Musterlösung Übung 10

Größe: px
Ab Seite anzeigen:

Download "Musterlösung Übung 10"

Transkript

1 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser links) und Ethanol rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen dargestellt. a) Wasser ist eine Substanz, die beim Schmelzen kontrahiert. Daher hat die Schmelzkurve im Phasendiagramm von Wasser eine negative Steigung. Die Schmelzkurve im Phasendiagramm von Ethanol hat, wie die raktisch aller Substanzen ausser Wasser, eine ositive Steigung. Das Volumen vergrössert sich also beim Schmelzen. b) Für das chemische Potential zweier Phasen, die im Gleichgewicht miteinander stehen, gilt µ µ. Entlang der Gleichgewichtslinien Schmelzkurve, Siedekurve und Sublimationskurve) stehen je zwei Phasen miteinander im Gleichgewicht. Am Trielunkt stehen drei Phasen miteinander im Gleichgewicht. Abbildung 1-2: Das chemische Potential eines Einkomonentensystem im Zustand fest, flüssig und gasförmig, ist als Funktion der Temeratur skizziert für einen vorgegebenen Wert des Drucks. c) Das chemische Potential eines reinen Stoffes sinkt grundsätzlich mit steigender Temeratur. Die Kurve hat jeweils einen signifikanten Knick beim Übergang vom Festkörer zur Flüssigkeit und zur Gashase. Die stabilste Phase in einem bestimmten T- oder -Bereich ist jeweils diejenige mit dem kleinsten Wert für µ. d) Das chemische Potential eines reinen Stoffes µ i µ ergibt mit Gl. 243) im Skrit. µ i H i T S i µ H T S G 1.1) 1

2 gerade die molare freie Enthalie. Das totale Differential für die molare freie Enthalie lässt sich direkt aus dem totalen Differential der freien Enthalie Gl. 240) im Skrit berechnen: dg sdt + V d + i µ i dn i 1.2) dg n dg SdT + V md. 1.3) Bei konstantem Druck erhalten wir für die artielle Ableitung nach der Temeratur der molaren freien Enthalie G ) G T ) µ S 1.4) T einen Zusammenhang des chemischen Potentials zur molaren Entroie. Für den Unterschied des chemischen Potentials bei T u 5 C definieren wir die Differenz µ l,s T u ) µ l T u ) µ s T u ). 1.5) Beim Schmelzunkt T 0 0 C) befinden sich die beiden Phasen im Gleichgewicht und die chemischen Potentiale sind gleich µ l T 0 ) µ s T 0 ) µ l,s T 0 ) µ l T 0 ) µ s T 0 ) ) Damit können wir µ l,s T u ) geschickt umformen, indem wir den Nullwert µ l,s T 0 ) 0 dazu addieren: µ l,s T u ) µ l,s T u ) µ l,s T 0 ) 1.7) [µ l T u ) µ s T u )] [µ l T 0 ) µ s T 0 )] 1.8) [µ l T u ) µ l T 0 )] [µ s T u ) µ s T 0 )] 1.9) µ l µ s. 1.10) Wenn wir nun die Änderung des chemischen Potentials mit der Temaratur untersuchen wollen, dann können wir mit Gl. 1.4) folgendes herleiten µ µt 0 ) µt u) dµ T 0 T u ) µ dt ST 0 T u ) S T. 1.11) T Setzen wir dieses Ergebnis in Gl. 1.10), erhalten wir schlussendlich einen Ausdruck für die gesuchte Differenz der chemischen Potentiale bei 5 C µ l,s T u ) µ l µ s S l T + S s T S s S l ) T. 1.12) }{{} f S 2

3 Für eine Änderung des Aggregatszustand von fest zu flüssig, lässt sich die Schmeltzentroie berechnen Somit erhält folgenden Zahlenwert: f S fh T ) µ l,s T u ) 109 J/mol. 1.14) Aufgabe 2: Clausius-Claeyron Gleichung Die Clausius-Claeyron Gleichung gibt die Beziehung zwischen der Gleichgewichtslinie im, T )-Diagramm und der molaren Enthalie- und Volumenänderung beim Phasenübergang wieder, die wir wiederum als exerimentell gefundene Beziehung akzetieren wollen: d dt th T t V m H b) H a) T V m,b) V m,a) ) 2.1) Die Indices a) und b) geben die beiden Phasen an. Die Steigung der Gleichgewichtskurve im, T )-Diagramm ist ositiv, wenn ) Hb) H a) > 0 V m,b) V m,a) da T immer ositiv ist. Im umgekehrten Fall ist die Steigung negativ siehe Phasendiagramm Eis-Wasser). Für den Verdamfungsrozess gilt in guter Näherung auch d ln/ ) d1/t ) vh R 2.2) a) Um Gl. 2.1) in Gl. 2.2) zu überführen, macht man die folgenden zwei Annahmen: i) Der Damf verhalte sich wie ein ideales Gas und ii) sein Molvolumen sei viel grösser als jenes der Flüssigkeit. Damit gilt was in Gl. 2.1) eingesetzt ergibt, oder v V m V m,g) V m,l) ii ) V m,g) i ) RT, 2.3) d dt Wir verwenden die folgenden Ableitungen vh vh 2.4) T v V m RT 2 d vh dt R T. 2.5) 2 d ln/ ) d 2.6) ) 1 d dt T T 2 2.7) 3

