Physik 1 für Chemiker und Biologen 13. Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Physik 1 für Chemiker und Biologen 13. Vorlesung"

Transkript

1 Physik 1 für Chemiker und Biologen 13. Vorlesung Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie , Uhr, Wieland HS Fragestunde zur Klausurvorbereitung Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Übungen diese Woche: Besprechung des 13. ( Klausurwiederholungs -) Übungsblattes.

2 Wiederholungs- / Einstiegsfrage Die Abbildung unten zeigt vier Metalplatten, die alle aus demselben Material bestehen und deren Temperaturen um den demselben Betrag zunehmen. Ordnen Sie die Platten nach dem zu erwartenden Zuwachs in ihren Flächen (größte zuerst)! Abstimmen unter pingo.upb.de, # A) 1 > 2 > 3 > 4 B) 3 > 2 > 1 > 4 C) 3 > 2 > 1 = 2 D) Alle gleich Prof. Dr. Jan Lipfert 2

3 Zusammenfassung: Thermodynamik und statistische Physik Thermodynamik betrachtet Stoffe als Kontinuum und beschreibt sie mit makroskopischen Zustandsgrößen: Druck p, Volumen V, Temperatur T. Statistische Mechanik geht von einer mikroskopischen Betrachtung der Teilchen aus und beschreibt sie mit statistischen Methoden. Wärme ist ungeordenete Molekülbewegung. Wärmeenergie ist kinetische Energie dieser Bewegung. Temperatur ist ein lineares Maß für den Mittelwert der kinetischen Energie der ungeordneten Molekülbewegung. 0. Hauptsatz der Thermodynamik: Befinden sich zwei Körper im thermischen Gleichgewicht mit einem dritten, so stehen sie auch untereinander in thermischen Gleichgewicht. Sie haben in diesem Fall die gleiche Temperatur. science/perfect-gas-law Datei:Nullter_Hauptsatz_der_Thermodynami k.svg Prof. Dr. Jan Lipfert 3

4 Zusammenfassung: Thermische Ausdehnung Zum Festlegen einer Temperaturskala benötigt man zwei Temperatur- Referenzpunkte und eine Einteilung in Untereinheiten. Längenausdehnung: Volumenausdehnung: Thermischer Längenausdehnungskoeffizient: L L = T V V = T Thermischer Volumenausdehnungskoeffizient: Celsius nutzte kochendes Wasser und Eiswasser als Referenzpunkte für die Temperatur, eingeteilt in 100 ºC T C = l T l C l 100 l 0 Anders_Celsius Anders Celsius ( ) Prof. Dr. Jan Lipfert 4

5 Fahrenheit Temperaturskala Fahrenheit nutzte als Referenzpunkte: Salzlake-Eis-Wasser Mischung = 0 ºF Eiswasser = 32 ºF Körpertemperatur eines gesunden Menschens = 96 ºF TF T C = 5 9 F 32 T F = 9 5 T C C + 32 F C Daniel_Gabriel_Fahrenheit Daniel Fahrenheit ( ) Gasthermometer nach Amontons: Extrapolation zum absoluten Nullpunkt Prof. Dr. Jan Lipfert 5

6 Ideales Gas Ein ideales Gas besteht aus Atomen oder Molekülen, die als punktförmige Teilchen mit Masse genähert werden, die sich kräftefrei in einem Volumen V bei einem Druck p und einer Temperatur T aufhalten und nur durch Stöße miteinander wechselwirken. Zustandsgleichung des idealen Gases: pv = Nk B T k B = Boltzmann Konstante = 1, J/K N = Anzahl der Teilchen Konsequenzen: (Boyle-Mariotte, 1662) (Gay-Lussac, 1808) (Amontons, 1700) Prof. Dr. Jan Lipfert 6

7 Der absolute Nullpunkt und die Kelvinskala Nach Amontons ist p / T für V = const. (Dies wird z.t. auch als Gesetz von Gay-Lussac bezeichnet ) Guillaume_Amontons Guillaume Amontons ( ) Kolben nach Amontons: Extrapolation zum absoluten Nullpunkt Absoluter Nullpunkt: -273,15 ºC = 0 K William_Thomson,_1st_Baron_Kelvin William Thomson, 1st Baron Kelvin ( ) Prof. Dr. Jan Lipfert 7

