Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu

Größe: px
Ab Seite anzeigen:

Download "Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu"

Transkript

1 Fragenteil : Aufgabe 1 Phasengleichgewichte 15 P a Eine binäre Mischung wird in einer Verdamfereinheit kontinuierlich teilweise verdamft. Messtechnisch wurden für die Ausgangsströme der Temeratur, der Druck und die Zusammensetzung der beiden Phasen mit bekanntem Siedediagramm bestimmt. Lässt sich daraus die Zusammensetzung des Eingangsstroms eindeutig rekonstruieren? Begründen Sie. P Aus diesen Informationen lässt sich der Eingangsstrom nicht eindeutig rekonstruieren. Hierzu ist entweder noch die Angabe der Phasenanteile Hebel oder der Siedetemeratur des Eingangsstroms notwendig. b Gegeben ist das Phasendiagramm einer binären Mischung mit der überkritischen Komonente A. Beschreiben Sie die Kondensation entlang der Isobaren von Punkt 1 bis Punkt 5. Gehen Sie dabei auf due Stoffmengenanteile der beiden Phasen ein. In welchem Aggregatzustand befindet sich die Mischung im Punkt 5? Wie wird diese Art der Kondensation auch genant? 5 P Kühlt man die Gasmischung Punkt 1 isobar ab, so bildet sich beim Überschreiten der Kondensationslinie Flüssigkeit, deren Menge bei weiterer Abkühlung anteilmäßig zunimmt Punkt um schließlich ein Maximum Punkt 3 zu erreichen. Bei weiterer Abkühlung sinkt der Anteil der Flüssighase wieder Punkt 4 um beim erneuten Überschreiten der Kondensationslinie wieder gasförmig Punkt 5 vorzuliegen. Dieser Vorgang wird als retrograde Kondensation bezeichnet. c Die binäre Mischung Ethanol A-Toluol B bildet bei dem betrachteten Systemdruck ein Leichtsiederazeotro aus. Skizzieren Sie den Prozessweg für die abgebildete fraktionelle Destillation, bestehend aus einem Verdamfer und n = Kondensatoren in das beigefügte T, x- Diagramm ein. Berechnen Sie die fehlenden Werte. Welcher Wert ergibt sich für die Gas- bzw. Flüssighasenzusammensetzung, wenn n gegen Unendlich geht? 8 P Die Zusammensetzung am Ausgang der 1. Verdamfereinheit 0 kann aus dem beigefügten T, x-diagramm abgelesen werden zu x A = 0.03, x A = x B x B Die zugehörigen Stoffmengenanteile werden aus dem Konoden- bzw. Hebelgesetz bestimmt n = 4.65 n 0.4 n = n Da die Gesamtstoffmenge n + n = 1 mol bekannt sind, ergibt sich für die Stoffmenge der jeweiligen Phasen n = 1 n = mol n = mol Über die, bereits bestimmte, Gashasenzusammensetzung ergeben sich die Stoffmengen der beiden Komonenten in der Gashase n A = 0.0 mol n B 1

2 Die Zusammensetzung der einzelnen Phasen nach der 1. Kondensatorenstufe 1 wird wieder aus dem T, x- Diagramm bestimmt x A = 0.5, x A = x B Aus dem Hebelgesetz ergibt sich auch hier für die Phasenanteile x B n = 8.8 n 0.3 n = 9.33 n Die Gesamtstoffmenge in. Kondensator wurde bereits im vorherigen Schritt zu n + n = mol berechnet n = mol n = n = Aus der Gashasenzusammensetzung ergibt sich somit für die Stoffmengenanteile der beiden Komonenen in der Gashase n A = mol n B Man erkennt dass sich die Gashase mit der Komonente A anreichert. Die gesuchte Temeratur der. Kondensatorenstufe ergibt sich aus dem Diagramm zu T = K. Für die Zusammensetzung der Gasund Flüssighase im azeotroen Punkt ergibt sich schließlich x A = x A = x B Reale Fluide 4 P x B d Über das Korresondenzrinzi kann man das Realverhalten verschiedener Stoffe im dimensionslosen Koordinatensystem darstellen. Geben Sie die gesuchten Zahlenwerte an. In welchem Punkt befindet sich das globale Minimum der Kurvenscharen? Begründen Sie. Zeichnen Sie die Boyle-Isotherme qualitativ in das Schaubild ein. P

