1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung"

Transkript

1 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration

2 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Beispiel: Speziische Wärme eines 2-atomigen Gases

3 nrt NkT U 2 2 = Freiheitsgrade olumen Konstant Druck p Konstant Wärmemenge om Gas geleistete Arbeit T c n T C Q p W T R n T C Q 2 T R n T c Q p p ) 2 2 ( U = Q + W 1. Wärmelehre Speziische Wärme eines Gases Wiederholung Innere Energie

4 1. Wärmelehre Speziische Wärmekapazität von Festkörpern c 3 R Dulong-Petit-Gesetz c 3 R 3 N A k B 2 N A k B Dann muss gelten: = 6 Anzahl der Freiheitsgrade pro Atom =6 =3 kinetische Energie E kin 3 k 2 B T =3 Potentielle Energie E pot 2 3 k B T

5 Isotherm Adiabatisch Isobar Isochor Adiabatische Zustandsänderung (Q = 0) iele orgänge in Maschinen, Schallwellen, Atmosphärenphysik lauen sehr schnell ab. Es bleibt keine Zeit zum Wärmeaustausch mit der Umgebung. U Q W Q 0 W p p i Q=0 du c ndt p d mit p n R T c 2 R T T i T dt d n R dt n R d oder 2 2 T 2 mit dt T c c p 2 : d heißt Adiabatenkoeizient Integrieren lieert: T / 2 p T /( 1) mit p=nrt/ p p ( 2)/ Adiabatengleichungen ( = Zusandsgleichungen des idealen Gases während einer adiabatischen Zustandsänderung) const

6 Isotherm Adiabatisch Isobar Isochor Bei einem isobaren Prozess bleibt der Druck konstant (p = 0) horizontale Linie im p-diagramm. Bei einem isochoren Prozess bleibt das olumen konstant ( = 0) vertikale Linie im p-diagramm. Wichtig: In diesen, wie in allen anderen Prozessen gilt der 1. HS der Wärmelehre!

7 Isotherm Adiabatisch Isobar Isochor Arbeit in isobaren (p = 0) und isochoren ( =0) Prozessen: on A nach D: W dw D A pd 0 on D nach B: Mit: p nrt W p B ( B A ) p B p B B (1 A B ) nrt (1 A B ) Folgerung: ergleich mit Arbeit aus isothermen Prozess von A -> B Die Arbeit eines Systems, das sich von einem Zustand in einen anderen Zustand bewegt, hängt nicht nur von Anangs- und Endzustand ab, sondern auch von der Art der Zustandsänderung (dem Pad ). W hängt ab vom Weg! Eine Zustandsvariable oder Zustandsgröße nicht! W nrt ln B A

8 1. Wärmelehre olumenarbeit eines Gases p nrt isochore Zustandsänderung =0 isobare Zustandsänderung p=0 p i W pd 0 isotherme Zustandsänderung T=0 p ΔW nrt i i d T i nrt ln i T i T W pd p ( ) p ΔW adiabatische Zustandsänderung U i i U c Q=0 T i T n (T i i T )

9 1. Wärmelehre 2.6. Wärme-Krat-Maschine nach Carnot U = Q + W innere Energie = Wärme + Arbeit Q W U Q W

10 1. Wärmelehre 2.6. Wärme-Krat-Maschine nach Carnot dt=0 Wärme-Krat-Maschine nimmt Wärme au und leistet Arbeit. Die beim Kreisprozess einer dq=0 idealen Carnot-Maschine geleistete Arbeit: W = Q H - Q L

11 1. Wärmelehre 2.6. Wärme-Krat-Maschine nach Carnot dt=0 geleistete Arbeit: W = Q H - Q L dq=0 Wirkungsgrad η eines Carnot-Prozesses: η = W Q H = Q H Q L Q H = T H T L T H Für T L = 0 oder T H = ist η = 1 (gut) Für T L = T H ist η = 0 (schlecht) Der Wirkungsgrad realer Wärme-Krat- Maschinen ist immer kleiner als 1. Wärme Q H kann nie vollständig in Arbeit umgewandelt werden. Ein Teil der Wärme (Q L ) wird wieder abgeührt.

12 1. Wärmelehre 2.7. Entropie Deinition: ds = dq T Einheiten: J K 1 Der 2.Hauptsatz der Wärmelehre sagt aus, dass in einem geschlossenen System Die Entropie nie abnehmen kann, wohl aber zunehmen kann. daher gilt: ds = dq T 0 Beim Übertrag von Wärme wird auch stets Entropie übertragen. Prozesse mit ds = 0 heißen reversibel, solche mit ds > 0 heißen irreversibel Eine Konsequenz der Entropie ist, dass Wärme stets von höherer Temperatur zu niedrigerer Temperatur ließt.

13 1. Wärmelehre 2.7. Entropie Wärmemaschine (Carnot) Perekte Wärmemaschine Q Q T T H L S 0 H L Q T H S 0 Q H : Wärme-Abuhr aus Bad mit T H Q L : Wärme-Zuuhr ins Bad mit T L H

14 1. Wärmelehre 2.7. Entropie Kälte-Krat-Maschine überträgt Q von T L nach T H (Kühlschrank,Wärmepumpe) Q Q T T L H S 0 L H Q Q S 0 T T L H Q H : Wärme-Zuuhr ins Bad mit T H

15 Die Hauptsätze der Wärmelehre 0. Hauptsatz der Thermodynamik (Thermodynamisches Gleichgewicht) Beinden sich zwei Körper (A und B) im thermischen Gleichgewicht beindet sich darüber hinaus Körper A mit einem Körper C im thermischen Gleichgewicht., so sind auch B und C im thermischen Gleichgewicht. 1. Hauptsatz der Thermodynamik (Energieerhaltung) Die Zunahme der inneren Energie U eines Systems ist gleich der Summe aus zugeührter Wärmemenge Q und der von außen geleisteten Arbeit W. U = Q + W Q U W 2. Hauptsatz der Thermodynamik (Entropiezunahme) Wärme ließt von selbst nur vom heißen System zum kalten System. Die Entropie eines abgeschl. Systems verringert sich nicht von allein ΔS 0 Es ist nicht möglich, eine periodisch arbeitende Maschine zu bauen, die Wärme vollständig in mechanische Arbeit verwandelt. 3. Hauptsatz der Thermodynamik (Absoluter Nullpunkt) Der absolute Nullpunkt der Temperatur -273, 16 C (das sind 0 Kelvin) ist unerreichbar.

16 16 1. Wärmelehre 2.8. Reale Gase: Die van der Waals-Gleichung Ideales Gas Isotherme T = const (3) lüssig (2) Reales Gas Koexistenz (1) Gas Isotherme T = const punktörmige Massen ohne Eigenvolumen Elastische Stöße ohne Wechselwirkung Nur gasörmig und ohne Phasenübergänge Es gilt die Ideale Gasgleichung p = R T ausgedehnte Massen mit Eigenvolumen Inelastische Stöße mit Wechselwirkung Phasenübergänge sind möglich: Kondensation und erdampung Es gilt die reale Gasgleichung p + p e e = R T van der Waals-Gleichung

17 1. Wärmelehre 2.8. Phasenumwandlung 17 Kondensation eines realen Gases Kondensation: Damp und Flüssigkeit stehen im Gleichgewicht (Koexistenz); Das olumen ändert sich isotherm (T=T D ) und isobar (p=p D ) (viel Gasvolumen verschwindet, wenig Flüssigkeitsvolumen entsteht) Flüssige Phase ist nahezu inkompressibel ( = const) Bei hohen Temperaturen verhält sich das reale Gas wie ein ideales Gas (3) T = const lüssig (2) Koexistenz (1) Gas kritischer Punkt Kondensation Hohe Temperatur T i Ideales Gas T i T k T r ideal kritisch real

18 1. Wärmelehre 2.8. Phasenumwandlung 18 Kondensation eines realen Gases Kondensation: Damp und Flüssigkeit stehen im Gleichgewicht (Koexistenz); In der Koexistenz ändert sich das olumen isotherm und isobar (viel Gasvolumen verschwindet, wenig Flüssigkeitsvolumen entsteht) Flüssige Phase ist nahezu inkompressibel ( = const) Bei hohen Temperaturen verhält sich das reale Gas wie ein ideales Gas p + p e e = R T van der Waals-Gleichung Hohe Temperatur T i Ideales Gas p e = a 2 e = b a, b stospeziische van der Waals Konstanten T i T k ideal kritisch Phasenübergang zu Feststo bei tieen Temperaturen Kondensation T r real

19 1. Wärmelehre 2.8. PT-Diagramm realer Stoe 19 Phasendiagramm einer einkomponentigen Substanz Beispiel: Kohlendioxid, CO 2 Kritischer Punkt: keine eindeutig unterscheidbaren Aggregatzustände Tripelpunkt: Koexistenz aller 3 Aggregatzustände (Wasser: 6.1 mbar, C)

20 Kurzragen zur Thermodynamik I Optik: Lutspiegelung 1. Nennen Sie die drei Hauptsätze der Thermodynamik (und den 0-ten). 0. Hauptsatz der Wärmelehre: Beinden sich zwei Körper (A und B) im thermischen Gleichgewicht und beindet sich darüber hinaus Körper A mit einem Körper C im thermischen Gleichgewicht, so sind auch B und C im thermischen Gleichgewicht. Kurz: Wenn T A = T B und T A = T C dann ist auch T B =T C 1. Hauptsatz der Wärmelehre: Die einem Körper zugeührte Wärmemenge Q muss sich in der Zunahme der inneren Energie U und/oder in der von ihm nach außen geleisteten Arbeit W wiederinden. Kurz: Energieerhaltungssatz, es gilt Q = U - W 2. Hauptsatz der Wärmelehre: Die gesamte Entropie S eines jeden Systems plus der seiner Umgebung wächst als Resultat jedes natürlichen Prozesses Kurz: S = S Sys + S Umg > 0 3. Hauptsatz der Wärmelehre: Der absolute Nullpunkt der Temperatur ist nicht zu erreichen

21 Augabe zur Thermodynamik I 1. Augabe: Optik: Lutspiegelung Welche Wärmemenge Q wird von einer Eisenbrücke der Masse m = t augenommen, wenn sich diese gleichmäßig im Tagesverlau um ΔT = 20 K erwärmt? Hinweis: Die Wärmekapazität von Eisen beträgt c Fe = 452 J/kgK.

22 Augabe zur Thermodynamik I 2. Augabe: Optik: Lutspiegelung Eine Kuperkugel hat den Radius r K = 5,005 cm und soll durch einen Ring mit dem Innenradius von 5 cm passen. Um wieviel Kelvin muss die Kugel mindestens erwärmt/abgekühlt werden? Hinweis: Der Ausdehnungskoeizient von Kuper ist = K -1

23 Augabe zur Thermodynamik II Optik: Lutspiegelung Zwei Liter eines idealen Gases werden bei konstantem Druck von T 1 = 0 C au T 2 = 100 C erwärmt. Um welchen Faktor vergrößert sich das olumen bei konstantem Druck? Hinweis: Der absolute Nullpunkt liege bei T= -273 C 1 T 1 = 2 T 2

24 Multiple Choice Augaben zur Thermodynamik I Optik: Lutspiegelung Was versteht man unter dem Tripelpunkt der Druck und das olumen, bei denen eine Substanz in den Aggregatzuständen est, lüssig und gasörmig gleichzeitig vorliegt. wahr alsch weiss nicht der Druck und die Temperatur, bei denen eine Substanz in den Aggregatzuständen est, lüssig und gasörmig gleichzeitig vorliegt. die Temperatur und das olumen, bei denen eine Substanz in den Aggregatzuständen est, lüssig und gasörmig gleichzeitig vorliegt.

25 Multiple Choice Augaben zur Thermodynamik II Optik: Lutspiegelung Bei einer isothermen Ausdehnung eines idealen Gases : ändert sich die Temperatur. wahr alsch weiss nicht ändert sich der Druck. ändert sich das olumen. wird Wärme von der Umgebung augenommen. wird Wärme an die Umgebung abgegeben. wird keine Arbeit verrichtet. wird die gesamte zugeührte Wärme in Arbeit umgesetzt.

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung reales Gas, Lennard-Jones-Potenzial Zustandsgleichung des realen Gases (van der Waals-Gleichung) Kondensation kritischer Punkt Freiheitsgrade

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Innere Energie eines Gases

Innere Energie eines Gases Innere Energie eines Gases Die innere Energie U eines Gases im Volumen V setzt sich zusammen aus der gesamten Energie (Translationsenergie, Rotationsenergie und Schwingungsenergie) seiner N Moleküle. Der

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Reaktionsenthalpien Satz von Hess adiabatische Zustandsänderungen: ΔQ = 0 Entropie S: Δ S= Δ Q rev (thermodynamische Definition) T 2. Hauptsatz

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Kapitel 2 Thermodynamik

Kapitel 2 Thermodynamik Kapitel 2 hermodynami Dieses Kapitel soll eine urze Einführung in die hermodynami geben. Das Verständnis der hermodynami ist eine der wichtigsten Grundlagen, um Prozesse zu erlären, bei denen vorhandene

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Grundbegriffe: System und Umgebung Zustands- und Prozessgrößen Reversibilität und Irreversibilität erster Hauptsatz der Thermodynamik Arbeit

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Kalorimetrie (Wärmelehre)

Kalorimetrie (Wärmelehre) Thermische Molekularbewegung Phasenübergänge Reaktionswärme Kalorimetrie (Wärmelehre) Gase Flüssigkeiten/Festkörper Ideales Gasgesetz Dulong-Petit-Gesetz 1 Thermodynamik Beschreibung der Zustände und deren

Mehr

Die Van der Waals Zustandsgleichung realer Gase

Die Van der Waals Zustandsgleichung realer Gase deale Gase sind dadurch definiert, dass sie die Zustandsgleichung = nrt erfüllen n ist dabei gleich der Molzahl des vorhandenen Gases). n der Praxis ist dies dann der Fall, wenn die Gase bei niedrigem

Mehr

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ.