8 Kinetische Gastheorie Der Druck eines idealen Gases erklärt sich durch Stöße der Gasteilchen mit der Wand des Behälters. Mittlere kinetische Energie eines Gasteilchens he kin i = 1 2 mhv2 i = 3 2 k BT Maxwell-Boltzmann Verteilung Prof. Dr. Jan Lipfert 8

9 Gleichverteilungssatz (Äquipartitionstheorem) Wenn sich eine System im thermischen Gleichgewicht befindet, entfällt auf jeden Freiheitsgrad eine Energie von ½ k B T pro Teilchen. Anwendungen: Animation: Molekularer Motor (XVIVO / Harvard) Prof. Dr. Jan Lipfert 9

10 1. Hauptsatz Die Änderung ΔU der inneren Energie eines Systems ist gleich der Summe der ihm netto zugeführten Wärme Q und der ihm netto zugeführten Arbeit W. U = Q + W Mechanische Wärmeäquivalent nach Joule Prof. Dr. Jan Lipfert James_Prescott_Joule James Joule ( ) 10

11 Volumenarbeit und p-v Diagramm Boyle-Mariotte: Isotherme Pneumatische Feuerzeug: Adiabate Ausdehnung Prof. Dr. Jan Lipfert 11

12 2. Hauptsatz Es ist unmöglich eine zyklisch arbeitende Maschine zu konstruieren, die keinen anderen Effekt bewirkt, als Wärme aus einem Reservoir aufzunehmen und eine äquivalente Menge an Arbeit zu verrichten. Ein Prozess, bei dem nur Wärmeenergie von einem kälteren auf einen wärmeren Gegenstand übertragen wird, ist unmöglich. Entropieänderung (Maß für Unordnung) eines reversiblen Prozesses: S = Q rev T Bei einem irreversiblen Prozess nimmt die Entropie des Universums zu. Es gibt keinen Prozess, bei dem die Entropie des Universums abnimmt Prof. Dr. Jan Lipfert 12

13 Mikroskopische Interpretation der Entropie Hat ein Zustand eines Systems Ω verschiedene mikroskopische Zustände, so beträgt seine Entropie: S = k B log Unter isotherm-isochoren Bedingungen ist das thermodynamische Gleichgewicht durch das Minimum der freien Energie gegeben: F = U T S Ludwig_Boltzmann Ludwig Boltzmann ( ) Entropie Simulation mit Kasten links und rechts Prof. Dr. Jan Lipfert 13

14 Ausblick: Grenzen der klassischen Mechanik Kleine Teilchen (Atome, Elektronen,...) (Sehr) viele Teilchen Hohe Geschwindigkeiten (Lichtgeschwindigkeit!) Spezielle Relativitätstheorie: Behandelt Inertialsysteme, die sich mit konstanter (und hoher!) Geschwindigkeit relativ zueinander bewegen. Allgemeine Relativitätstheorie: Behandelt beschleunigte Bezugssysteme (und damit auch die Gravitation) Prof. Dr. Jan Lipfert 14

15 Newtonsches Relativitätsprinzip & Galilei Transformation Erinnerung: Galilei-Transformation zwischen Inertialsystemen cv16_9-q85/intercity-express.jpg ALTERNATES/s615/James%20Bond%20Skyfall Prof. Dr. Jan Lipfert 15

16 Spezielle Relativitätstheorie Prof. Dr. Jan Lipfert 16

17 Die Lichtgeschwindigkeit ist in jedem Inertialsystem gleich groß z.b. Licht der Autoscheinwerfer des fahrenden Autos ist genauso schnell wie das Licht aus den Rückleuchten. Michelson-Morley-Experiment 1881 in Potsdam und 1887 in Cleveland Prof. Dr. Jan Lipfert 17

18 Einsteins Lösung (1905) Zwei Postulate: 1. Kein Inertialsystem ist bevorzugt! (Alle Naturgesetze nehmen in jedem Inertialsystem die gleiche Form an.) 2. Die Lichtgeschwindigkeit c im Vakuum ist in jedem Inertialsystem gleich. Annalen der Physik und Chemie, IV. Folge, Band 17 (1905) S Prof. Dr. Jan Lipfert 18