3 e Zeichnen Sie den qualitativen Verlauf einer Isothermen gemäß einer kubischen Zustandsgleichung mit T < T c in das, v-diagramm ein. Gehen Sie davon aus, dass drei reelle Lösungen für den Damfdruck existieren, zeichnen Sie diese in das Diagramm ein. Wie ist dadurch der thermodynamisch instabile Bereich gekennzeichnet? P Die beiden Flächen A 1 und A sind gleich groß Maxwell-Bedingung. Der instabile Bereich liegt zischen den Punkten 1 und. Von den drei Lösungen liegt v 1, im instabilen Bereich und somit sind die beiden hysikalisch sinnvollen Lösungen festgelegt. Das molare Volumen der Gashase ergibt sich zu v 1,1 und das der Flüssihase zu v 1,3 Henrysche und Raoultsche Gesetz 9 P Für die folgenden Betrachtungen verhalten sich sowohl die Gas-wie auch die Flüssighase vollständig ideal. f Im Folgenden soll die Löslichkeit von Kohlenstoffmonoxid in Wasser betrachtet werden. Berechnen Sie die Stoffmengen der beiden Komonenten in der Gas- und Flüssighase, sowie die jeweilige Zusammensetzung. Bewerten Sie zudem, ob in diesem Beisiel die Annahmen der idealen Gas- oder Flüssighase sinnvoll sind. 5 P Der Molenbruch der jeweiligen Komonente kann entweder über die angegebenen Partialdrück oder alternativ über die angegebenen molaren Partialdichten berechnet werden CO ρ CO x CO = = CO + HO ρ CO + ρ HO x H O = mol/mol. = mol/mol, Um den Molenbruch des Kohlenstoffdioxid in der Flüssighase zu berechnen, soll das Henrysche Gesetz verwendet werden x CO= x CO H CO,HO = , 351 = 1, mol/mol. Der Molenbruch des Wasser in der Flüssigkeit ergibt sich einfach aus der Molenbruch-Schließbedingung x H O= =

4 Die Stoffmenge des Kohlenstoffmonoxid ergibt sich aus der Definition des Molenbruchs n CO x CO = n CO + n H O n CO = x CO n H O 1 x CO = mol. g Das vereinfachte Raoultsche Gesetz beschreibt den Gesamtdruck eines binären Damf-Flüssig Gleichgewichts der Komonenten A und B über die Geradengleichung Ges. x A = m x A + c. Wie lassen sich m und c bei Kenntnis der Reinstoffdamfdrücke berechnen? 3 P Ges. x A = 0 A 0 B x A + 0 B Mit dem Partialdruck der i-ten Komonente im Gas i und dem Damfdruck der i-ten Reinstoffkomonente 0 i. h Das Henrysche Gesetz kann in das Raoultsche Gesetz umgeschrieben werden. Welchen Wert muss die Henry-Konstante H i,lm T annehmen? 1 P 0 i x i = x i H i,lm T x i = x i H i,lm T! = 0 i T 4

5 Rechenteil : Aufgabe Im Folgenden soll die Gashasenzusammensetzung der biären Mischung Ethanol A und Wasser B im Damf-Flüssigkeitsgleichgewicht bei T =3.5 C berechnet werden. Aufgrund des hohen Systemdrucks von 50 bar kann die Gashase nicht als ideal betrachtet werden. Zur Bestimmung der Gashasenzusammensetzung wird folgender Lösungsansatz vorgeschlagen. Der Fugazitätskoeffizient der i-ten Gaskomonente kann über eine Virialgleichung bestimmt werden. Entwickelt man bis zum.virialkoeffizienten, so ergibt sich folgender Zusammensetzung: RT lnϕ i = B mix + j=1 x j B ij a Berechnen Sie aus den angegebenen Stoffdaten das chemische Potential des Ethanols in der Flüssighase. P µ EthT,, x = µ rein.liq. Eth. T, + RT ln x i γ i µ EthT,, x = 4755 J mol µ EthT,, x = J mol. J mol K K ln b Formulieren Sie das chemische Potential des Ethanols in der Gashase als Funktion und verwenden Sie dabei die angegebene Näherung des Fugazitätskoeffizienten. P Eth.T,, x x = µ 0 Eth. Eth.T, + RT ln ϕ Eth.. 0 c Die Phasengleichgewichtsbedingung führt, unter der Näherung lnx i x i x i /, auf eine quadratische Gleichung der Form ax A + bx A + c = 0. Bestimmen Sie die Koeffizienten a, b, c und damit dann die gesuchte Gashasenzusammensetzung. 10 P Eth.T,, x = µ 0 Eth.T, 0 + RT ln + RT lnx Eth. + RT lnϕ Eth. T,, x 0 Eth.T,, x [ = µ 0 Eth.T, 0 + RT ln + lnx Eth. + x Eth.B 11 + x Was.B 1 B Mix.] 0 B Mix. = x Eth.B 11 + x Eth.x Was.B 1 + x Was.B x Was. = 1 x Eth. RT lnx Eth. RT x Eth. + x Eth. Eth.T,, x = µ Eth.T,, x 5

6 B 11 + B 1 B RT B 1 B x Eth. + x Eth. B 11 B 1 + B RT + RT ln + µ 0 Eth.T, 0 µ Eth.T,, x = 0 0 a x Eth. + b x Eth. + c = 0, a = B 11 B 1 + B + RT b = B 11 B 1 + B RT c = B 1 B + RT ln 0 = J mol = J mol + µ 0 Eth.T, 0 µ Eth.T,, x = J mol. x Eth.,1 = = x Eth., = x Was. =

Die Zusammensetzung am Ausgang der Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu

Die Zusammensetzung am Ausgang der Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu Fragenteil : Aufgabe Phasengleichgewichte P a Eine binäre Mischung wird in einer Verdampfereinheit kontinuierlich teilweise verdampft. Messtechnisch wurden für die Ausgangsströme der Temperatur, der Druck

Mehr

Mischphasenthermodynamik Prüfung

Mischphasenthermodynamik Prüfung Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Mischphasenthermodynamik Prüfung 06. 03. 2017 Teil 1 : Fragenteil Gesamte Bearbeitungszeit

Mehr

PC I Thermodynamik und Transportprozesse

PC I Thermodynamik und Transportprozesse 20.06.2006 15:19 1 PC I Thermodynamik und Transportprozesse Kapitel 5 20.06.2006 15:19 2 V. Lösungen und Mischungen Im Winter des Jahres 1729 setzte ich Bier, Wein, Essig und Salzwasser in großen offenen

Mehr

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N -IV A.1- IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N 1 Einleitung Während heterogene Stoffgemische sich häufig durch mechanische Trennverfahren in ihre homogenen Phasen

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme Lernziele: Phasen, Komonenten, Freiheitsgrade Die Phasenregel Zweikomonentensysteme: Damfdruckdiagramme, Hebelgesetz Zweikomonentensysteme: Siedediagramme (die Destillation von Mischungen,

Mehr

Phasengleichgewicht (Destillation)

Phasengleichgewicht (Destillation) Phasengleichgewicht (Destillation) Labor für Thermische Verfahrenstechnik bearbeitet von Prof. Dr.-Ing. habil. R. Geike 1. Grundlagen für das Phasengleichgewicht Damf - Flüssigkeit Die unterschiedliche

Mehr

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009)

Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Musterlösung Klausur Physikalische Chemie I: Thermodynamik (Januar 2009) Aufgabe 1: Reaktionsthermodynamik a) möglichst niedrige Temeratur (begünstigt exotherme Reaktionen) möglichst hoher Druck (begünstigt

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser links) und Ethanol rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45.

