Die innere Energie and die Entropie

Größe: px
Ab Seite anzeigen:

Download "Die innere Energie and die Entropie"

Transkript

1 Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir differenzieren und erhalten MU du ' ( MS ) V,n ds % (MU MV ) S,n MU dv % ( Mn ) S,V dn konstant

2 MU du ' ( MS ) V,n ds % (MU MV ) S,n MU dv % ( Mn ) S,V dn T ' ( MU MS ) V,n p '&( MU MV ) S,n μ ' ( MU Mn ) V,S du ' TdS & pdv % μdn Vorher hatten wir mit dem 1. Hauptsatz du ' δq & pdv du ' TdS & pdv TdS ' δq Diese Gleichungen sehen gleich aus, ausser...

3 MU du ' ( MS ) V,n ds % (MU MV ) S,n MU dv % ( Mn ) S,V dn T ' ( MU MS ) V,n p '&( MU MV ) S,n μ ' ( MU Mn ) V,S du ' TdS & pdv % μdn Vorher hatten wir mit dem 1. Hauptsatz du ' δq & pdv du ' TdS & pdv TdS ' δq Diese Gleichungen sehen gleich aus, ausser... Dies ist die Definition des sogenannten chemischen Potentials.

4 du ' TdS & pdv % μdn Wenn also dn = 0, erhalten wir den 1. Hauptsatz. Daraus folgt, dass der Term μdn die Veränderung der Energie repräsentiert, die durch eine Veränderung der Stoffmenge entsteht. Nach Umordnen erhalten wir ds ' 1 T du % p T dv & μ T dn

5 Aus der Definition der Entropie folgt ds ' δq T & μ T dn Der zusätzliche Term beschreibt den Effekt auf die Entropie, wenn sich die Stoffmenge n um dn ändert. Kolben

6 Lassen Sie uns nun annehmen, dass wir eine Mischung aus vielen unterschiedlichen Substanzen in unserem Zylinder haben und wir Änderungen in der Menge jeder Substanz zulassen. Kolben U ' U(S,V,n 1,n 2,...) Es ist auch möglich, Entropie im Hinblick auf andere Variablen zu untersuchen... S ' S(U,V,n 1,n 2,...)

7 Jetzt bekommen wir du ' TdS & pdv % ji μ i dn i du ' TdS & pdv % μdn Und ds ' δq T & μ T dn ds ' δq T & 1 T j i μ i dn i Wobei μ i ' ( MU ) V,S Mn i Das definiert das chemische Potential µ i der Substanz i.

8 Transformationen mit konstantem T und V T = konstant V = konstant Isotherm Isochor Um diese Arten von Prozessen zu untersuchen, definieren wir die freie Energie von Helmholtz, F. NB

9 A B T = konst V = konst Wir beginnen mit der Entropie B δq m T A # S B & S A = reversibel < irreversibel

10 und nehmen konstante Temperatur an, so dass wir schreiben können W ' U & Q B Q ' BδQ # T (S m B & S A ) A W $ U B & U A & T (S B & S A ) Dieser Ausdruck bestimmt das Minimum an externer Kraft (Arbeit), die erforderlich ist, um das System vom Zustand A nach Zustand B zu bringen. W ' U B & U A & T (S B & S A ) Dies gilt für ein reversibles System.

11 Wir definieren die Zustandsgrösse F durch F ' U & T S freie Energie von Helmholtz W $ U B & U A & T (S B & S A ) W $ F B & F A ' ΔF W ' F B & F A ' ΔF Für einen reversiblen Prozess.

12 W $ F B & F A ' ΔF Lassen Sie uns das umdrehen. Nehmen wir an, wir haben ein System, in dem Arbeit an der Umgebung verrichtet wird. Das heisst, dass W negativ ist. W $ F B & F A ' ΔF Obwohl W negativ sein kann, kann es nicht negativer sein, als F. A Expansion Kolben Das bedeutet, dass man nicht mehr Arbeit aus dem System ziehen kann, als durch die Änderung in der freien Energie von Helmholtz spezifiziert ist! B Kolben

13 F ' U & T S Innere Energie Entropie W $ F B & F A ' ΔF Hier sollte klar sein, dass TS die Menge an innerer Energie ist, die NICHT benutzt werden kann, um Arbeit an der Umgebung zu verrichten. Dies zeigt den Hauptunterschied zwischen thermodynamischen und mechanischen Systemen. U ' mgz F ' U & T S Potentielle Energie kann vollständig in mechanische Arbeit umgewandelt werden. Innere Energie von Gasen kann nicht vollständig in mechanische Arbeit umgewandelt werden. Helmholtz freie Energie

14 Die freie Energie von Helmholtz misst die nutzbare Arbeit, die von einem geschlossenen thermodynamischen System bei konstanter Temperatur erhältlich ist.