19 Lorentz-Transformation Inertialsystem S bewegt sich mit Geschwindigkeit v relativ zu S, bei t=0 fallen die beiden Systeme zusammen Konstanz der Lichtgeschwindigkeit c soll gelten: Ansatz: x = γ (x + vt ) und x = γ (x - vt) γ ist der gesuchte Korrekturterm y S x wiki/hendrik_lorentz Hendrik Lorentz ( ) Prof. Dr. Jan Lipfert 19

20 Der γ-faktor Lorentz-Transformation km/s Lorentz Faktor Prof. Dr. Jan Lipfert 20

21 Wo spielt γ eine Rolle? Makroskopische Objekte McDonnell_Douglas_F-18C_%28HN-411%29_at_RIAT.jpg Mikroskopische Objekte (Elementarteilchen) Quecksilber Gold Prof. Dr. Jan Lipfert 21

22 Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning. Winston Churchill, Prof. Dr. Jan Lipfert 22

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 05.02.2018 Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de https://xkcd.com/1606/ Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle

Mehr

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 30.01.2017 Diese Woche (30.1.-3.2.): Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie Übungen: Besprechung

Mehr

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 30.01.2017 Diese Woche (30.1.-3.2.): Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie Übungen: Besprechung

Mehr

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung E2: Wärmelehre und Elektromagnetismus 2. Vorlesung 12.04.2018 Heute: - Längen- und Volumenausdehnung - Temperaturskalen: Celsius, Fahrenheit, Kelvin - Ideales Gas - Kinetische Gastheorie - Gleichverteilungssatz

Mehr

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung

E2: Wärmelehre und Elektromagnetismus 2. Vorlesung E2: Wärmelehre und Elektromagnetismus 2. Vorlesung 12.04.2018 Heute: - Längen- und Volumenausdehnung - Temperaturskalen: Celsius, Fahrenheit, Kelvin - Ideales Gas - Kinetische Gastheorie https://xkcd.com/1606/

Mehr

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung E2: Wärmelehre und Elektromagnetismus 3. Vorlesung 16.04.2018 https://xkcd.com/1978/ Heute: - Gleichverteilungssatz - 1. Hauptsatz - Volumenarbeit - Wärmekapazität - Wärmekapazität des idealen Gases -

Mehr

Physik 1 für Chemiker und Biologen 12. Vorlesung

Physik 1 für Chemiker und Biologen 12. Vorlesung Physik 1 für Chemiker und Biologen 12. Vorlesung 23.01.2017 https://xkcd.com/1643/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung und Fortsetzung Wellen - Thermodynamik & statistische Physik:

Mehr

E2: Wärmelehre und Elektromagnetismus 6. Vorlesung

E2: Wärmelehre und Elektromagnetismus 6. Vorlesung E2: Wärmelehre und Elektromagnetismus 6. Vorlesung 26.04.2018 Heute: - Kondensationskerne - Van der Waals-Gas - 2. Hauptsatz https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 26.04.2018 Prof.

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

Physik 1 für Chemiker und Biologen 12. Vorlesung

Physik 1 für Chemiker und Biologen 12. Vorlesung Physik 1 für Chemiker und Biologen 12. Vorlesung 23.01.2017 https://xkcd.com/1643/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung und Fortsetzung Wellen - Thermodynamik & statistische Physik:

Mehr

E2: Wärmelehre und Elektromagnetismus 6. Vorlesung

E2: Wärmelehre und Elektromagnetismus 6. Vorlesung E2: Wärmelehre und Elektromagnetismus 6. Vorlesung 26.04.2018 Heute: - Kondensationskerne - Van der Waals-Gas - 2. Hauptsatz https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 26.04.2018 Prof.

Mehr

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung E2: Wärmelehre und Elektromagnetismus 7. Vorlesung 30.04.2018 Heute: - 2. Hauptsatz - Boltzmann-Verteilung https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 30.04.2018 Prof. Dr. Jan Lipfert

Mehr

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung E2: Wärmelehre und Elektromagnetismus 7. Vorlesung 30.04.2018 Heute: - 2. Hauptsatz - Boltzmann-Verteilung https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 30.04.2018 Prof. Dr. Jan Lipfert

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 12.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung E2: Wärmelehre und Elektromagnetismus 4. Vorlesung 19.04.2018 Heute: - Freiheitsgrade realer Gase - Adiabatische Volumenänderungen - Kurze Einführung in die Quantenmechanik - Freiheitsgrade & Wärmekapazität

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Physik 1 für Chemiker und Biologen 14. Vorlesung

Physik 1 für Chemiker und Biologen 14. Vorlesung Physik 1 für Chemiker und Biologen 14. Vorlesung 06.02.2017 Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de https://xkcd.com/1166/ Vorlesung heute: - Ausblick: Spezielle Relativitätstheorie - Klausurwiederholung

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik für Nicht-Physikerinnen und Nicht-Physiker Prof. W. Meyer 5. Juni 2014 Wärmelehre Lernziele Alle Körper haben eine Temperatur Die Temperatur

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung

E2: Wärmelehre und Elektromagnetismus 4. Vorlesung E2: Wärmelehre und Elektromagnetismus 4. Vorlesung 19.04.2018 Heute: - Freiheitsgrade realer Gase - Adiabatische Volumenänderungen - Kurze Einführung in die Quantenmechanik - Freiheitsgrade & Wärmekapazität

Mehr

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung E2: Wärmelehre und Elektromagnetismus 8. Vorlesung 3.5.2018 Heute: - Boltzmann-Verteilung - Wärmekraftmaschinen - Carnot-Prozess und Wirkungsgrad - Kraftwärmemaschinen Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 12: Wärmelehre Dr. Daniel Bick 09. Dezember 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. Dezember 2016 1 / 35 Übersicht 1 Wellen 2 Wärmelehre

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen 18a Temperatur 1 Thermodynamik Thermodynamik ist eine phänomenologische Wissenschaft Sie beschreibt die Wechselwirkung von Systemen mit ihrer Umgebung Aus der Erfahrung und durch zahllose Beobachtungen

Mehr

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung E2: Wärmelehre und Elektromagnetismus 8. Vorlesung 3.5.2018 Heute: - Boltzmann-Verteilung - Wärmekraftmaschinen - Kraftwärmemaschinen - Carnot-Prozess und Wirkungsgrad Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Wärmelehre Dr. Daniel Bick 13. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 13. Dezember 2017 1 / 36 Übersicht 1 Wellen 2 Wärmelehre

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

E2: Wärmelehre und Elektromagnetismus 5. Vorlesung

E2: Wärmelehre und Elektromagnetismus 5. Vorlesung E2: Wärmelehre und Elektromagnetismus 5. Vorlesung 23.04.2018 Heute: - Phasenübergänge - Kondensation https://xkcd.com/1561/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 23.04.2018 Prof. Dr. Jan Lipfert 1

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

E2: Wärmelehre und Elektromagnetismus 10. Vorlesung

E2: Wärmelehre und Elektromagnetismus 10. Vorlesung E2: Wärmelehre und Elektromagnetismus 10. Vorlesung 14.05.2018 Heute: - Wärmetransport: Wärmeleitung, Konvektion, Wärmestrahlung - Diffusion & Stofftransport - Thermodynamische Potentiale https://xkcd.com/793/

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

E2: Wärmelehre und Elektromagnetismus 9. Vorlesung

E2: Wärmelehre und Elektromagnetismus 9. Vorlesung E2: Wärmelehre und Elektromagnetismus 9. Vorlesung 07.05.2018 Heute: - Wärmekraftmaschinen, fort. - Kraftwärmemaschinen - Joule-Thomson Prozess - Linde-Verfahren - Wärmetransport Prof. Dr. Jan Lipfert

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen 14. Vorlesung EP II. Wärmelehre 1. Temperatur und Stoffmenge 11. Ideale Gasgleichung 1. Gaskinetik 13. Wärmekapazität Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

E2: Wärmelehre und Elektromagnetismus 1. Vorlesung

E2: Wärmelehre und Elektromagnetismus 1. Vorlesung E2: Wärmelehre und Elektromagnetismus 1. Vorlesung 09.04.2018 https://xkcd.com/1666/ Heute: - Übersicht über die Veranstaltung - Temperatur und 0. Hauptsatz - Längen- und Volumenausdehnung Prof. Dr. Jan

Mehr

Erster und Zweiter Hauptsatz

Erster und Zweiter Hauptsatz PN 1 Einführung in die alphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Zwei neue Basisgrössen in der Physik

Zwei neue Basisgrössen in der Physik Nachtrag zur orlesung am vergangenen Montag Zwei neue Basisgrössen in der Physik 9. Wärmelehre, kinetische Gastheorie Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle.