4 was in Gl. 2.5) eingesetzt d ln/ ) vh R ) 1 d T 2.8) ergibt und sodann der Differentialquotienten in Gl. 2.2) gebildet werden. Demnach wenn wir den Gleichgewichtsdamfdruck über einer Flüssigkeit in einem Diagramm ln gegen 1/T darstellen, so ist die Steigung näherungsweise v H/R, was eine Gerade ergibt, wenn v H nicht von der Temeratur abhängt. Die Methode eignet sich zur Bestimmung von Verdamfungswärmen v H aus Damfdruckmessungen und zur Interolation des Damfdruckes zwischen Messunkten lineare Interolation im Diagramm ln als Funktion von 1/T ). Man muss aber daran denken, dass Gl. 2.2) nur eine Näherungsgleichung ist, während Gl. 2.1) thermodynamisch exakt gilt. Bei der Verwendung der Näherungsgleichung muss man die Gültigkeit der Bedingungen im Ansatz jeweils rüfen. b) Für die Bestimmung von v H verwendet man und findet damit für v H: vh R d ln/ ) d1/t ) ln/ ) 1/T ) ln 2/ 1 ) 1/T 2 1/T 1 T /K T 1 /K T 2 /K 1 /Pa 2 /Pa v H/ kj mol c) Die Integration von Gl. 2.4) ist bedeutend schwieriger, wenn das Volumen der Flüssigkeit nicht vernachlässigt werden darf, weil dann keine Variablensearation mehr möglich ist: v H 1 RT dt 2 V ) m,l) d RT Die linke Seite der Gleichung und der erste Term auf der rechten Seite können wir zwar analog zu oben integrieren und erhalten vh R 1 T 2 1 T 1 ) ln 2 2 V m,l) d 2.9) 1 RT ) Es bleibt dabei aber ein Korrekturterm übrig zu dessen Integration wir weitere Näherungen machen müssen. Im einfachsten Fall nehmen wir einfach an, dass die Temeratur im Integrationsbereich keine Funktion des Drucks ist, wodurch wir 1 v H V m,l) T 2 1 ) R ln 2 / 1 ) 1/T 2 1/T ) erhalten. Wenn wir für T die entsrechende Temeratur einsetzen, ergibt sich T /K T 1 /K T 2 /K 1 /Pa 2 /Pa v H/ kj mol Wir sehen, dass V m,l) bei 300 K ohne weiteres vernachlässigt werden kann. Bei 600 K allerdings ist der Damfdruck schon so hoch, dass V m,g) und V m,l) Werte von derselben Grössenordnung annehmen. 4

5 d) Abbildung 2-1 zeigt die Damfdruckkurven. Gemäss Gl. 2.2) entsricht v H der negativen Steigung im rechten Diagramm. Da die Punkte alle fast exakt auf einer Gerade liegen, ist die Steigung, und damit auch v H, über einen weiten Temeraturbereich nahezu konstant /bar 100 ln/pa) T/K K/T Abbildung 2-1: Damfdruckkurven von Wasser. Links ist gegen T aufgetragen, rechts ln/ 0 ) gegen 1/T. Die Werte liegen bei geeigneter Darstellung rechts) in der Tat sehr nahe bei einer Gerade. e) Mit der Annahme, dass t H und t V m konstant sind, findet man für Gl. 2.1) d dt/t th t V m d d lnt/k) 2.11) Eine Auftragung von als Funktion von lnt/k) liefert also eine Gerade mit der Steigung t H/ t V m. Aufgabe 3: Chlorierung von Phoshotrichlorid a) Von 1 mol ursrünglichem PCl 3 und Cl 2 wären mol zu PCl 5 reagiert und mol verblieben. Mit x i n i ergeben sich die Molenbrüche zu x i n PCl und x PCl3 i x Cl Mit i ges x i erhält man für die Partialdrücke PCl bar und PCl3 Cl bar bei einem Gesamtdruck ges gleich dem Standarddruck von ges 1 bar. Daraus ergibt sich für K K PCl bar PCl3 Cl bar) bar 1 3.1) Mit Gl. 325) des Skrites K K ν i g) und ν i 1 ergibt sich K K 1bar Mit der Standardreaktionsenthalie von R H kj/mol und der freien Standardreaktionsenthalie von R G RT ln K J mol 1 K 1 473K ln3.251) kj mol 1 3.2) ergibt sich die Standardreaktionsentroie zu R S RH R G T kj mol kj mol 1 473K J mol 1 K ) 5

6 b) Nach van t Hoff gilt s. Skrit Gleichungen 340) und 341)) ln K 2 ln K 1 RH 1 1 ) R T 2 T 1 3.4) ) K 2 K 1 ex R H 1 1 R T 2 T 1 3.5) K J mol e J mol 1 K K K) ) ) ) Mit K x,2 K ν i g) 2 ges und νi 1 erhalten wir K x,2 K Aus der Reaktionsgleichung ergibt sich mit x PCl3 x Cl2 und x PCl5 1 2x Cl2 und somit K x,2 1 2x Cl 2 x 2 Cl 2 3.7) 0 x 2 Cl 2 + 2x Cl 2 K x,2 1 x Cl2 K 1 x,2 ± 3.8) K x,2 Kx,2 2 + Kx, ) x Cl2 x PCl ) x PCl5 1 2x Cl ) Das zweite Ergebnis in Gl. 3.9) mit negativer Wurzel kann verworfen werden, da negative Molenbrüche keine hysikalsiche Lösung darstellen. Mit i ges x i erhalten wir PCl bar und PCl3 Cl bar. Der Partialdruck von PCl 5 ist durch die Temeraturerhöhung von bar auf bar gefallen, was für eine kleinere Ausbeute sricht und den Vorschlag nicht sinnvoll erscheinen lässt. c) Bei der Komression auf ges 2 bar bei 473K erhalten wir nach K K ν i g) ) für K K 1bar bar 1. Mit K x K ν i g) und ges νi 1 ergibt K x Für x Cl2, x PCl3 und x PCl5 erhalten wir x Cl2 K 1 x + K 2 x + K 1 x 3.12) x Cl2 x PCl ) x PCl5 1 2x Cl ) Damit ergeben sich PCl bar und PCl3 Cl bar. Bei Druckerhöhung wird das Reaktionsgleichgewicht, an den Molenbrüchen besser ersichtlich, in Richtung höherer Ausbeute von P Cl5 verschoben. Diese Variante erscheint besser geeignet als die in b). d) Mit einer Temeraturabsenkung auf 403 K ergibt sich ) K 2 K 1 e R H 1 1 R T 2 T ) K J mol e J mol 1 K K K) ) ) 6

7 Es ergibt sich K x,2 K und x Cl2 K 1 x,2 + K 2 x,2 + K 1 x,2 3.17) x Cl2 x PCl ) x PCl5 1 2x Cl ) Wir erhalten für PCl bar und PCl3 Cl bar. Durch die Temeraturabsenkung ist das Gleichgewicht stark zugunsten einer guten Ausbeute an P Cl 5 verschoben worden. Diese Variante wurde letztendlich durchgeführt, allerdings aus einem wichtigeren Grund. PCl 5 desublimiert bei K. Die beiden anderen Komonenten sind bei dieser Temeratur noch gasförmig. Damit ergibt sich eine einfache Methode dem Gleichgewicht schlagartig das gewünschte Produkt zu entziehen. Aufgabe 4: Hydrierung von Ethen a) Die Reaktionsenthalie ist direkt aus den in der Aufgabenstellung tabellierten Standardbildungsenthalien von Ethen und Ethan gemäss R H i ν i B H 4.1) kj mol kj mol 1 4.2) kj mol 1 4.3) zugänglich. Die freie Reaktionsenthalie lässt sich über den Zusammenhang mit der gegebenen Gleichgewichtskonstanten K berechnen. R G RT lnk 4.4) JK 1 mol K ln2000) 4.5) 50.6 kj mol ) Die Entroie ergibt sich nun durch Umstellung der Definitionsgleichung der freien Enthalie R G R H T R S 4.7) R S RH R G T 4.8) [ 157.9) 50.6)] kj mol K 4.9) JK 1 mol ) Da R H < 0 ist, liegt eine exotherme Reaktion vor. b) Die Aufgabenstellung erfordert die Anwendung des Satzes von Hess, der besagt, dass sich die Enthalieanderung einer Reaktionsfolge als Summe der Enthaliebeiträge der einzelnen Reaktionsschritte ergibt. Mithilfe des Satzes von Hess lassen sich Reaktionsenthalien von Reaktionen berechnen, wenn die Reaktionsenthalien von Reaktionen bekannt sind, die über einen alternativen Reaktionsweg von den gleichen Edukten zu den gleichen Produkten führen. Das ist besonders nützlich für Reaktionen, für welche sich z.b. aufgrund von zu 7