15 -TS +pv U Innere Energie H Enthalpie F Helmholtz Freie Energie G Gibbs Freie Energie

16 Transformationen mit konstantem T und V T = konstant V = konstant Isotherm Isochor Um diese Arten von Prozessen zu untersuchen, definieren wir die freie Energie von Helmholtz F. Bisher haben wir nur Prozesse bei konstanter Temperatur diskutiert. Lassen Sie uns nun das Volumen einschränken.

17 dv=0 Wir wissen aus der Definition von Arbeit, dass V B W '& m pdv V A Wenn dv = 0, dann ist W = 0. W $ F B & F A ' ΔF

18 dv=0 Wir wissen aus der Definition von Arbeit, dass V B W '& m pdv V A Wenn dv = 0, dann ist W = 0. W $ F B & F A ' ΔF 0 $ F B & F A ' ΔF F B # F A Das heisst, dass bei einem isolierten Gas in einem umschlossenen, sich nicht verändernden Volumen die freie Energie von Helmholtz nicht zunehmen kann! Für einen reversiblen isotherm, isochoren Prozess bleibt die Helmholtz- Funktion erhalten.

19 Differenzieren Beziehungen F ' U & T S df ' du & SdT & TdS df '& SdT & pdv du ' TdS & pdv Diese Gleichung zeigt uns, dass T und V die natürlichen Variablen von F sind.

20 Differenzieren Beziehungen F ' U & T S df ' du & SdT & TdS df '& SdT & pdv F ' F(T,V) du ' TdS & pdv Diese Gleichung zeigt uns, dass T und V die natürlichen Variablen von F sind. MF df ' ( MT ) V MF dt % ( MV ) T dv Eine andere Definition von Entropie ( MF MT ) V '&S ( MF MV ) T '&p

21 Transformationen mit konstantem T und p T = konstant p = konstant Isotherm Isobar Um diese Arten von Prozessen zu untersuchen (und sie kommen häufig vor), definieren wir die Gibbs`sche freie Energie G.

22 Die Arbeit, die benötigt wird, um von Zustand A nach Zustand B zu gelangen, ist definiert als W '&p (V B & V A ) Die Temperatur ist konstant (aber nicht das Volumen!), so dass wir folgende Gleichung benutzen können W $ F B & F A ' ΔF pv B & pv A # F A & F B Vorsicht!

23 Die Arbeit, die benötigt wird, um von Zustand A nach Zustand B zu gelangen, ist definiert als W '&p (V B & V A ) Die Temperatur ist konstant (aber nicht das Volumen!), so dass wir folgende Gleichung benutzen können W $ F B & F A ' ΔF pv B & pv A # F A & F B Vorsicht! Jetzt definieren wir G durch G ' F % pv ' U & TS % pv Gibbs`sche freie Energie G

24 pv B & pv A # F A & F B G ' F % pv ' U & TS % pv G ' H & TS Gibbs sche freie Enthalpie. G B # G A A B T = konst p = konst

25 G B # G A Das besagt, dass in einem isotherm und isobar Prozess die Gibbs`sche freie Energie nicht zunehmen kann. Wenn der Prozess reversibel ist, bleibt die Gibbs sche freie Energie konstant. Wenn G ein Minimum hat, ist das thermodynamische System in einem stabilen Zustand - einem Minimum-Energie-Zustand. Wir können auch prüfen, wie sich G mit anderen Parametern verändert, obwohl wir Temperatur und Druck konstant halten. Dazu differenzieren wir... G ' F % pv ' U & TS % pv

26 G ' U & TS % pv dg ' du & d(ts) % d(pv) dg ' du & SdT &TdS % Vdp % pdv T und p = konst Gibbs Differentiale dg ' du & TdS % pdv

27 dg ' du & TdS % pdv Bei der Betrachtung der inneren Energie als Funktion von Entropie, Stoffmenge und Volumen erhielten wir U ' U(S,V,n) du ' TdS & pdv % ji μ i dn i Wenn wir die beiden Gleichungen vergleichen, sehen wir dg ' ji μ i dn i Die Änderung in der Gibbs`schen freien Energie ist nichts anderes als das chemische Potential.