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45. Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13 Klausur PC 1 Sommersemester 2009 03.08.2007 10:15 bis 11:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum Übungsblatt 4 zur Vorlesung Physikalische Chemie II WS 2008/09 Prof. E. Bartsch 4.1 Der Siedepunkt einer flüssigen Mischung

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Institut für Technische Chemie Technische Universität Clausthal. Technisch-chemisches Praktikum TCB. Versuch: Rektifikation

Institut für Technische Chemie Technische Universität Clausthal. Technisch-chemisches Praktikum TCB. Versuch: Rektifikation Institut für Technische Chemie Technische Universität Clausthal Technisch-chemisches Praktikum TCB Versuch: Rektifikation Einleitung In einer Vielzahl von chemischen Produktionsanlagen besteht die Notwendigkeit,

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse:

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse: Zur Erinnerung Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: T V V 1 const. const. adiabatisch ( V ) 0 V V 0 R T0 isotherm ( V ) V Kreisrozesse: Ein thermodynamisches

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage

Karl Stephan Franz Mayinger. Thermodynamik. Grundlagen und technische Anwendungen. Zwölfte, neubearbeitete und erweiterte Auflage Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Zwölfte, neubearbeitete und erweiterte Auflage Band 2 Mehrstoffsysteme und chemische Reaktionen Mit 135 Abbildungen Springer-Verlag

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

212 - Siedepunktserhöhung

212 - Siedepunktserhöhung 1 - Siedeunktserhöhung 1. Aufgabe Es ist für verschiedene in Wasser lösliche Stoffe die Siedeunktserhöhung ihrer Lösung zu messen und daraus die molare Masse zu bestimmen.. Grundlagen Stichworte: Damfdruck,

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Schmelzdiagramm eines binären Stoffgemisches

Schmelzdiagramm eines binären Stoffgemisches Praktikum Physikalische Chemie I 30. Oktober 2015 Schmelzdiagramm eines binären Stoffgemisches Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1. Theorie hinter dem Versuch Ein Schmelzdiagramm zeigt

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov #13 am 30.01.2007 Folien im PDF Format unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st

Thermodynamik II. G 0 Ed = G 0 A + G 0 B = n A,st g 0. = n A,st Thermodynamik II Lösung ufgabe 89 sgleichgewicht a us der efinition der Freien Enthalie H T S ergibt sich bei Referenzdruck Index aus den molaren ildungsenthalien und den absoluten Entroien die Freie Enthalie

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11 Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11 Prof. Dr. Norbert Hampp Jens Träger Sommersemester 2007 02. 07. 2007 Aufgabe 1 a) Die Dampfdrücke nach dem Raoult schen

Mehr

Lösungsvorschlag zu Übung 11

Lösungsvorschlag zu Übung 11 PCI Thermodynamik G. Jeschke FS 2015 Lösungsvorschlag zu Übung 11 (Version vom 28.04.2015) Aufgabe 1 Alle Reaktionsgleichgewichte stellen sich bei 1000 K ein, damit sind alle Komponenten stets gasförmig.

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

Die Eigenschaften einfacher

Die Eigenschaften einfacher Die Eigenschaften einfacher ischungen Lernziele: Thermodynamische eschreibung von ischungen Partielle molare Grössen, TD von Ischhasen Chemisches Potenzial flüssiger Phasen Eigenschaften von Lösungen,

Mehr

Liste der Formelzeichen. A. Thermodynamik der Gemische 1

Liste der Formelzeichen. A. Thermodynamik der Gemische 1 Inhaltsverzeichnis Liste der Formelzeichen XV A. Thermodynamik der Gemische 1 1. Grundbegriffe 3 1.1 Anmerkungen zur Nomenklatur von Mischphasen.... 4 1.2 Maße für die Zusammensetzung von Mischphasen....

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

Phasen, Komponenten, Freiheitsgrade

Phasen, Komponenten, Freiheitsgrade Phasendiagramme 1 Lernziele: Ø Phasen, Komponenten, Freiheitsgrade Ø Die Phasenregel Ø Zweikomponentensysteme: Dampfdruckdiagramme, Hebelgesetz Ø Zweikomponentensysteme: Siedediagramme (die Destillation

Mehr

Lernziele: Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme,

Lernziele: Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme, Phasendiagramme Lernziele: ee Phasen, Komponenten, Freiheitsgrade Die Phasenregel Zweikomponentensysteme: Dampfdruckdiagramme, Hebelgesetz Zweikomponentensysteme: Siedediagramme (die Distillation von Mischungen,

Mehr

Band 2: Mehrstoffsysteme und chemische Reaktionen. Grundlagen und technische Anwendungen

Band 2: Mehrstoffsysteme und chemische Reaktionen. Grundlagen und technische Anwendungen Karl Stephan Franz Mayinger n 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. or Band 2: Mehrstoffsysteme und chemische

Mehr

Physikalische Chemie II

Physikalische Chemie II Prof.Dr.M.Bredol / FB01 Physikalische Chemie II Modulprüfung PC-II (Klausur) 16.3.2016 Name, Vorname Aufgabe 1 2 3 4 5 Punkte maximal 20 20 20 18 22 Erreichte Punktzahl Matrikel-Nr. Gesamtpunktzahl Note

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum 0. Übungsblatt zur Vorlesung hysikalische Chemie I SS 04 rof. Dr. Bartsch 0. L Die freie Standardreaktionsenthalpie der

Mehr

Repetitorium Physikalische Chemie für Lehramt

Repetitorium Physikalische Chemie für Lehramt Repetitorium Physikalische Chemie für Lehramt Anfangstext bei der Prüfung. Hier nicht relevant. Zu jeder der 10 Fragen werden maximal 12,5 Punkte vergeben. Höchstens 100 Punkte können erreicht werden,

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Protokoll zum Versuch 4.2

Protokoll zum Versuch 4.2 Grundpraktikum Physikalische Chemie Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2003 Protokoll zum Versuch 4.2 Entmischungsgleichgewicht Gruppe 3 Kim Langbein Oliver Gobin 07 April

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Phsikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum Übungsblatt zur Vrlesung Phsikalische Chemie II WS 8/9 Prf. E. Bartsch.1 Bei 73 K werden 5 g (.59 ml) Hean, C 6 H 14, und

Mehr

Van der Waals-Theorie und Zustandsgleichung

Van der Waals-Theorie und Zustandsgleichung Van der Waals-Theorie und Zustandsgleichung Eine verbesserte Zustandsgleichung für klassische Gase bei höheren Dichten liefert die Van der Waals-Gleichung. Diese Gleichung beschreibt auch den Phasenübergang

Mehr

4 Phasendiagramme. Für den kritischen Punkt von Kohlendioxid werden 304,14 K und 7,375 MPa angegeben, für den Tripelpunkt 216,58 K und 518 kpa.

4 Phasendiagramme. Für den kritischen Punkt von Kohlendioxid werden 304,14 K und 7,375 MPa angegeben, für den Tripelpunkt 216,58 K und 518 kpa. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel 4 Phasendiagramme 1 Skizzieren

Mehr

Adsorption an Festkörpern

Adsorption an Festkörpern Adsortion an Festkörern Anreicherung eines Stoffes findet im wesentlichen nur an der Festköreroberfläche statt. Die Lage der Grenzfläche ist damit sehr genau bestimmt. Nicht nur die Größe der für die Adsortion

Mehr

Destillation und Rektifikation: Vorlesung am : Zusammenfassung des zweiten Teils. Siedediagramm

Destillation und Rektifikation: Vorlesung am : Zusammenfassung des zweiten Teils. Siedediagramm Destillation und Rektifikation: Vorlesung am 27.1.211: Zusammenfassung des zweiten eils llgemeine Bemerkung zu den Berechnungen und bleitungen der Formeln: Die Vorgänge werden in der Regel für ideale Zustände

Mehr

-aus theoretischen Ansätzen - Approximationen

-aus theoretischen Ansätzen - Approximationen 2.3 Bestimmung von Zustandsgrößen Zustand wird bestimmt durch zwei unabhängige, intensive Zustandsgrößen Bestimmung anderer Zustandsgrößen aus Stoffmodellen Zustandsgleichungen Stoffmodelle aus - Experimenten

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Chemische Thermodynamik. Arbeitsbuch 4. 4., überarbeitete Auflage. Autoren. Mit 53 Bildern sowie zahlreichen Tabellen im Text und im Anhang

Chemische Thermodynamik. Arbeitsbuch 4. 4., überarbeitete Auflage. Autoren. Mit 53 Bildern sowie zahlreichen Tabellen im Text und im Anhang Arbeitsbuch 4 Chemische Thermodynamik Autoren Gert Wolf, Freiberg (federführender Autor) Wolfgang Schneider, Dresden 4., überarbeitete Auflage Mit 53 Bildern sowie zahlreichen Tabellen im Text und im Anhang

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

Praktikum Physikalische Chemie II (C-3) Versuch Nr. 11

Praktikum Physikalische Chemie II (C-3) Versuch Nr. 11 Praktikum Physikalische Chemie II (C-3) Versuch Nr. 11 Bestimmung der Phasengleichgewichtskurve eines binären Systems Grundlagen Im Allgemeinen besitzt der Dampf über einer binären flüssigen Mischung eine

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Klausurlösungen Thermodynamik II Sommersemester 2014 Fragenteil

Klausurlösungen Thermodynamik II Sommersemester 2014 Fragenteil Klausurlösungen Thermodynamik II Sommersemester 2014 Fragenteil Lösung zum Fragenteil Regeln Nur eine eindeutige Markierung wird bewertet, z. B.: Für eine Korrektur kann die zweite Spalte mögl. Korrektur

Mehr

Physikalische Chemie I

Physikalische Chemie I Physikalische Chemie I 2017 Physikalische Chemie I Dozenten: Vorlesung Prof. Dr. Cornelia Palivan (Tel: 0612673839 Cornelia.Palivan@unibas.ch) Prof. Dr. Wolfgang Meier (Tel: 0612673802 Wolfgang.Meier@unibas.ch)

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U. Nickel VII Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung 1 1.2 Materie 2 1.3 Energie

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I NAME, Vorname Matr.-Nr. Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 26. 02. 2019 im Fach Technische Thermodynamik I Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 30 Dauer: 25 Minuten Regeln

Mehr

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12 PC I Thermodynamik G. Jeschke FS 2015 Lösung zur Übung 12 12.1 Die Hydrierung von Ethen zu Ethan a) Die Reaktionsenthalpie ist direkt aus den in der Aufgabenstellung tabellierten Standardbildungsenthalpien

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

Beispiel 13: Gasvolumetrie

Beispiel 13: Gasvolumetrie Aufgabenstellung Beisiel 1: Gasvolumetrie Eine abgewogene Menge eines festen carbonathaltigen Stoffes wird mit einem Überschuss starker Säure versetzt. Die Menge an gebildetem gasförmigem Kohlenstoffdioxid

Mehr

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 )

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 ) 3 Lösung zu 83. Lösungen ( C C = T ( = T ( ( ( 2 van-der-waals Gas: ( ( b + a 2 = T = T b a 2 Man beachte das dies nur eine andere Formulierung der van-der-waals Gleichung ist als auf dem letzten Aufgabenzettel.

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Thermodynamik 2 Klausur 11. März 2011

Thermodynamik 2 Klausur 11. März 2011 Thermodynamik 2 Klausur 11. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 4 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2 Bernhard Härder Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik Skripte, Lehrbücher Band 2 W/ WESTAR.P WISSENSCHAFTEN Inhaltsverzeichnis Vorwort zur ersten Auflage Vorwort zur

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Versuch Beschreiben Sie die Vorgänge, die in der Nähe des kritischen Punktes zu beobachten sind.

Versuch Beschreiben Sie die Vorgänge, die in der Nähe des kritischen Punktes zu beobachten sind. 1 Versuch 220 Reale Gase 1. Aufgaben 1.1 Nehmen Sie ein Isothermennetz für Schwefelhexafluorid (SF 6 ) auf. Bestimmen Sie daraus die kritischen Daten, und berechnen Sie die Konstanten der Van-der-Waals-Gleichung.