8 niedriger Reaktionsgeschwindigkeit) in der Praxis keine Messungen durchführen lassen. Hier lassen sich die drei Reaktionen mit gegebener, bzw. berechneter Reaktionsenthalie folgendermassen zu der gesuchten Reaktion kombinieren: Reaktion R H I): C 2 H 4 g) + H 2 g) C 2 H 6 g) kj mol 1 II): C 2 H 6 g) O 2g) 2 CO 2 g) + 3 H 2 Og) 1560 kj mol 1 III): H 2 g) O 2g) H 2 Ol) 286 kj mol 1 I+II III): C 2 H 4 g) + 3 O 2 g) 2 CO 2 g) + 2 H 2 Ol) kj mol 1 Die gesuchte Reaktionsenthalie ergibt sich also gemäss R H kj mol kj mol 1 ) 286 kj mol 1 ) 1432 kj mol ) c) Entscheidend für die Druckabhängigkeit von K x ist nach Gl. 325) des Skrites K x i ν ig) K ) i ν ig) 4.12) der Umsatz an Teilchen in der Gashase. Zunächst berechnen wir die druckunabhängige Gleichgewichtskonstante K bei der neuen Temeratur T 1 durch Einsetzen in Gl. 4.12) gemäss K 1 K x, ) i ν ig) 400 kpa 100 kpa ) ) Die Temeraturänderung auf T 1 hat das Gleichgewicht der exothermen Reaktion auf die Seite der Produkte verschoben K < K 1). Daraus lässt sich schliessen, dass T 1 < 800 K sein muss. Da K nicht druckabhängig ist, gilt und somit K 2 K ) K x,2 K 2 ) 1 i ν ig) 4.15) K ) Die Druckerhöhung verschiebt das Gleichgewicht also erwartungsgemäss zu dem Produkt. d) i) Es muss die Rückreaktion, d.h. die Reaktion zu den Edukten Ethen und Wasserstoff, abgelaufen sein, da die Hinreaktion aufgrund des fehlenden Ethen im Startzustand natürlich nicht ablaufen kann und sich weiterhin Ethen und Wasserstoff gebildet haben. Das Ablaufen der Rückreaktion wird ausserdem durch die gegebene negative Reaktionslaufzahl imliziert. 8

9 ii) Um diese Frage zu beantworten, muss die Gleichgewichtskonstante K für die Reaktion berechnet und mit den vorliegenden Bedingungen verglichen werden. Es gilt K K ) i ν ig) 4.17) Pa ) Im thermodynamischen Gleichgewicht gilt weiterhin K i ν i i. Dieser Ausdruck wird nun mit den gegebenen Partialdrücken der Reaktionskomonenten berechnet und mit dem Wert im Gleichgewicht verglichen. ν i i C 2 H ) C2 H 4 H2 i Pa 50 Pa Pa 0.02 Pa 1 K. 4.20) Das System hat also in sehr guter Näherung das Gleichgewicht erreicht. Die Reaktion wird daher nicht sontan weiter in diese Richtung laufen. iii) Da zu Anfang kein Ethen vorhanden war und die Reaktionslaufzahl ξ 1 beträgt, muss sich genau 1 mol Ethen gebildet haben. Bei idealen Gasen sind die Molenbrüche x i n i der Komonenten gleich dem Verhältnis von Partialdruck n i der Komonente zum Gesamtdruck. x i n i n i. 4.21) Für die Gesamtstoffmenge n nach Ablauf der Reaktion erhalten wir demnach n n C 2 H 4 n C2 H x 4 1 mol 105 Pa C2 H 4 C2 H 4 50 Pa 4.22) 2000 mol 4.23) unter Verwendung der Partialdruck- und Stoffmengenangaben für Ethen. Vor der Reaktion lag demnach eine Gesamtstoffmenge von 1999 mol vor. vi) Zunächst werden die Stoffmengen von Ethan und Wasserstoff nach der Reaktion mittels n C2 H 6 C 2 H 6 n mol 4.24) n H2 H 2 n mol 4.25) berechnet. Unter Berücksichtigung der Reaktionslaufzahl betrugen die Stoffmengen vor der Reaktion demnach n C2 H mol + 1 mol mol 4.26) n H mol 1 mol mol. 4.27) Bei einem Gesamtdruck von 10 5 Pa und zwei gasförmigen Komonenten gleicher Stoffmenge ergibt sich für die Partialdrücke C2 H 6 H Pa Pa. 4.28) 9

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12 PC I Thermodynamik G. Jeschke FS 2015 Lösung zur Übung 12 12.1 Die Hydrierung von Ethen zu Ethan a) Die Reaktionsenthalpie ist direkt aus den in der Aufgabenstellung tabellierten Standardbildungsenthalpien

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Chlorierung von Phosphotrichlorid a) Von 1 mol ursprünglichem PCl 3 und Cl 2 wären 0.515 mol zu PCl 5 reagiert und 0.485 mol verblieben. Mit x i = n i ergeben sich die Molenbrüche

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009)

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Aufgabe 1: Reaktionsthermodynamik a) möglichst niedrige Temeratur (begünstigt exotherme Reaktionen) möglichst hoher Druck (begünstigt

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Isotherme Titrationskalorimetrie a) Exothermic: It leads to an increase in T and a compensating decrease in applied power. b) After the 18th injection, the lysozyme is

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Lösungsvorschlag zu Übung 11

Lösungsvorschlag zu Übung 11 PCI Thermodynamik G. Jeschke FS 2015 Lösungsvorschlag zu Übung 11 (Version vom 28.04.2015) Aufgabe 1 Alle Reaktionsgleichgewichte stellen sich bei 1000 K ein, damit sind alle Komponenten stets gasförmig.

Mehr

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu Fragenteil : Aufgabe 1 Phasengleichgewichte 15 P a Eine binäre Mischung wird in einer Verdamfereinheit kontinuierlich teilweise verdamft. Messtechnisch wurden für die Ausgangsströme der Temeratur, der

Mehr

Lösungen zur Übungsklausur Thermodynamik WS 2003/04

Lösungen zur Übungsklausur Thermodynamik WS 2003/04 Lösungen zur Übungsklausur hermodynamik WS 003/04 Name: Vorname: Matrikelnummer: Aufgabe 3 4 5 Gesamt Note mögliche Punkte 9 0 8 9 4 40 erreichte Punkte Die Klausur wird bei Erreichen von insgesamt 0 Punkten

Mehr

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N -IV A.1- IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N 1 Einleitung Während heterogene Stoffgemische sich häufig durch mechanische Trennverfahren in ihre homogenen Phasen

Mehr

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st Thermodynamik II Lösung ufgabe 89 sgleichgewicht a us der efinition der Freien Enthalie H T S ergibt sich bei Referenzdruck Index aus den molaren ildungsenthalien und den absoluten Entroien die Freie Enthalie

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov #13 am 30.01.2007 Folien im PDF Format unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Praktikumsrotokoll Physikalisch-Chemisches Anfängerraktikum Tobias Schabel Datum des Praktikumstags: 14.11.25 Matthias Ernst Protokoll-Datum: 8.12.25 Grue A-11 Assistent: N. Kaernaum 6. Versuch: HG - Homogenes

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

... Matrikel-Nummer Name Vorname. ... Semester Geburtstag Geburtsort

... Matrikel-Nummer Name Vorname. ... Semester Geburtstag Geburtsort Klausur zu Vorlesung und Übung P WS 2003/04 S. Universität Regensburg Naturwissenshaftlihe Fakultät IV- hemie und Pharmazie Bitte ausfüllen... Matrikel-Nummer Name Vorname... Semester Geburtstag Geburtsort

Mehr

Die Eigenschaften einfacher

Die Eigenschaften einfacher Die Eigenschaften einfacher ischungen Lernziele: Thermodynamische eschreibung von ischungen Partielle molare Grössen, TD von Ischhasen Chemisches Potenzial flüssiger Phasen Eigenschaften von Lösungen,

Mehr

14 Massenwirkungsgesetz

14 Massenwirkungsgesetz 14 Massenwirkungsgesetz Im vorherigen Abschnitt haben wir uns mit der Mischungsentroie beschäftigt, die aber nur einen Asekt der Mischung von idealen Gasen berücksichtigt, nämlich des Mischens und rennens

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse:

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse: Zur Erinnerung Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: T V V 1 const. const. adiabatisch ( V ) 0 V V 0 R T0 isotherm ( V ) V Kreisrozesse: Ein thermodynamisches

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 )

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 ) 3 Lösung zu 83. Lösungen ( C C = T ( = T ( ( ( 2 van-der-waals Gas: ( ( b + a 2 = T = T b a 2 Man beachte das dies nur eine andere Formulierung der van-der-waals Gleichung ist als auf dem letzten Aufgabenzettel.

Mehr

Grundlagen der Chemie Chemisches Gleichgewicht

Grundlagen der Chemie Chemisches Gleichgewicht Chemisches Gleichgewicht Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Das Massenwirkungsgesetz Wenn Substanzen

Mehr

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 :

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 : Musterlösung SS. Aufgabe Punkte a Energiebilanz für die Kammer A im Zeitintervall t : W A, + W V A U A U A W A, P el t U el I el t W V A 0 U A U A m A c v A A 5 m A A V A R A 6 c v κ R 7 A A A A 8 A B

Mehr

212 - Siedepunktserhöhung

212 - Siedepunktserhöhung 1 - Siedeunktserhöhung 1. Aufgabe Es ist für verschiedene in Wasser lösliche Stoffe die Siedeunktserhöhung ihrer Lösung zu messen und daraus die molare Masse zu bestimmen.. Grundlagen Stichworte: Damfdruck,

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45.

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45. Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13 Klausur PC 1 Sommersemester 2009 03.08.2007 10:15 bis 11:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik

Musterlösung Klausur Physikalische Chemie I: Thermodynamik Musterlösung Klausur Physikalische Chemie I: hermodynamik Aufgabe : Dimerisierung von Stickstoffdioxid a Nach dem Prinzip des kleinsten Zwanges von LeChatelier sollte der Druck p möglichst klein und die

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Lösungsvorschlag Übung 2

Lösungsvorschlag Übung 2 Lösungsvorschlag Übung Aufgabe : Dichte von Gasen a) Die Dichte ρ eines Gases ist definiert als der Quotient aus Masse m und Volumen V ρ = m V..) Die Masse eines Gases erhält man aus dem Produkt seiner

Mehr

Lösungen der Aufgaben in Kurzform

Lösungen der Aufgaben in Kurzform Klausur zu Vorlesung und Übung PC WS 004/05 S. Universität Regensburg Naturwissenschaftliche Fakultät IV- Chemie und Pharmazie PHYSIKALISCHE CHEMIE I FÜR STUDIERENDE DES LEHRAMTS, DER BIOLOGIE UND DER

Mehr

PC I Thermodynamik und Transportprozesse

PC I Thermodynamik und Transportprozesse 13.06.2006 16:37 1 PC I Thermodynamik und Transportprozesse Kapitel 4 13.06.2006 16:37 2 Chemische und Physikalische Umwandlungen Das chemische Gleichgewicht: Minimum der Freien Enthalpie Reaktionslaufzahl

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme Lernziele: Phasen, Komonenten, Freiheitsgrade Die Phasenregel Zweikomonentensysteme: Damfdruckdiagramme, Hebelgesetz Zweikomonentensysteme: Siedediagramme (die Destillation von Mischungen,

Mehr

Temperaturabhängigkeit von Enthalpie H und Entropie S

Temperaturabhängigkeit von Enthalpie H und Entropie S Prof. Dr. Norbert Ham 1/5 8. emeraturabhängigkeit von Enthalie und Entroie emeraturabhängigkeit von Enthalie H und Entroie S In abellenwerken sind Enthalien und Entroien in der Regel bezogen auf Standardbedingungen,

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Das Chemische Gleichgewicht a A + b B c C + d D r r r r Für r G = 0 gilt: Q = K r G G E D r G = dg dx

Mehr

PC I Thermodynamik und Transportprozesse

PC I Thermodynamik und Transportprozesse 20.06.2006 15:19 1 PC I Thermodynamik und Transportprozesse Kapitel 5 20.06.2006 15:19 2 V. Lösungen und Mischungen Im Winter des Jahres 1729 setzte ich Bier, Wein, Essig und Salzwasser in großen offenen

Mehr

Übungen PC - Kinetik - Seite 1 (von 5)

Übungen PC - Kinetik - Seite 1 (von 5) Übungsaufgaben PC: Kinetik 1) Für die Umlagerung von cis- in trans-dichlorethylen wurde die Halbwertszeit 245 min gefunden; die Reaktion gehorcht einem Geschwindigkeitsgesetz erster Ordnung. Wie viel g

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

Amphiphile Moleküle vereinen zwei inkompatible Molekülteile mit unterschiedlicher Löslichkeit (meist: hydrophil + hydrophob)

Amphiphile Moleküle vereinen zwei inkompatible Molekülteile mit unterschiedlicher Löslichkeit (meist: hydrophil + hydrophob) 3. Amhihile 3.1. Allgemeines Amhihile Moleküle vereinen zwei inkomatible Molekülteile mit unterschiedlicher Löslichkeit (meist: hydrohil + hydrohob) Tenside, Detergentien, surfactant, Liide, Blockcoolymere,...

Mehr

Adsorption an Festkörpern

Adsorption an Festkörpern Adsortion an Festkörern Anreicherung eines Stoffes findet im wesentlichen nur an der Festköreroberfläche statt. Die Lage der Grenzfläche ist damit sehr genau bestimmt. Nicht nur die Größe der für die Adsortion

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Tobias Schabel Datum des Praktikumstags: 02.12.2005 Matthias Ernst Protokoll-Datum: 12/20/2005 Gruppe A-11 11. Versuch: Schmelzdiagramm Assistent:

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase

Mehr

13 Chemisches Gleichgewicht (Kinetische Ableitung)

13 Chemisches Gleichgewicht (Kinetische Ableitung) 13 Chemisches Gleichgewicht (Kinetische Ableitung) Chemische Reaktionen in geschlossenen Systemen verlaufen selten einsinnig d.h. in eine Richtung, sondern sind meist umkehrbar: A + B C + D Für die Geschwindigkeit

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre

Mehr

Beispielaufgaben IChO 2. Runde 2019 Grundlagen der Thermodynamik, Lösungen. = -0,900 kj/k (21,84 22,15) K / 13,16 g = 0,279 kj / 13,16 g

Beispielaufgaben IChO 2. Runde 2019 Grundlagen der Thermodynamik, Lösungen. = -0,900 kj/k (21,84 22,15) K / 13,16 g = 0,279 kj / 13,16 g Lösung Beispiel 1 Erhaltung der Energie a) ZnSO 4(s) ZnSO 4(aq): Lösungsenthalpie Lsg (ZnSO 4) = -0,900 kj/k (23,52 22,55) K / 1,565 g = -0,873 kj / 1,565 g mit (ZnSO 4) = 161,48 g/mol: Lsg (ZnSO 4) =

Mehr

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Physikalische Chemie II Lösung 5 6. Oktober 25 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Für c = c B =... = c gilt c (t) = c B (t) =... = c(t) und das Geschwindigkeitsgesetz lautet dc(t) =

Mehr

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101.

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101. Übung 6 Allgemeine Chemie I Herbstsemester 01 1. Aufgabe MM Aufgabe 1.10 Wir betrachten zuerst den Fall X = F. Reaktionsgleichung: BX 3 (g) + 3 H O(l) H 3 BO 3 (aq) + 3 HX(g) (X = F oder Cl) G 0 R = i

Mehr

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5 Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum 0. Übungsblatt zur Vorlesung hysikalische Chemie I SS 04 rof. Dr. Bartsch 0. L Die freie Standardreaktionsenthalpie der

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum Übungsblatt 4 zur Vorlesung Physikalische Chemie II WS 2008/09 Prof. E. Bartsch 4.1 Der Siedepunkt einer flüssigen Mischung

Mehr

D r H Entropie-Änderungeng. D rs Arbeit, maximale (Nicht Volumen) D r G

D r H Entropie-Änderungeng. D rs Arbeit, maximale (Nicht Volumen) D r G REP Was schon behandelt wurde: 1. Hauptsatz 2. Hauptsatz Enthalpie-Änderungen D r H Entropie-Änderungeng D rs Arbeit, maximale (Nicht Volumen) D r G REP D r G = D r H - TDD r S Gleichgewicht: D r G = 0

Mehr

Beispiel 13: Gasvolumetrie

Beispiel 13: Gasvolumetrie Aufgabenstellung Beisiel 1: Gasvolumetrie Eine abgewogene Menge eines festen carbonathaltigen Stoffes wird mit einem Überschuss starker Säure versetzt. Die Menge an gebildetem gasförmigem Kohlenstoffdioxid

Mehr

Das chemische Gleichgewicht

Das chemische Gleichgewicht Das chemische Gleichgewicht Modell: Geschlossenes Gefäß mit Flüssigkeit, die verdampft ( T=const ) Moleküle treten über in die Dampfphase H 2 O (l) H 2 O (g) H 2 O (g) Dampfdruck p H 2 O (l) T = const.

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Kapitel 1 Grundlagen der Kinetik In diesem Kapitel werden die folgenden Themen kurz wiederholt: Die differenziellen und integralen Geschwindigkeitsgesetze von irreversiblen Reaktionen., 1., und. Ordnung

Mehr

1 Michaelis-Menten-Kinetik

1 Michaelis-Menten-Kinetik Physikalische Chemie II Lösung 2 9. Dezember 206 Michaelis-Menten-Kinetik. Das Geschwindigkeitsgesetz für die zeitliche Änderung der ES-Konzentration ist durch folgendes Geschwindigkeitsgesetz beschrieben:

Mehr

4. Chemisches Gleichgewicht

4. Chemisches Gleichgewicht 3.6 Gleichgewichtsbedingungen für verschiedene Prozesse 122 4. Chemisches Gleichgewicht 4.1 Partielle molare Größen ntensive Zustandsgrößen: Sind nicht von der Stoffmenge abhängig. Beispiele: (4.1) Extensive

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht Das Chemische Gleichgewicht Geschwindigkeit der Hinreaktion: v hin = k hin c(a 2 ) c(x 2 ) Geschwindigkeit der Rückreaktion: v rück = k rück c 2 (AX) Gleichgewicht: v hin = v rück k hin c(a 2 ) c(x 2 )

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2014/2015 Wie zählen wir Mengen in der Chemie? Stefan

Mehr

Physikalische Chemie Praktikum. Mischphasenthermodynamik: Gefrierpunktserniedrigung Molmassenbestimmung

Physikalische Chemie Praktikum. Mischphasenthermodynamik: Gefrierpunktserniedrigung Molmassenbestimmung Hochschule Emden / Leer Physikalische Chemie Praktikum Mischphasenthermodynamik: Gefrierpunktserniedrigung Molmassenbestimmung Vers.Nr. 17 Sept. 2015 Allgemeine Grundlagen a) Reine Stoffe Bei reinen Stoffen