28 Na und? Die Änderung in der Gibbs`schen freien Energie steht mit der Zusammensetzung des Systems in Zusammenhang. Dies ist insbesondere wichtig im Zusammenhang mit Prozessen, die Phasenänderungen beinhalten. Es ist außerdem wichtig für chemische Reaktionen. Wenn die Änderung in der Gibbs schen freien Energie zwischen dem Anfangs- und dem Endpunkt einer Reaktion positiv ist, wird die Reaktion nicht stattfinden. Wenn G < 0, dann kann die Reaktion stattfinden (sie ist favorisiert ).

29 G ' H & TS Bei konstanter Temperatur können wir schreiben ΔG ' ΔH & TΔS Für eine chemische Reaktion sind H und S unabhängig voneinander. Um also etwas zu stabilisieren, würde man die Enthalpie erhöhen. H ' U % pv Um die Entropie gewinnen zu lassen, würde man die Temperatur erhöhen.

30 Wasser Phasenübergang T = 273,15 K Eis Die Fusionsenthalpie ( H fus ) = J mol -1. Die Entropieänderung beim Gefrieren ist die Wärme, die entzogen werden muss, um die Veränderung bei der spezifizierten Temperatur möglich zu machen... ΔS ' δq rev T ' & '&21.99 J mol -1 K -1 ΔG ' ΔH & TΔS '&6007 & (&21.99) ' 0 Equil. Wenn wir jedoch die Temperatur reduzieren, wird G negativ und wir haben einen spontanen Prozess.

31 hermodynamische Potentiale - Zusammenfassung Für ein System mit zwei Freiheitsgraden existieren vier thermodynamische Potentiale. Innere Energie Enthalpie Helmholtz freie Energie Gibbs`sche freie Energie U H ' U % pv F ' U & T S G ' U & TS % pv

32 -TS +pv U Innere Energie F Helmholtz Freie Energie H Enthalpie G Gibbs Freie Energie

33 hermodynamische Potentiale - Zusammenfassung Für ein System mit zwei Freiheitsgraden existieren vier thermodynamische Potentiale. Innere Energie Enthalpie Freie Helmholtz Energie Gibbs`sche freie Energie U H ' U % pv F ' U & T S G ' U & TS % pv Ihre Bedeutung wird etwas klarer, wenn man die Differentialform nimmt.

34 Thermodynamische Potentiale - Differentiale Mit etwas Manipulation kann man folgende Ergebnisse erhalten Innere Energie Enthalpie Freie Helmholtz Energie Gibbs`sche freie Energie du ' dh ' TdS & pdv TdS % Vdp df '&SdT & pdv dg '&SdT % Vdp Jede Gleichung hat zwei Terme auf der rechten Seite, was den beiden Freiheitsgraden entspricht. Diese Terme stammen von den zwei Paaren fundamentaler Variabler für du (nämlich T, S und p, V). Wenn ein thermodynamisches Potential durch das Verhalten zweier natürlicher Variablen bestimmt werden kann, ist das System definiert.

35 Wenn ein thermodynamisches Potential durch das Verhalten zweier natürlicher Variablen bestimmt werden kann, ist das System definiert. Beispiel: df '&SdT & pdv T und V sind die natürlichen Variablen. Wenn sie bekannt sind, folgen daraus S und p S '&( MF MT ) V p '&( MF MV ) T Und die anderen thermodynamischen Potentiale folgen. ZB. dh ' TdS % Vdp

36 Für Systeme mit zwei Freiheitsgraden gibt es vier sehr nützliche Gleichungen, die partielle Ableitungen der fundamentalen thermodynamischen Variablen zueinander in Beziehung setzen - die Maxwell Relationen.

37 ( MM My ) x ' ( MN Mx ) y dz ' Mdx% Ndy du ' TdS & pdv dg '&SdT % Vdp ( MT MV ) S Mp '&( MS ) V ( MT MV ) p Mp '&( MS ) T Reziproke ( MT Mp ) S ' ( MV MS ) p ( MT Mp ) V ' ( MV MS ) T Reziproke dh ' TdS % Vdp df '& SdT & pdv

38 Anwendung du ' TdS & pdv ( MU MV ) T ( MU MV ) T MS ' T( MV ) T & p Mp ' T( MT ) V & p ( MU MV ) T ' 0 ( MU MV ) T ' a V 2 ( MT Mp ) V ' ( MV MS ) T Hier gehen wir zurück zu den Joule-Thompson Experimenten und den Ableitungen für spezifische Wärmen. Für ein ideales Gas können wir zeigen... Für ein Van der Waals-Gas gilt jedoch...

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Reaktionsenthalpien Satz von Hess adiabatische Zustandsänderungen: ΔQ = 0 Entropie S: Δ S= Δ Q rev (thermodynamische Definition) T 2. Hauptsatz

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Theoretischen Physik F SS 10 Prof. Dr. G. Schön Lösungsvorschlag zu Blatt 2 Dr. J. Cole 30.04.2010 1. Van-der-Waals

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

1. Klausur zur Vorlesung Physikalische Chemie I

1. Klausur zur Vorlesung Physikalische Chemie I 1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper ist im Gleichgewicht,

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

3.2 Thermodynamisches Gleichgewicht und thermodynamische Potentiale

3.2 Thermodynamisches Gleichgewicht und thermodynamische Potentiale 3.2 Thermodynamisches Gleichgewicht und thermodynamische Potentiale 3.2-0 Inhalt von Abschnitt 3.2 3.2.1 Motivation der Aufgabenstellung 3.2.2 Definition des Chemischen Potentials für reine Stoffe und

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

3.2 Thermodynamisches Gleichgewicht und thermodynamische Potentiale

3.2 Thermodynamisches Gleichgewicht und thermodynamische Potentiale 3.2 Thermodynamisches Gleichgewicht und thermodynamische Potentiale 3.2-0 Inhalt von Abschnitt 3.2 3.2.1 Motivation der Aufgabenstellung 3.2.2 Definition des Chemischen Potentials für reine Stoffe und

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Klausur Wärmelehre E2/E2p SoSe 2013 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p SoSe 2013 Braun. Formelsammlung Thermodynamik Klausur Wärmelehre E2/E2p SoSe 2013 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen. E2p-Kandidaten dürfen diese Aufgabe

Mehr

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht 5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht Ein Teilchen, oder auch ein ganzes System von Teilchen, befindet sich im Gleichgewicht, falls sich "nichts" mehr ändert. Bei

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch Werner Langbein Thermodynamik Gleichgewicht, Irreversible Prozesse, Schwankungen Verlag Harri Deutsch Einleitung 1 1 Gleichgewichtsthermodynaimiik 3 1 Thermodynamische Systeme 5 1.1 Geometrie und Inventar

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U.Nickel Vll Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung l 1.2 Materie ' 2 1.3 Energie

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr

U. Nickel Irreversible Volumenarbeit 91

U. Nickel Irreversible Volumenarbeit 91 U. Nickel Irreversible Volumenarbeit 91 geben, wird die bei unterschiedlichem Innen- und Außendruck auftretende Arbeit als irreversible Volumenarbeit irr bezeichnet. Die nachfolgend angegebene Festlegung

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen Welche Reaktion läuft spontan freiwillig ab? H 2 + I 2 2HI H 2 + I 2 2HI H 2 + I 2 2HI Wie ist der Energieumsatz einer Reaktion? Welche Wärme

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Bekannter Stoff aus dem 1. Semester:

Bekannter Stoff aus dem 1. Semester: Bekannter Stoff aus dem 1. Semester: Atombau! Arten der Teilchen! Elemente/Isotope! Kernchemie! Elektronenhülle/Quantenzahlen Chemische Bindung! Zustände der Materie! Ionenbindung! Atombindung! Metallbindung

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Theoretische Physik 4 Thermodynamik und Statistische Physik

Theoretische Physik 4 Thermodynamik und Statistische Physik Theoretische Phsik 4 Thermodnamik und Statistische Phsik Prof. Dr. Eric Lutz Universität Erlangen-Nürnberg Inhaltsverzeichnis 1 Thermodnamische Konzete 3 1.1 Was ist Thermodnamik?...........................

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U. Nickel VII Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung 1 1.2 Materie 2 1.3 Energie

Mehr

Wärmelehre Wärme als Energie-Form

Wärmelehre Wärme als Energie-Form Wärmelehre Wärme als Energie-Form Joule's Vorrichtung zur Messung des mechanischen Wärme-Äquivalents alte Einheit: 1 cal = 4.184 J 1 kcal Wärme erwärmt 1 kg H 2 O um 1 K Wird einem Körper mit der Masse

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

6.1 Gleichgewichts- und Stabilitätsbedingungen

6.1 Gleichgewichts- und Stabilitätsbedingungen 4. Woche 6.1 Gleichgewichts- und Stabilitätsbedingungen 6.1.1 Extremaleigenschaften der Potentiale Die Hauptsätze der Thermodynamik lauten du δq pdv (das Erste) und (das Zweite). Da (für dn 0) δq TdS gilt

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V. Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden

Mehr