Mehr

E2: Wärmelehre und Elektromagnetismus 5. Vorlesung

E2: Wärmelehre und Elektromagnetismus 5. Vorlesung E2: Wärmelehre und Elektromagnetismus 5. Vorlesung 23.04.2018 Heute: - Phasenübergänge - van der Waals-Gas https://xkcd.com/1561/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 23.04.2018 Prof. Dr. Jan Lipfert

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

Statistische Physik I

Statistische Physik I Statistische Physik I 136.020 SS 2010 Vortragende: C. Lemell, S. YoshidaS http://dollywood.itp.tuwien.ac.at/~statmech Übersicht (vorläufig) 1) Wiederholung Begriffsbestimmung Eulergleichung 2) Phänomenologische

Mehr

Berechnung von Zustandsgrößen für ideale Gas im geschlossenen und offenen System

Berechnung von Zustandsgrößen für ideale Gas im geschlossenen und offenen System Was Sie im letzten Lehrabschnitt gelernt haben 1 Einordnen von thermodynamischen Prozessen Berechnung von Zustandsgrößen für ideale Gas im geschlossenen und offenen System Aussage und mathematische Formulierung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

1 Eine kurze Einführung in die Thermodynamik

1 Eine kurze Einführung in die Thermodynamik 27 Teil I: Grundlagen In diesem einleitenden Teil des Buchs wird im vorliegenden Kapitel die Thermodynamik kurz vorgestellt. Im zweiten Kapitel werden dann Ihre Kenntnisse in einem wichtigen Teilbereich

Mehr

E2: Wärmelehre und Elektromagnetismus 10. Vorlesung

E2: Wärmelehre und Elektromagnetismus 10. Vorlesung E2: Wärmelehre und Elektromagnetismus 10. Vorlesung 14.05.2018 Heute: - Wärmetransport: Wärmeleitung, Konvektion, Wärmestrahlung - Diffusion & Stofftransport - Thermodynamische Potentiale https://xkcd.com/793/

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und hermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - heorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und Messgenauigkeit

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

Physik 1 für Chemiker und Biologen 14. Vorlesung

Physik 1 für Chemiker und Biologen 14. Vorlesung Physik 1 für Chemiker und Biologen 14. Vorlesung 06.02.2017 Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de https://xkcd.com/1166/ Vorlesung heute: - Ausblick: Spezielle Relativitätstheorie - Klausurwiederholung

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch Werner Langbein Thermodynamik Gleichgewicht, Irreversible Prozesse, Schwankungen Verlag Harri Deutsch Einleitung 1 1 Gleichgewichtsthermodynaimiik 3 1 Thermodynamische Systeme 5 1.1 Geometrie und Inventar

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

Physik für Pharmazeuten WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

Physik für Pharmazeuten WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas Die Carnot-Maschine SCHRITT III Isotherme Kompression bei einer Temperatur T 2 T 2 Wärmesenke T 2 = konstant Die Carnot-Maschine SCHRITT IV Man isoliert das Gas wieder thermisch und drückt den Kolben noch

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Lennart Schmidt 08.09.2011 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Temperatur und Wärme............................ 3 1.2 0. und 1. Hauptsatz..............................

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell 2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius Physik I Mechanik der Kontinua und Wärmelehre Thomas Universität Hamburg Wintersemester 2014/15 ORGANISATORISCHES Thomas : Wissenschaftler (Teilchenphysik) am Deutschen Elektronen-Synchrotron (DESY) Kontakt:

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

T.1 Kinetische Gastheorie und Verteilungen

T.1 Kinetische Gastheorie und Verteilungen T.1 Kinetische Gastheorie und Verteilungen T 1.1 Physik von Gasen T 1.2 Ideales Gas - Makroskopische Betrachtung T 1.3 Barometrische Höhenformel T 1.4 Mikroskopische Betrachtung: kinetische Gastheorie

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr