittgeraden. Jeweils 3 Ebenen haben einen gemeinsamen Schnittpunkt (insgesamt 4 verschiedene). Durch die Erweiterung ist die vorher eindeutige Lösung "vernichtet". Fall A - rang(a) =, rang(a c) = 3 - Schnittgeraden Neu = parallel Ränge erhalten 3. neue Schnittgerade parallel zu den vorhandenen Neu = nicht parallel rang(a) = 3, rang(a c) = 4 5 Schnittgeraden, unter den 3 neuen Schnittgeraden parallele. Die Situation "Nicht-Lösung" bleibt bestehen. Fall 3B - rang(a) =, rang(a c) = - Schnittgerade Neu = parallel zu den identischen Ebenen oder parallel zur schneidenden Ebene rang(a) =, rang(a c) = 3 neue Schnittgerade parallel zur vorhandenen (entspricht A) Neu = nicht parallel rang(a) = 3, rang(a c) = 3 Schnittpunkt (entpricht ) Aus einer Lösung entsteht eine andere oder die Lösung wird "vernichtet". Z5 Lineares Gleichungssystem, n = 3 - Seite 8 (von 8)

Analytische Geometrie - Lagebeziehungen Gerade / Gerade. Teil 1 Allgemeines / Parameterform R 2

Analytische Geometrie - Lagebeziehungen Gerade / Gerade. Teil 1 Allgemeines / Parameterform R 2 Analytische Geometrie - Lagebeziehungen Gerade / Gerade Lage zweier Geraden zueinander In R 2 sind möglich (1) parallel, (2) identisch, (3) die Geraden schneiden sich. In R 3 kommt noch dazu Teil 1 Allgemeines

Mehr

Lineares Gleichungssystem - Vertiefung

Lineares Gleichungssystem - Vertiefung Lineares Gleichungssystem - Vertiefung Die Lösung Linearer Gleichungssysteme ist das "Gauß'sche Eliminationsverfahren" gut geeignet - schon erklärt unter Z02. Alternativ kann mit einem Matrixformalismus

Mehr

Vektoren - Lineare Abhängigkeit

Vektoren - Lineare Abhängigkeit Vektoren - Lineare Abhängigkeit Linearkombination Eine Linearkombination ist ein Ausdruck r a + r a +... Dabei nennt man die (reellen) Zahlen r i auch Koeffizienten. Lineare Abhängigkeit Wenn ein Vektor

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen.

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen. Vektoren Übungen ) Gesucht sind alle möglichen Vektoren c mit der Länge, die senkrecht auf den Vektoren a und b stehen. a = ( ); b = ( ) a) Ein Dreieck in R ist durch die Punkte O( ), A( ), B( ) definiert.

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

Kern und Bild einer Matrix

Kern und Bild einer Matrix Kern und Bild einer Matrix. Motivation Zur theoretischen Beschreibung der Abbildungen durch Matrizen wurden Begriffe eingeführt, die eine "elegante" Formulierung erlauben. In Linearen Gleichungssystemen

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5)

Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5) Übungen Gerade, Ebene - Kurze Aufgaben ) Gesucht ist Normalenform einer Ebene, die den Punkt P( ) enthält und auf der x- Achse senkrecht steht. ) Gegeben ist die Ebene E: x ( Gesucht ist der Winkel zwischen

Mehr

Abstandsberechnung Gerade - Gerade (Kreuzprodukt)

Abstandsberechnung Gerade - Gerade (Kreuzprodukt) Abstandsberechnung Gerade - Gerade (Kreuzprodukt) 1. Parallele Geraden g1: a + t u g2: b + s u Gleiche Richtungsvektoren, aber verschiedene Aufpunkte. In R 2 : d = (b-a) n o mit n u. In R : d = (b-a) x

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Das lineare Gleichungssystem

Das lineare Gleichungssystem 26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW)

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW) Aufgabe M01 Lösen Sie das lineare Gleichungssystem 7 2 2 3 5 4 4 7 Aufgabe M02 14 Stellen Sie den Vektor 5 als Linearkombination der drei Vektoren 7 0 1 5 1, 3 und 2 dar. 3 7 2 Aufgabe M03 0 2 Gegeben

Mehr

Aufgabenkomplex 4: Lineare Gleichungssysteme

Aufgabenkomplex 4: Lineare Gleichungssysteme Technische Universität Chemnitz 8. Dezember 9 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex 4: Lineare Gleichungssysteme Letzter Abgabetermin: 5. Januar (in Übung oder Briefkasten bei Zimmer

Mehr

Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 )

Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 ) Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade R 3 ) Gerade - Gerade in R 3 ) Der Fall sich schneidender Geraden ist uninteressant. Es existiert dann ein beliebiger Abstand je nach der

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 13 10. Juni 2010 Kapitel 10. Lineare Gleichungssysteme In diesem Abschnitt untersuchen wir, welche Struktur die Gesamtheit aller Lösungen eines linearen

Mehr

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene 5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Kugel - Kugelgleichung, Lagebeziehungen

Kugel - Kugelgleichung, Lagebeziehungen . Kugelgleichung. Lage Punkt / Kugel 3. Lage Gerade / Kugel 3. Standardverfahren 3. Alternative Kugel - Kugelgleichung, Lagebeziehungen. Lage Ebene / Kugel 5. Lage Kugel / Kugel (Schnittkreis, Berührungspunkt).

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

eingesetzt in die Ebenengleichung

eingesetzt in die Ebenengleichung 25 5. Gegenseitige Lage von Geraden und Ebenen 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene Beispiel: ε: 2x + 3y + 4z - 24 = 0 g = P(6, -2, 2)Q(0,

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1 III. Lineare Gleichungssysteme ================================================================= 3. Einführung ---------------------------------------------------------------------------------------------------------------

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Gegeben sei eine Ebene E und ein Punkt A E mit dem Ortsvektor a und zwei nicht kolli- neare Richtungsvektoren. + λ

Gegeben sei eine Ebene E und ein Punkt A E mit dem Ortsvektor a und zwei nicht kolli- neare Richtungsvektoren. + λ VI. Ebenengleichungen in Parameterform =================================================================6 6.1. Definition ----------------------------------------------------------------------------------------------------------------

Mehr

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

5 Geraden im R Die Geradengleichung. Übungsmaterial 1

5 Geraden im R Die Geradengleichung. Übungsmaterial 1 Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und

Mehr

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik =

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik = H 6. Die Matrizen A, B, C und D seien gegeben durch 5 A =, B =, C = 4 5 4, D =. 5 7 5 4 4 Berechnen Sie (sofern möglich) alle Matrizenprodukte X Y mit X, Y {A, B, C, D}. Zu zwei Matrizen A R m n und B

Mehr

Gegenseitige Lage von Ebenen

Gegenseitige Lage von Ebenen Gegenseitige Lage von Ebenen Das hast du schon gelernt: Aufgabe 1: a) gegeben: E: 4x 1 + 9x 2 + 11,5x 80 = 0 und F: 8x 1 18x 2 2x + 291 = 0 A (,5,5 ) mit A E ; B ( 5 5 7) mit B F s ( 4 9 8 ) = ( 18)

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare

Mehr

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen)

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen) Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 22.5.217 (Teil 1, Lösungen) 1. Mai 217 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 217 Steven Köhler 1. Mai 217

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 16. April 2016 Stefan Ruzika 1: Schulstoff 16. April 2016 1 / 32 Übersicht Ziel dieses Kapitels

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 5 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (FR,..5) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Basiswissen Analytische Geometrie

Basiswissen Analytische Geometrie www.matheabitur.de Basiswissen Analytische Geometrie Alle Grundlagen und Rechentechniken der analytischen Geometrie S. und deren beschreibende Verfahren Wissenskatalog der Grundlagen. Lösen einfacher linearer

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen Proseminar Einführung in die Mathematik 1 WS 1/11. Deember 1 Lösungen 46) Wie kann man nach Wahl eines Nullpunktes die Zeichenebene in natürlicher Weise als Vektorraum betrachten? Skriptum Kapitel 4, Par.