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ. Wärmelehre Betrachten wir mehrere Körper, die sich in einem Wärmebad befinden, so sagt uns die Erfahrung, dass sie alle dieselbe Temperatur haben werden. Verbinden wir einen heißen Körper mit einem kalten

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

5. Entropie *), 2. Hauptsatz der Thermodynamik

5. Entropie *), 2. Hauptsatz der Thermodynamik 5. Entropie *), 2. Hauptsatz der Thermodynamik Was also ist Zeit? Wenn niemand mich danach fragt, weiß ich es; wenn ich es jemandem auf seine Frage hin erklären soll,, weiß ich es nicht zu sagen. Augustinus,

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Reales Gas und kritischer Punkt Seite 1

Reales Gas und kritischer Punkt Seite 1 Reales Gas und ritischer Punt Seite 1 1. Aufgabenstellung 1.1. Die Isothermen des realen Gases Schwefelhexafluorid ( SF 6 ) sind verschiedene Temperaturen aufzunehmen und gemeinsam in einem p() -Diagramm

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

Vorlesung: PC II (Thermodynamik)

Vorlesung: PC II (Thermodynamik) orlesung PC II (hermodynamik) für Studenten der Bachelor-Studiengänge Chemie" und Water Science C. Mayer Wintersemester 200 / 20 orlesung: Übungen: Mittwoch, 0:00 bis 2:00, S03 00 E33 Mittwoch, 2:00 bis

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen THERMODYNAMIK ELEKTROCHEMIE dynamische Phänomene Änderung der Konzentration

Mehr

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft 4. Die Energiebilanz 4.1. Mechanische Formen der Energie 4.1.1 Energie und Arbeit Arbeit einer Kraft Die auf dem Weg von 1 nach 2 geleistete Arbeit berechnet sich durch Integration entlang der Bahnkurve

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger Mag. Dipl.-Ing. Katharina Danzberger 1. Zielsetzung Im Rahmen der Übung sollen die Wärmebilanz und die Leistungszahl bzw. der COP (Coefficient Of Performance) der installierten n bestimmt und diskutiert

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Thermodynamische Berechnung des Modells eines Stirling-Motors Typ b

Thermodynamische Berechnung des Modells eines Stirling-Motors Typ b ösung : Projekt Stirling-Motor nach dem Kartonmodell Seite von 7 hermodynamische Berechnung des Modells eines Stirling-Motors y b Zu.) Übertragen Sie das gegebene --Diagramm in ein entsrechendes -s-diagramm

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

7 Wärme und Energie(energía (la) térmica)

7 Wärme und Energie(energía (la) térmica) 7 Wärme und Energie Hofer 1 7 Wärme und Energie(energía (la) térmica) Die Thermodynamik beschreibt die Übergänge zwischen den Aggregatzuständen. Die Thermodynamik ist weiters eine wichtige Hilfe bei Konstruktion

Mehr

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen 1. Allgemeine Grundlagen... 1 1.1 Energie-undStoffumwandlungen... 1 1.1.1 Energieumwandlungen... 2 1.1.2 Stoffumwandlungen... 6 1.1.3 Energie- und Stoffumwandlungen in technischen Prozessen... 9 1.1.4

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Chemische Thermodynamik

Chemische Thermodynamik Walter Schreiter Chemische Thermodynamik Grundlagen, Übungen, Lösungen 2. überarbeitete und ergänzte Auflage De Gruyter Energie Verwendete Symbole und Größen XIII 1 Theoretische Grundlagen 1 1.1 Nullter

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

Physik 6.Klasse Thermodynamik

Physik 6.Klasse Thermodynamik 1) Thermodynamische Zustandsgrößen Physik 6.Klasse Thermodynamik Thermodynamik Thermische Bewegung Temperatur, Druck, Volumen Kräfte zwischen den Molekülen, Oberflächenspannung Temperaturmessung und Skalen

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft ersuch : Bestimmung des olumenausdehnungskoeffizienten γ von Luft Theoretische Grundlagen: I. Theoretische Bestimmung des vom Wassertropfen eingeschlossenen Gases nach ersuchsaufbau. olumen des Erlenmeyerkolbens:.

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Formelsammlung zur Vorlesung Physikalische Chemie I (Thermodynamik)

Formelsammlung zur Vorlesung Physikalische Chemie I (Thermodynamik) Formelsammlung zur Vorlesung Physikalische Chemie I (hermodynamik) Ulrich K. Deiters Institut für Physikalische Chemie, Universität zu Köln 1 Symbole M N N A n p R V Molmasse eilchenzahl Avogadro-Konstante,

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Abbildung XIV.17: vier Schritte des Carnot-Prozesses. T A = T 1 und T B = T 2

Abbildung XIV.17: vier Schritte des Carnot-Prozesses. T A = T 1 und T B = T 2 XI.6 Kreisprozesse und Wärmekraftmaschinen ei den bisherigen etrachtungen von Kreisprozessen in Kapitel XI.5 stellten wir uns die Frage der Umwandlung von Wärme in mechanische rbeit und umgekehrt. Dazu

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Der Stirlingmotor. ein Motor, der mit Luft läuft? Inhalt. 2.1 Kalibrierung für Temperatur- und Volumenmessungen

Der Stirlingmotor. ein Motor, der mit Luft läuft? Inhalt. 2.1 Kalibrierung für Temperatur- und Volumenmessungen Der Stirlingmotor ein Motor, der mit Luft läuft? Inhalt 1. Wie funktioniert ein Stirlingmotor? 1.1 Einleitung 1.2 Thermodynamische Grundlagen 1.3 Der stirlingsche Kreisprozess 2. Experimente 2.1 Kalibrierung

Mehr

Physik und Elektrotechnik 2

Physik und Elektrotechnik 2 I, 1 97 (2012) c 2012 Physik und Elektrotechnik 2 Dr. Jürgen Bolik Georg-Simon-Ohm-Hochschule Nürnberg z k x B E y Georg-Simon-Ohm-Hochschule Nürnberg 2 Inhaltsverzeichnis 1 Wechselströme 4 1.1 Wechselstromwiderstände............................

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Physikalisches Grundpraktikum. Ein Blatt Millimeterpapier; ein Enthalpiediagramm ( vergrößertes Mollier-Diagramm, Größe: DIN A4)

Physikalisches Grundpraktikum. Ein Blatt Millimeterpapier; ein Enthalpiediagramm ( vergrößertes Mollier-Diagramm, Größe: DIN A4) W10 Wärmepumpe Physikalisches Grundpraktikum Abteilung Wärmelehre 1 Vorbereitung 1. Wärmepumpe allgemein, Wirkungsweise der Kompressions-Wärmepumpe 2. Zustandsänderungen (isotherm, isobar, isochor, isentrop

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.2 Zustandsgleichungen von Gasen und kinetische Gastheorie........

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Einführung in die chemische Thermodynamik

Einführung in die chemische Thermodynamik G. Kortüm /H. Lachmann Einführung in die chemische Thermodynamik Phänomenologische und statistische Behandlung 7., ergänzte und neubearbeitete Auflage Verlag Chemie Weinheim Deerfield Beach, Florida Basel

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen Elektrolyt- und Nichtelektrolytlösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrolyt- und Nichtelektrolytlösungen

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Warum die Tasse nicht nach oben fällt.

Warum die Tasse nicht nach oben fällt. Quanten.de Newsletter Juli/August 2003, ISSN 1618-3770 Warum die Tasse nicht nach oben fällt. Thermodynamik, Entropie und Quantenmechanik. Günter Sturm, ScienceUp Sturm und Bomfleur GbR, Camerloherstr.

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

- Chemie und Energie -

- Chemie und Energie - Name: Datum: - Chemie und Energie - Eine Einführung zum 1. Hauptsatz der Thermodynamik 1: Heißer Kaffee aber wie?! Versuch 1: Kaffeetasse to go Becher Isolierbecher Sie haben heute Morgen verschlafen,

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und heoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2. Das Gasgesetz von Gay-Lussac hema In diesem ersuch soll das erhalten von Gasen bei Erwärmung unter

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Protokoll zum Versuch W1: Reale Gase / Verflüssigung

Protokoll zum Versuch W1: Reale Gase / Verflüssigung Protokoll zum Versuch W1: Reale Gase / Verflüssigung Sven E Tobias F Abgabedatum: 24. April 2007 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalischer Zusammenhang 2 2.1 Ideale Gase................................

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr