Musterlösung Übungsserie 5

Größe: px
Ab Seite anzeigen:

Download "Musterlösung Übungsserie 5"

Transkript

1 Institut für Energietechnik Laboratorium für Aerothermochemie und Verbrennungssysteme Prof. Dr. Konstantinos Boulouchos Musterlösung Übungsserie 5 Aufgabe 1 Brennstoffzellen 1. Schreibe die Reaktionsgleichungen für Anode und Kathode auf (und gebe an welche Reaktion an der Kathode, und welche an der Anode stattfindet). Anode: Kathode: 2. Berechne den elektrischen Strom und die elektrische Leistung bei maximaler Leistung. Elektrische Leistung der Brennstoffzelle als Funktion des Stroms: ( ) ( ) Elektrische Leistung wird maximal bei, oder: ( ) or wird ausgeschlossen. Weiterhin ist und. Schlussendlich folgt, dass das Maximum bei resp. mit liegt. 3. Angenommen der Umsetzungswirkungsgrad, berechne den Brennstoffstrom ( ) bei einem elektrischen Strom von. Berechne ausserdem die Masse Ameisensäure die der Brennstoffzelle bei zugeführt werden muss um elektrisch zu erhalten. Der Brennstoffstrom berechnet sich zu: [ ] Seite 1/5

2 Bei ist ( ) und. Um Gesamthaft elektrischer Energie zu erhalten muss die Brennstoffzelle demnach während einer Zeit (ungefähr 5 Tage und eine Stunde) durchgegehnd im gegebenen Betriebspunkt arbeiten. In dieser Zeit wird dann die Brennstoffmenge entspricht einer Masse von:. konsumiert. Dies 4. Berechne die Effizienz der Brennstoffzelle wenn ein effektiver Brennstoffmassenstrom von zugeführt wird und der Umsetzungsgrad beträgt. In diesem Betriebspunkt fliesst ein Strom von: ( ) Die Effizienz der Zelle berechnet sich dann mit: 5. Stelle die notwendige(n) Gleichung(en) für die Berechnung des Strom der den abgeführten Wärmestrom maximiert auf (keine Berechnung erforderlich). Kann dieser Strom identisch mit, dem Strom bei maximaler elektrischer Leistung sein? Begründe deine Antwort mittels der aufgestellten Gleichung(en) (keine Berechnung erforderlich). Der abgegebene Wärmestrom berechnet sich aus: Dieser wird maximal wenn: Da bei zu Null geht, kann hier keine Nullstelle erreichen. Seite 2/5

3 Aufgabe 2 Flammtemperatur 1. Für eine bestimmte Schweissarbeit wird eine Temperatur von benötigt. Kann die gewünschte Temperatur erreicht werden wenn der Wasserstoff bei einem Sauerstoffüberschuss von verbrennt? Wasserstoffverbrennung bei : Erster Hauptsatz über den Brenner:, wobei (da Druckdifferenz über den Brenner null ist), und da der Brenner adiabat modelliert wird (siehe Hinweise). Die Enthalpiebilanz berechnet sich zu (Drücke nicht explizit angeschrieben da überall identisch): ( ) ( ) Für 1 mol Wasserstoff (mit, und da ): ( ) Die linke Seite dieser Gleichung ist konstant; die rechte Steite wächst mit steigendem. Damit mit muss bei sein. Unter zu Hilfenahme der Tabellen A-25, A-30, folgt für : [ ] R(T) L Bedingung erfüllt, T f,ad >T a =3 250K 3250 T [K] Seite 3/5

4 2. Wie hoch ist die adiabate Flammtemperatur bei stöchiometrischer Verbrennung ( 1)? Wasserstoffverbrennung bei : Analog zu Teilaufgabe 1 folgt aus dem 1. HS,, und es gilt pro : ( ) Mit der gegebenen Approximation folgt: Aufgabe 3: Dissoziation von N 2 In einem Verbrennungsprozess wird Ethan (C 2 H 6 ) mit 32,032 kg Luft pro kg Ethan verbrannt C2H6 2 O N2 2CO2 3H2O 1 2 O N Mit welchem Luftverhältnis läuft die Verbrennung ab? Bei stöchimetrischer Verbrennung (sh. LAV Formelsammlung): m 6 M 3.76M L m M M O2 N B st. 4 2 C 6 H Da und gegeben sind folgt aus der Definition von : ml mb ml mb st Bestimme die Zusammensetzung des Abgases. Bei : 2CO 2 3H2 O 3.5O N 2 3. Wie hoch müsste die Temperatur T des Abgases sein, bei einem Druck von p=1bar, damit ppm N 2 dissoziert? Dissoziation von Stickstoff: Im Gleichgewicht: Seite 4/5

5 Wobei der Partialdruck von Spezies : wobei den Druck im System misst. Angewand auf Stickstoffdissoziation: Angenommen, im Gleichgewicht sei eine Menge der anfänglichen dissoziert: Durch Einsetzen in die Reaktionsgleichung folgt für die Abgaszusammensetzung: Also ist: Aus der Aufgabenstellung: dissoziert Demnach ist und. Aus Table A-32 folgt T=3000K. Seite 5/5

Lösung Übungsserie 3

Lösung Übungsserie 3 Institut für Energietechnik Laboratorium für Aerothermochemie und Verbrennungssysteme Prof. Dr. onstantinos Boulouchos Lösung Übungsserie 3 Chemisches Gleichgewicht & Exergie Formeln Molare Entropie (ideales

Mehr

Exercise(1!Solution(Proposal!

Exercise(1!Solution(Proposal! Exercise(1Solution(Proposal (a Gemischzusammensetzung zu Beginn # Mol Mol Fraction Xi CO CO2 1.333 H2 2.666 H2O ntot 3 zu Beginn enthaelt der Gemisch: CO2, H2 beim Gleichgewichtszustand enthaelt der Gemisch:

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Thermodynamik II PVK - Tag 1. Nicolas Lanzetti

Thermodynamik II PVK - Tag 1. Nicolas Lanzetti Thermodynamik II PVK - Tag 1 Nicolas Lanzetti Nicolas Lanzetti 13.06.2016 1 Hinweise zu dem PVK Name: Nicolas Lanzetti; 6. Semester Maschinenbau; Mail: lnicolas@student.ethz.ch; Raum: ETZ E6; Zeit: Montag-Dienstag,

Mehr

Thermodynamik II - Übung 1. Cornelius von Einem

Thermodynamik II - Übung 1. Cornelius von Einem Thermodynamik II - Übung 1 Cornelius von Einem C. von Einem 05.03.2019 1 Hinweise zu der Übung Name: Cornelius von Einem 2. Semester Master Maschienenbau Mail: Raum: IFW A36 Zeit: Dienstag, 13:15-15:00

Mehr

Übung 1. Göksel Özuylasi Tel.: Torsten Methling Tel.

Übung 1. Göksel Özuylasi   Tel.: Torsten Methling   Tel. Göksel Özuylasi Email: goeksel.oezuylasi@dlr.de Tel.: 0711 6862 8098 Torsten Methling Email: torsten.methling@dlr.de Tel.: 0711 6862 277 WS 2013/14 Übung - Einführung in die Verbrennung - Özuylasi, Methling

Mehr

2.1 Massenbilanz bei chemischen Stoffumwandlungen. 2.2 Energiebilanz bei chemischen Stoffumwandlungen

2.1 Massenbilanz bei chemischen Stoffumwandlungen. 2.2 Energiebilanz bei chemischen Stoffumwandlungen Inhalt von Kapitel 2 2.1-0 2. Chemische Stoffumwandlungen 2.1 Massenbilanz bei chemischen Stoffumwandlungen 2.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2.1 Energiebilanz 2.2.2 Die Bildungsenthalpie

Mehr

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101.

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101. Übung 6 Allgemeine Chemie I Herbstsemester 01 1. Aufgabe MM Aufgabe 1.10 Wir betrachten zuerst den Fall X = F. Reaktionsgleichung: BX 3 (g) + 3 H O(l) H 3 BO 3 (aq) + 3 HX(g) (X = F oder Cl) G 0 R = i

Mehr

Welche Aussage kann mit Hilfe des chemischen Gleichgewichtes über die Entstehungsgeschwindigkeit

Welche Aussage kann mit Hilfe des chemischen Gleichgewichtes über die Entstehungsgeschwindigkeit Klausur H005 (Grlagen der motorischen Verbrennung) Aufgabe 1.) Welche Aussage kann mit Hilfe des chemischen Gleichgewichtes über die Entstehungsgeschwindigkeit von Stickoxid (NO x ) getroffen werden (Begründung)?

Mehr

Lösung zum Fragenteil. Frage 1 (4 Punkte) Der Wirkungsgrad ändert sich nicht, wegen. η th = 1 T 1 T 2. = 1 p 2

Lösung zum Fragenteil. Frage 1 (4 Punkte) Der Wirkungsgrad ändert sich nicht, wegen. η th = 1 T 1 T 2. = 1 p 2 Klausurlösungen Thermodynamik II WS 2011/2012 Fragenteil Lösung zum Fragenteil Frage 1 (4 Punkte) Der Wirkungsgrad ändert sich nicht, wegen η th = 1 T 1 T 2 = 1 ( p1 p 2 )κ 1 κ Frage 2 (4 Punkte) Das Verhältnis

Mehr

7.2 Energiebilanz bei chemischen Stoffumwandlungen

7.2 Energiebilanz bei chemischen Stoffumwandlungen 7.2 Energiebilanz bei chemischen Stoffumwandlungen Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft (kinetische

Mehr

Lösung Übungsserie 1

Lösung Übungsserie 1 Institut für Energietecnik Laboratorium für Aerotermocemie und Verbrennungssysteme Prof. Dr. Konstantinos Bouloucos Lösung Übungsserie 1 Aufgabe 1 Die folgende Aufgabe beandelt den Vergleic zwiscen zwei

Mehr

Verbrennungsenergie und Bildungsenthalpie

Verbrennungsenergie und Bildungsenthalpie Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde

Mehr

Thermodynamik II - Übung 1. Nicolas Lanzetti

Thermodynamik II - Übung 1. Nicolas Lanzetti Thermodynamik II - Übung 1 Nicolas Lanzetti Nicolas Lanzetti 08.03.2016 1 Hinweise zu der Übung Name: Nicolas Lanzetti; 6. Semester Maschinenbau; Mail: Raum: ML F39; Zeit: Dienstag, 13:15-15:00; Alle Unterlagen:

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Chlorierung von Phosphotrichlorid a) Von 1 mol ursprünglichem PCl 3 und Cl 2 wären 0.515 mol zu PCl 5 reagiert und 0.485 mol verblieben. Mit x i = n i ergeben sich die Molenbrüche

Mehr

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12 PC I Thermodynamik J. Stohner/M. Quack Sommer 2006 Übung 12 Ausgabe: Dienstag, 20. 6. 2006 Rückgabe: Dienstag, 27. 6. 2006 (vor Vorlesungsbeginn) Besprechung: Freitag, 30.6./Montag, 3.7.2006 (in der Übungsstunde)

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei:

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei: Elektrizität Die Coulombsche potentielle Energie V einer Ladung q im Abstand r von einer anderen Ladung q ist die Arbeit, die aufgewendet werden muss um die zwei Ladungen aus dem Unendlichen auf den Abstand

Mehr

Übung 10 (Redox-Gleichgewichte und Elektrochemie)

Übung 10 (Redox-Gleichgewichte und Elektrochemie) Übung 10 (Redox-Gleichgewichte und Elektrochemie) Verwenden Sie neben den in der Aufgabenstellung gegebenen Potenzialen auch die Werte aus der Potenzial-Tabelle im Mortimer. 1. Ammoniak kann als Oxidationsmittel

Mehr

Brennkammer. 12 Brenner. Plenum. 1 Berechnen Sie die Molmasse M F des Erdgases unter Anwendung des J

Brennkammer. 12 Brenner. Plenum. 1 Berechnen Sie die Molmasse M F des Erdgases unter Anwendung des J 1 Berechnen Sie die Molmasse M F des Erdgases unter Anwendung des J idealen Gasgesetzes (R u = 8314 K ) sowie den massebezogenen Heizwert H u und schließlich den Brennstoffmassenstrom der Brennkammer ṁ

Mehr

Lösungsvorschlag zu Übung 11

Lösungsvorschlag zu Übung 11 PCI Thermodynamik G. Jeschke FS 2015 Lösungsvorschlag zu Übung 11 (Version vom 28.04.2015) Aufgabe 1 Alle Reaktionsgleichgewichte stellen sich bei 1000 K ein, damit sind alle Komponenten stets gasförmig.

Mehr

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 7.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft Massen-,

Mehr

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure 1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)

Mehr

In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum.

In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum. 7 Laminare und turbulente Diffusionsflammen In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum. Erst im Brennraum findet

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Prüfung MW0136 Verbrennung

Prüfung MW0136 Verbrennung Technische Universität München Lehrstuhl für Thermodynamik Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Prüfung MW0136 Verbrennung 02.08.2012 SS 2012 Teil 2: Berechnungsteil (60 min) Name:, Matrikelnummer:

Mehr

Musterlösung zur Klausur Thermodynamik I Sommersemester 2014

Musterlösung zur Klausur Thermodynamik I Sommersemester 2014 Musterlösung zur Klausur Thermodynamik I Sommersemester 04 . Aufgabe (04): Theoriefragen (0 Punkte) a) ( Punkt) Intensive Zustandsgrößen bleiben bei Teilung des Systems konstant. Extensive Zustandsgrößen

Mehr

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12 PC I Thermodynamik G. Jeschke FS 2015 Lösung zur Übung 12 12.1 Die Hydrierung von Ethen zu Ethan a) Die Reaktionsenthalpie ist direkt aus den in der Aufgabenstellung tabellierten Standardbildungsenthalpien

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

1.3. Fragen zu chemischen Reaktionen

1.3. Fragen zu chemischen Reaktionen 1.3. Fragen zu chemischen Reaktionen Reaktionsgleichungen Ergänze die fehlenden Koeffizienten: a) PbI 4 PbI 2 + I 2 b) PbO 2 PbO + O 2 c) CO + O 2 CO 2 d) SO 2 + O 2 SO 3 e) N 2 + H 2 NH 3 f) N 2 + O 2

Mehr

PC-Übung Nr.1 vom

PC-Übung Nr.1 vom PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in

Mehr

Lösungsvorschlag Übung 2

Lösungsvorschlag Übung 2 Lösungsvorschlag Übung Aufgabe : Dichte von Gasen a) Die Dichte ρ eines Gases ist definiert als der Quotient aus Masse m und Volumen V ρ = m V..) Die Masse eines Gases erhält man aus dem Produkt seiner

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Übungen PC - Kinetik - Seite 1 (von 5)

Übungen PC - Kinetik - Seite 1 (von 5) Übungsaufgaben PC: Kinetik 1) Für die Umlagerung von cis- in trans-dichlorethylen wurde die Halbwertszeit 245 min gefunden; die Reaktion gehorcht einem Geschwindigkeitsgesetz erster Ordnung. Wie viel g

Mehr

Thermodynamik 1 Klausur 06. August 2012

Thermodynamik 1 Klausur 06. August 2012 Thermodynamik 1 Klausur 06. August 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 7. August 2009 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw Gedankengang muss erkennbar

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine )

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine ) 3. Übung KW 19/20) Aufgabe 1 T 4.5 Carnot-Wärmekraftmaschine ) Eine Carnot-Wärmekraftmaschine arbeitet zwischen den Temperaturen und. Während der isothermen Expansion vergrößert sich das Volumen von auf

Mehr

C Säure-Base-Reaktionen

C Säure-Base-Reaktionen -V.C1- C Säure-Base-Reaktionen 1 Autoprotolyse des Wassers und ph-wert 1.1 Stoffmengenkonzentration Die Stoffmengenkonzentration eines gelösten Stoffes ist der Quotient aus der Stoffmenge und dem Volumen

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Musterlösung Übung 7

Musterlösung Übung 7 Musterlösung Übung 7 Aufgabe : Kühlschränke Das Prinzip eines Kühlschrankes ist schematisch in Abbildung - dargestellt. Überträgt man Wärme von der Region mit der tieferen emperatur zur Region mit der

Mehr

Atome. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Dalton-Modell. Reaktionsgrundgesetze. Chemische Formeln.

Atome. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Dalton-Modell. Reaktionsgrundgesetze. Chemische Formeln. Chemie Atome Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Dalton-Modell Reaktionsgrundgesetze Chemische Formeln Avogadro Relative Massen Quantitative Beziehungen Stöchiometrie Steffi, Tom, Marvin

Mehr

Thermodynamik 2 Klausur 14. September 2011

Thermodynamik 2 Klausur 14. September 2011 Thermodynamik 2 Klausur 14. September 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

T6 - Verbrennungswärmen

T6 - Verbrennungswärmen T6 - Verbrennungswärmen 1. Problemstellung: Die molaren Standardbildungs- und Standardverbrennungsenthalpien und V ür n-exan und Cyclohexan, zweier verwandter Strukturen, sind zu bestimmen. Die unterschiedlichen

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Thermodynamik 2 Klausur 19. September 2012

Thermodynamik 2 Klausur 19. September 2012 Thermodynamik 2 Klausur 19. September 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º º Ë Ñ ØÞ Prüfung am 12. 08. 2014 im Fach Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur eine eindeutige

Mehr

1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie

1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie 1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie Name: Vorname: Matrikel Nr.: 15.12.2010 Die Durchführung und Auswertung der 12 Aufgaben im zweiten Teil dieser Klausur mit je vier Aussagen (a-d)

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

LN Vortermin SS 02. PC Teil

LN Vortermin SS 02. PC Teil LN Vortermin SS 02 PC Teil 1. 15g Magnesium werden mit Salzsäure im Überschuß versetzt. Folgende Standardbildungsenthalpien bei 198K sind dazu gegeben: Mg 2+ -466,85 kj/mol Cl - aq -167,16 kj/mol a) Berechnen

Mehr

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Lösung 7 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Chlorwasserstoff ist eine starke Säure (pk a = 7),

Mehr

Grundlagen der Chemie Chemisches Gleichgewicht

Grundlagen der Chemie Chemisches Gleichgewicht Chemisches Gleichgewicht Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Das Massenwirkungsgesetz Wenn Substanzen

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft

Mehr

Musterlösung Aufgabe 1: Kompressionskälteprozess

Musterlösung Aufgabe 1: Kompressionskälteprozess Musterlösung Aufgabe 1: Kompressionskälteprozess I. TEILAUFGABE A) 4 PUNKTE lg p p2p3 3 3 t30 C 2 2s 2 t15 C p1p4p5 t-10 C 4 5 5 1 h II. TEILAUFGABE B) 5 PUNKTE P 12 _m w t12 w t12 w t12s h 2s h 1 s;v

Mehr

Musterlösung Aufgabe 1: Zweikammermesssysatem

Musterlösung Aufgabe 1: Zweikammermesssysatem Klausur Thermodynamik I (08.09.2016) 1 Musterlösung Aufgabe 1: Zweikammermesssysatem Teilaufgabe a) Da die Membrane zunächst für Wärme undurchlässig ist, handelt es sich um eine adiabate Zustandsänderung

Mehr

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung! Klausur F2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) ( 2 Punkte) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

Mehr

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12 Seminar zum Quantitativen Anorganischen Praktikum WS 211/12 Teil des Moduls MN-C-AlC Dr. Matthias Brühmann Dr. Christian Rustige Inhalt Montag, 9.1.212, 8-1 Uhr, HS III Allgemeine Einführung in die Quantitative

Mehr

Versuch 1. 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials

Versuch 1. 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials Versuch 1 Wir stellen je 100 ml der folgenden Lösungen her: a) Silbernitrat AgNO3 (c = 0,1 mol/l) b) Kaliumnitrat KNO3 (c = 0,1 mol/l) 2/48 Konzentrationsabhängigkeit

Mehr

Vorlesung Gerätetechnik I

Vorlesung Gerätetechnik I Vorlesung Gerätetechnik I SoSe 2007 08. bis 09. Oktober 2007 Dipl.-Ing. Florian Loibl Lehrstuhl für Lebensmittelverpackungstechnik Aufgaben Feuchte Luft, Mollier-h,x-Diagramm Wie groß ist die Enthalpie

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

V. Vom Experiment zur Reaktionsgleichung. Themen dieses Kapitels:

V. Vom Experiment zur Reaktionsgleichung. Themen dieses Kapitels: Hinweise zum Kapitel V. Vom Experiment zur Reaktionsgleichung Themen dieses Kapitels: - Stoffmengen (Mole), molare Massen und Massen von Stoffportionen und ihre mathematische Bestimmung - Stoffnamen und

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser links) und Ethanol rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Verfahrenstechnisches Praktikum WS 2017/2018. Versuch D3: Energiebilanz einer Verbrennung

Verfahrenstechnisches Praktikum WS 2017/2018. Versuch D3: Energiebilanz einer Verbrennung Fakultät für Chemieingenieurwesen und Verfahrenstechnik Verfahrenstechnisches Praktikum WS 2017/2018 Versuch D3: Energiebilanz einer Verbrennung Betreuer: Fernando Reichert Email: fernando.reichert@kit.edu

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludigs-Universität Freiburg Lösungen zum 4. Übungsblatt zur orlesung Physikalische Chemie I SS 00 Prof. Dr. Bartsch 4. (6 Punkte) In einem Behälter mit der Grundfläche

Mehr

Thermodynamik 2 Klausur 15. September 2010

Thermodynamik 2 Klausur 15. September 2010 Thermodynamik 2 Klausur 15. September 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Klausurlösungen Thermodynamik II Sommersemester 2014 Fragenteil

Klausurlösungen Thermodynamik II Sommersemester 2014 Fragenteil Klausurlösungen Thermodynamik II Sommersemester 2014 Fragenteil Lösung zum Fragenteil Regeln Nur eine eindeutige Markierung wird bewertet, z. B.: Für eine Korrektur kann die zweite Spalte mögl. Korrektur

Mehr

Verfahrenstechnisches Praktikum WS 2016/2017. Versuch D3: Energiebilanz einer Verbrennung

Verfahrenstechnisches Praktikum WS 2016/2017. Versuch D3: Energiebilanz einer Verbrennung Fakultät für Chemieingenieurwesen und Verfahrenstechnik Verfahrenstechnisches Praktikum WS 201/2017 Versuch D3: Energiebilanz einer Verbrennung Betreuer: Matthias Sentko Email: Matthias.Sentko@kit.edu

Mehr

1 Michaelis-Menten-Kinetik

1 Michaelis-Menten-Kinetik Physikalische Chemie II Lösung 2 9. Dezember 206 Michaelis-Menten-Kinetik. Das Geschwindigkeitsgesetz für die zeitliche Änderung der ES-Konzentration ist durch folgendes Geschwindigkeitsgesetz beschrieben:

Mehr

Klausurlösungen T. Thermodynamik II Sommersemester 2016 Fragenteil

Klausurlösungen T. Thermodynamik II Sommersemester 2016 Fragenteil Klausurlösungen T. Thermodynamik II Sommersemester 2016 Fragenteil Lösung zum Fragenteil Regeln Nur eine eindeutige Markierung wird bewertet, z. B.: Für eine Korrektur kann die zweite Spalte mögl. Korrektur

Mehr

Thermodynamik 2 Klausur 11. September 2015

Thermodynamik 2 Klausur 11. September 2015 Thermodynamik 2 Klausur 11. September 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 7 nummerierte Seiten 1 Diagramm Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 2 Nordrhein-Westfalen 2012LK Aufgabe a (1) Anhand der Graphen ist erkennbar, dass sowohl in der Stadt als auch auf Land die Ozonbelastung im Verlauf des Morgens

Mehr

Technische Thermodynamik II

Technische Thermodynamik II Technische Thermodynamik II Name,Vorname: Bitte deutlich (in Blockschrift) ausfüllen! Matr.-Nr: Studiengang: F 1 2 Σ Note 1 NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 16. 03. 2017

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 11. 08. 2015 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur

Mehr

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik.

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik. Die Stöchiometrie ist die Lehre von der Zusammensetzung chemischer Verbindungen, sowie der Massen-, Volumen- und Ladungsverhältnisse bei chemischen Reaktionen. Die bei chemischen Reaktionen auftretenden

Mehr

Was ist Elektrochemie? Elektrochemie. Elektrochemie ist die Lehre von der Beziehung

Was ist Elektrochemie? Elektrochemie. Elektrochemie ist die Lehre von der Beziehung Was ist Elektrochemie? Elektrochemie Elektrochemie ist die Lehre von der Beziehung zwischen elektrischen und chemischen Prozessen. 131 Stromleitung in einem Metall Wir haben gelernt, dass die Stromleitung

Mehr

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P]

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P] Mathematik Name: Lösungen Nr. K Punkte: /3 Note: Schnitt: 7..3 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg GRUNDLAGEN Modul: Versuch: Elektrochemie 1 Abbildung 1: I. VERSUCHSZIEL

Mehr

Klausur 12. September Teil 1

Klausur 12. September Teil 1 Institut für Energie- und Verfahrenstechnik Thermodynam mik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Rationelle Energienutzung Klausur 12. September 2014 Teil 1 Gesamte Bearbeitungszeit:

Mehr

Lernzielkontrolle Sekunda

Lernzielkontrolle Sekunda Lernzielkontrolle Sekunda Hilfsmittel: PSE, Taschenrechner 1 Stoffklassen / Bindungslehre / Zwischenmolekulare Kräfte (15) Richtzeit: 25 Minuten 1.1 Elektrische Leitfähigkeit verschiedener Stoffe (3) Manche