Mehr

2. GRUNDLAGEN. 2.1 Kontinuierliche Thermodynamik

2. GRUNDLAGEN. 2.1 Kontinuierliche Thermodynamik 2 GRUNDLAGEN 21 Kontinuierliche Thermodynamik Die Thermodynamik basiert auf Stoffmengen Eine thermodynamische extensive Größe Z wird hierbei als Funktion von der Temperatur T, dem Druck p und den Stoffmengen

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Versuch 10. Rektifikation und Rektifizierkolonne

Versuch 10. Rektifikation und Rektifizierkolonne Praktikum Physikalische Chemie Versuch 1 Rektifikation und Rektifizierkolonne Bestimmung der theoretischen Bodenzahl einer Rektifikationskolonne am Beispiel eines binären Gemisches ktualisiertes Versuchsskript,

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Tobias Schabel Datum des Praktikumstags: 02.12.2005 Matthias Ernst Protokoll-Datum: 12/20/2005 Gruppe A-11 11. Versuch: Schmelzdiagramm Assistent:

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) WS09/10 - Blatt 1 von 13. Klausur PC 1

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) WS09/10 - Blatt 1 von 13. Klausur PC 1 Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) WS09/10 - Blatt 1 von 13 Klausur PC 1 Wintersemester 2009/10-20.10.2009 Hörsaal H2 15:15 bis 16:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift:

Mehr

Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const.

Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const. Spezialfälle BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz p V = n R T bei V, n = konstant: p = const. T Druck Druck V = const. Volumen T 2 T 1 Temperatur

Mehr

Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken.

Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken. 8.4 Phasenübergänge und Phasengleichgewichte 8.4.1 Phasenübergang bei reinem Stoff Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken. Die Erfahrung

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Carnotscher Kreisprozess: Die idealisierte Wärmekraftmaschine Wirkungsgrad η Entropie S = k B lnw (statistische Definition) Freie Gibbs-Enthalpie

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º º Ë Ñ ØÞ Prüfung am 12. 08. 2014 im Fach Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur eine eindeutige

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

3. Phasendiagramme. Für den kritischen Punkt von Kohlendioxid werden 304,14 K und 7,375 MPa angegeben, für den Tripelpunkt 216,58 K und 518 kpa.

3. Phasendiagramme. Für den kritischen Punkt von Kohlendioxid werden 304,14 K und 7,375 MPa angegeben, für den Tripelpunkt 216,58 K und 518 kpa. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel 3. Phasendiagramme 1 Skizzieren

Mehr

Gruppe 46 Christine Albrecht. Protokoll. Versuch T2: Dampfdruck von Flüssigkeiten

Gruppe 46 Christine Albrecht. Protokoll. Versuch T2: Dampfdruck von Flüssigkeiten .10.007 Grue 46 Christine Albrecht Betreuer: Dr. Gaonik Jörg Kluge Protokoll ersuch : Damfdruck von Flüssigkeiten Aufgabe: Es war der Damfdruck einer Flüssigkeit bei verschiedenen emeraturen zu bestimmen.

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Chlorierung von Phosphotrichlorid a) Von 1 mol ursprünglichem PCl 3 und Cl 2 wären 0.515 mol zu PCl 5 reagiert und 0.485 mol verblieben. Mit x i = n i ergeben sich die Molenbrüche

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

- Chemisches Potential der idealen Gasphase: Phasengleichgewichte nichtidealer Gemische

- Chemisches Potential der idealen Gasphase: Phasengleichgewichte nichtidealer Gemische Inhalt von Abschnitt 3.3 3.3-0 3.3 Phasenübergänge und Phasengleichgewichte 3.3.1 Phasenübergang bei reinem Stoff 3.3.2 Phasengleichgewichte reiner Stoffe 3.3.3 Phasengleichgewichte von Stoffgemischen

Mehr

Schwerpunktfach Physik und Anwendungen der Mathematik

Schwerpunktfach Physik und Anwendungen der Mathematik KANTONSSCHULE REUSSBÜHL MATURITÄTSPRÜFUNG 003 (Bv, Bh) Schwerpunktfach Physik und Anwendungen der Mathematik Bemerkungen: Zeit: 3 Stunden Jede vollständig gelöste Aufgabe wird mit 10 Punkten bewertet.

Mehr