Mehr

Die Zustandsgleichung realer Gase

Die Zustandsgleichung realer Gase Die Zustandsgleichung realer Gase Grolik Benno, Kopp Joachim 2. Januar 2003 1 Grundlagen des Versuchs Der Zustand eines idealen Gases wird durch die drei elementaren Zustandsgrößen Druck p, Temperatur

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalpie & Gibbs Gleichungen 1. Eigenschaften der Materie in der Gasphase 2. Erster Hauptsatz: Arbeit und Wärme 3. Entropie und Zweiter Hauptsatz der hermodynamik 4. Freie Enthalpie G,

Mehr

Van der Waals-Theorie und Zustandsgleichung

Van der Waals-Theorie und Zustandsgleichung Van der Waals-Theorie und Zustandsgleichung Eine verbesserte Zustandsgleichung für klassische Gase bei höheren Dichten liefert die Van der Waals-Gleichung. Diese Gleichung beschreibt auch den Phasenübergang

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludigs-Universität Freiburg Lösungen zum 4. Übungsblatt zur orlesung Physikalische Chemie I SS 00 Prof. Dr. Bartsch 4. (6 Punkte) In einem Behälter mit der Grundfläche

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11 Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11 Prof. Dr. Norbert Hampp Jens Träger Sommersemester 2007 02. 07. 2007 Aufgabe 1 a) Die Dampfdrücke nach dem Raoult schen

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Wie zählen wir Mengen in der Chemie? Stefan

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

11. Der Phasenübergang

11. Der Phasenübergang 11. Der Phasenübergang - Phasendiagramme, Kritischer Punkt und ripelpunkt - Gibbssche Phasenregel - Phasenübergänge 1. und 2. Ordnung - Das Phasengleichgewicht - Clausius-Clapeyron-Gleichung - Pictet-routon-Regel,

Mehr

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik.

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik. Die Stöchiometrie ist die Lehre von der Zusammensetzung chemischer Verbindungen, sowie der Massen-, Volumen- und Ladungsverhältnisse bei chemischen Reaktionen. Die bei chemischen Reaktionen auftretenden

Mehr

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Grundoperationen der Verfahrenstechnik. Berechnung idealer Reaktoren II

Grundoperationen der Verfahrenstechnik. Berechnung idealer Reaktoren II Grundoperationen der Verfahrenstechnik 9. Übung, WS 2016/2017 Betreuer: Maik Tepper M.Sc., Maik.Tepper@avt.rwth-aachen.de Morten Logemann M.Sc., Morten.Logemann@avt.rwth-aachen.de Johannes Lohaus M.Sc.,

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip

Mehr

Physikalische Chemie I

Physikalische Chemie I Physikalische Chemie I 2017 Physikalische Chemie I Dozenten: Vorlesung Prof. Dr. Cornelia Palivan (Tel: 0612673839 Cornelia.Palivan@unibas.ch) Prof. Dr. Wolfgang Meier (Tel: 0612673802 Wolfgang.Meier@unibas.ch)

Mehr

AC2 ÜB THERMODYNAMIK 2, GLEICHGEWICHTSKONSTANTE Seite 1 von J / mol J K. molk

AC2 ÜB THERMODYNAMIK 2, GLEICHGEWICHTSKONSTANTE Seite 1 von J / mol J K. molk Lösung Aufgabe 1: Kc = [HO + ]. [OH - ] a) AC2 ÜB THERMODYNAMIK 2, GLEICHGEWICHTSKONSTANTE Seite 1 von 12 1 H 2 O(l) + + 0 1 H + (aq) + 1 OH - (aq) + 0 f H m -285.8 0 0-229.99 0 [Kj/mol] S m 69.91 0 0-10.75

Mehr

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von Aufgabe 1: Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H O von 0 C bis zum Siedepunkt (100 C) zu erwärmen. Die spezifische Wärmekapazität von Wasser c = 4.18 J K - 1 g -1. Lösung

Mehr

Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit

Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit Benutzen Sie, falls erforderlich, die folgenden Werte für die Naturkonstanten. Naturkonstante Zahlenwert Einheit Allgemeine Gaskonstante R 8,31 J mol -1 K -1 Elementarladung e 1,60 10-19 C Faradaykonstante

Mehr

PC I Thermodynamik J. Stohner / M. Quack SoSe 2006

PC I Thermodynamik J. Stohner / M. Quack SoSe 2006 PC I Thermodynamik J. Stohner / M. Quack SoSe 2006 Musterlösung zu Übung 9 9.1 Druckfehler: In der Spalte 2 der Tabelle 4.1 (Seite 73) muss es T K /K statt T K heissen. 9.2 Bild 4.3a stellt das Phasendiagramm

Mehr