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 14. 03. 2019 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Fragen

Mehr

XI. Thermodynamik einfacher chemischer Reaktionen. - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc.

XI. Thermodynamik einfacher chemischer Reaktionen. - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc. XI. Thermodynamik einfacher chemischer Reaktionen Technische Thermodynamik Anwendung: Fragestellung: - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc. - Bestimmung der Stoffströme

Mehr

Grundlagen: Galvanische Zellen:

Grundlagen: Galvanische Zellen: E1 : Ionenprodukt des Wassers Grundlagen: Galvanische Zellen: Die Galvanische Zelle ist eine elektrochemische Zelle. In ihr laufen spontan elektrochemische Reaktionen unter Erzeugung von elektrischer Energie

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2016 Praktikum Kraft- und Arbeitsmaschinen Versuch 2 Betriebsfeld und Energiebilanz eines

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Übungsaufgaben 1 Lineare Gleichungssysteme Aufgabe 1. Man bestimme jeweils die Menge aller stöchiometrischen Koeffizienten x 1 ; : : : ; x n 2 R für die chemische Reaktion (1) (2) x 1 H 4 x 2 O 2 x 3 NH

Mehr

Beispiele zur Anwendung der Nernst-Gleichung (II)

Beispiele zur Anwendung der Nernst-Gleichung (II) Chemie-Arbeitsblatt Klasse _ Name: Datum:.. Beispiele zur Anwendung der Nernst-Gleichung (II) 3 Aufgabe I: Gegeben sind die Standard-Elektrodenpotenziale für Cu/Cu : 0,35V, Au/Au : 1,4 V und Cl /Cl : 1,36

Mehr

-1 (außer in Verbindung mit Sauerstoff: variabel) Sauerstoff -2 (außer in Peroxiden: -1)

-1 (außer in Verbindung mit Sauerstoff: variabel) Sauerstoff -2 (außer in Peroxiden: -1) 1) DEFINITIONEN DIE REDOXREAKTION Eine Redoxreaktion = Reaktion mit Elektronenübertragung sie teilt sich in Oxidation = Elektronenabgabe Reduktion = Elektronenaufnahme z.b.: Mg Mg 2 + 2 e z.b.: Cl 2 +

Mehr

Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade Teil 3: Physikalische Chemie

Schülervorbereitungsseminar an der Rheinischen Friedrich-Wilhelms- Universität Bonn für die Chemieolympiade Teil 3: Physikalische Chemie Prof. Dr. Robert Glaum Institut für Anorganische Chemie Gerhard-Domagk-Straße 1 D-53121 Bonn (Germany) Tel. +49 228 / 73 53 53 Fax. +49 228 / 73 56 60 e-mail: rglaum @uni-bonn.de Schülervorbereitungsseminar

Mehr

Pfui Teufel, ein widerlicher Österreicherwitz! So etwas könnte sich tatsächlich zugetragen haben. Begründung: Antwort richtig nur mit Begründung!

Pfui Teufel, ein widerlicher Österreicherwitz! So etwas könnte sich tatsächlich zugetragen haben. Begründung: Antwort richtig nur mit Begründung! Musterprüfung: 1. Was ist ein Faradayscher Käfig? 2. Millikan fand auf einem Öltröpfchen eine Ladung Q von 8 10-19 C. Wie gross war die Ladung des Öltröpfchens wahrscheinlich auf vier signifikante Ziffern

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Mischphasenthermodynamik Prüfung

Mischphasenthermodynamik Prüfung Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Mischphasenthermodynamik Prüfung 06. 03. 2017 Teil 1 : Fragenteil Gesamte Bearbeitungszeit

Mehr

Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 2.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft.

Mehr

Energie- und Kältetechnik Klausur SS 2008

Energie- und Kältetechnik Klausur SS 2008 Prof. Dr. G. Wilhelms Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

tgt HP 1999/00-3: Wärmekraftwerk

tgt HP 1999/00-3: Wärmekraftwerk tgt HP 1999/00-3: Wärmekraftwerk In einem Wärmekraftwerk wird mittels eines Kreisprozesses durch den Einsatz von Primärenergie elektrische Energie erzeugt. Teilaufgaben: 1 Das obige Bild zeigt die Darstellung

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Substitutionsverfahren

Substitutionsverfahren Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft

Mehr