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ott Deusch Mathematik für berufliche Gymnasien Lineare Algebra Vektorgeometrie Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab. Auflage 6 ISBN 978--8-68-5 Das Werk und seine Teile

Mehr

Analytische Geometrie Lehrbuch. Skriptum zum Vorbereitungskurs

Analytische Geometrie Lehrbuch. Skriptum zum Vorbereitungskurs Analytische Geometrie Lehrbuch Skriptum zum Vorbereitungskurs WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen oder

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Lineare Gleichungssysteme mit 2 Variablen

Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Geometrie. Ingo Blechschmidt. 4. März 2007

Geometrie. Ingo Blechschmidt. 4. März 2007 Geometrie Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Geometrie 2 1.1 Geraden.......................... 2 1.1.1 Ursprungsgeraden in der x 1 x 2 -Ebene.... 2 1.1.2 Ursprungsgeraden im Raum..........

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

1. Auflage, 1. Druck 2016 c Florian Timmermann, 2016

1. Auflage, 1. Druck 2016 c Florian Timmermann, 2016 http://www.intensivkurs-mathematik.de 1. Auflage, 1. Druck 2016 c Florian Timmermann, 2016 Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung

TECHNISCHE UNIVERSITÄT MÜNCHEN. Einführung in die Matrizenrechnung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 006/07 en Blatt 3.0.006 Einführung in die Matrizenrechnung Zentralübungsaufgaben

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Technische Universität Chemnitz 0. Dezember 0 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Letzter Abgabetermin: 3. Januar 0 (in

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und " Untersuchen

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und  Untersuchen Aufgabe A6/08 Gegeben sind die zwei parallelen Gerade und durch 2 3 1 6 : 9 4, : 2 8;, 4 1 5 2 Bestimmen Sie den Abstand der beiden Geraden. (Quelle Abitur BW 2008 Aufgabe 6) Aufgabe A7/08 Die Ebene geht

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Abituraufgaben Analytische Geometrie (Pflichtteil) Lösung A6/08 Lösungslogik (einfach) Klausuraufschrieb (einfach)

Abituraufgaben Analytische Geometrie (Pflichtteil) Lösung A6/08 Lösungslogik (einfach) Klausuraufschrieb (einfach) Lösung A6/08 (einfach) Der Abstand zweier Geraden im Raum errechnet sich über Richtungsvektor der ersten Geraden, als Aufpunkt der ersten und als Aufpunkt der zweiten Geraden. (einfach) 3 12 1 297 1 5

Mehr

A = A A

A = A A Musterlösung - Aufgabenblatt 8 Aufgabe 1 Gegeben ist das Polytop P = conv {±e i ± e j : 1 i, j 3, i j} = conv {e 1 + e 2, e 1 e 2, e 1 + e 2, e 1 e 2, e 1 + e 3, e 1 e 3, e 1 + e 3, e 1 e 3, e 2 + e 3,

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis)

Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis) Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis. Kreisgleichung. Kreis durch 3 Punkte 3. Lage Punkt / Kreis. Kreisgleichung Ein Kreis mit dem Mittelpunkt M - Ortsvektor m - und dem Radius r ist beschrieben

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Mathe GK, Henß Klausur No. IV Thema: Geraden und Ebenen

Mathe GK, Henß Klausur No. IV Thema: Geraden und Ebenen Matheklausur No. IV Geraden und benen Geradengleichung Um eine Gerade zeichnen zu können, braucht man mindestens Punkte (Ortsvektoren), durch die die Gerade geht. Zur Bestimmung aller anderen Punkte auf

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

A = α α 0 2α α

A = α α 0 2α α Aufgabe 8. Berechnen Sie abhängig von α R die Dimension dim(f(r 4 )) und die Dimension dim(kern(f)) sowie je eine Basis von f(r 4 ) und Kern(f) der linearen Abbildung f : R 4 R 4, x Ax mit der Matrix A

Mehr

Schnittmengen. V.02 Schnittmengen

Schnittmengen. V.02 Schnittmengen Schnittmengen V.0 Schnittmengen Es wird ja immer wieder behauptet, Mathe hätte nicht so viel mit dem richtigen Leben zu tun. Das ist natürlich völlig aus der Luft gegriffen und wirklich nicht wahr. Zum

Mehr