Vorlesung #7. M.Büscher, Physik für Mediziner

Größe: px
Ab Seite anzeigen:

Download "Vorlesung #7. M.Büscher, Physik für Mediziner"

Transkript

1 Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase

2 Allgem. Gasgleichung Boyle-Mariott (T=const) pv = const nmol N A Gay-Lussac (p=const) V/T = const Amontons (V=const) p/t = const allgemeine Zustandsgleichung für ideale Gase: Partikel ohne Ausdehnung stoßen rein elastisch pv = n RT = M n M N A k B T (K) allg. Gaskonstante N m R = 8.31 = 2 m Mol K J Mol K Boltzmann Konstante k B = R N A = J K

3 p = const. Isobare Zustandsänderung V/T = const; V T 1. Gesetz von Gay-Lussac

4 Isochore Zustandsänderung V = const. p/t = const; p T 2. Gesetz von Gay-Lussac

5 T = const. Isotherme Zustandsänderung pv = const; p 1/V Gesetz von Boyle-Mariotte

6 Adiabatische Zustandsänderung Adiabatische Zustandsänderungen sind solche, bei denen keine Wärme Q mit der Umgebung ausgetauscht wird, also Q = 0

7 Versuch Pneumatisches Feuerzeug

8 Zustandsdiagramme

9 Gasgemische und Partialdruck Vermischen zweier Gase die nicht chemisch miteinander reagieren: p 1,V 1 p 2,V 2 p, V = V + V 1 2 Jedes Gas füllt das Gesamtvolumen V und übt dort den Partialdruck Vi pi = p V V aus Gesamtdruck p = p 1 + p 2 = V 1 p V 1 + V + V 2 2 p

10 Partialdruck in einem Gasgemisch Bei idealen Gasen für jede Komponente so groß, als ob diese allein das gegebene Volumen ausfüllen würde Die Partialdrücke verhalten sich zueinander wie die Molzahlen n i der beteiligten Gase Gesetz von Dalton p tot = p 1 = ( n 1 + p 2 + n ) R T V tot

11 Luftfeuchtigkeit Unter relativer Luftfeuchtigkeit versteht man das Verhältnis von Partialdruck des Wasserdampfs zum Sättigungsdampfdruck ( Taupunktkurve ). Taupunktkurve Übersättigung

12 Reale Gase Partikel mit Ausdehnung Keine rein elastischen Stöße (langreichweitige Kräfte durch elektrische Wechselwirkungen) Anregungen (innere Struktur)

13 Joule-Thompson Effekt Expansion realer Gase Arbeit gegen Anziehungskräfte Abkühlung p 1 > p 2 T 1 < T kritisch Kühlschrank Luftverflüssigung (Linde-Verfahren) Abkühlung pro bar Druckdifferenz CO 2 0,75 /bar (Trockeneis) LUFT 0,25 /bar Für z.b. O 2 ist T kritisch weit unter Zimmertemperatur. Daher müssen solche Gase zuerst abgekühlt werden, bevor sie verflüssigt werden können.

14 Versuch Trockeneis CO 2 (reales Gas)

15 Agregatzustände Dampf-, Sublimations- und Schmelzkurven ergeben zusammen ein Phasendiagramm. Sie verdeutlichen den Zusammenhang zwischen Temperatur, Druck und Aggregatzustand.

16 Phasenübergänge

17 Erwärmungskurve von Wasser Ice and water Water and vapor Die Erwärmungskurve von Wasser zeigt die Temperatur- und Zustandsänderungen beim Hinzufügen von Wärme. Die Längen der vertikalen Linien bei 0 C und 100 C entsprechen den Schmelz- und Verdampfungswärmen.

18 Schmelzwärme Schmelzwärme bezeichnet die Energie, die benötigt wird, um eine Stoffprobe von dem festen in den flüssigen Aggregatzustand zu überführen. Dabei werden Bindungskräfte zwischen Molekülen bzw. Atomen überwunden, ohne deren kinetische Energie und damit ihre Temperatur zu erhöhen. Stoff Wasserstoff Sauerstoff Schmelzwärme (kj/kg) Aluminium Eisen Gold Eis 333,7

19 Verdunstungskälte Bei Verdunstung geht ein Stoff vom flüssigen in den gasförmigen Zustand über, ohne dass er jedoch vorher zum Sieden gebracht wurde Ursache: Maxwell sche Geschwindigkeitsverteilung schnelle Moleküle verlassen die Flüssigkeit Kühlung kommt dadurch zu Stande, dass die für das Verdunsten der Flüssigkeit nötige Energie der Flüssigkeit selbst (und der Umgebung) entzogen wird (langsame Moleküle bleiben zurück) Verdampfungswärme λ Ethanol λ= 840 kj/kg Wasser λ=2256 kj/kg

20 Versuch Verdampfung von Aceton (Kältespray)

21 Dampfdruck Für jede Temperatur stellt sich für Gas und Flüssigkeit ein dynamisches Gleichgewicht ein. Es verlassen genauso viele Moleküle die Flüssigkeit, wie an der Oberfläche wieder kondensieren. Sobald sich das dynamische Gleichgewicht eingestellt hat, spricht man vom Sättigungsdruck des Dampfes p D. Ist der Dampfdruck gleich dem Umgebungsdruck (i.d.r. Atmosphärendruck), ist der Siedepunkt der Flüssigkeit erreicht. Der Siedepunkt einer Flüssigkeit ist demnach druckabhängig. Je größer (kleiner) der Druck, umso weiter steigt (sinkt) der Siedepunkt.

22 Sieden Verdunstung ist ein Oberflächenphänomen: Nur einige schnelle Moleküle verlassen die Flüssigkeit über die Oberfläche. Bei Erreichen der Siedetemperatur wird der Dampfdruck genauso groß wie der Druck in der Flüssigkeit (d.h. äußerer Luftdruck plus Schweredruck). Im gesamten Flüssigkeitsvolumen bilden sich Wasserdampf-Blasen die Flüssigkeit siedet. Der Dampfdruck steigt ungefähr exponentiell mit T

23 Schnellkochtopf In einem Drucktopf oder Schnellkochtopf werden Gerichte unter erhöhtem Druck und damit mit Temperaturen über 100 C gegart. Üblicherweise herrscht bei Betrieb im Topf ca. 1 bar (100 kpa) Überdruck; was die Erhöhung der Siedetemperatur des Kochwassers auf etwa 120 C bewirkt. Erst dadurch bekommt man die kürzeren Kochzeiten. Der Autoklav funktioniert nach dem Prinzip des Schnellkochtopfes. Er wird zur Sterilisierung von Laborgeräten eingesetzt.

24 Höhenmessung Da der Luftdruck mit zunehmender Höhe sinkt, sinkt auch der Siedepunkt. Faustregel: Der Siedepunkt wird pro 300 m um etwa ein Grad abgesenkt. So lässt sich durch die Bestimmung der Siedetemperatur von reinem Wasser die jeweilige Höhe über dem mittleren Meeresspiegel (Normalnull) abschätzen. Aufgrund der niedrigeren Kochtemperatur steigt auch die Zubereitungszeit für Speisen.

25 Zustandsdiagramme Der Zustand eines Gases wird durch seine Zustandsgrößen beschrieben: Druck p, Temperatur T, Molvolumen V n allgemeine Gasgleichung (ideale Gase) p Vn = R T van-der-waals-gleichung (reale Gase) 2 ( n n p + a V )( V b) = RT

26 Zustandsdiagramme: Verdampfung Verdampfung (und Kondensation): isobarer und isothermer Wechsel des Volumens V-T Diagramm: Isobare vertikal beim Siedepunkt T D p-v Diagramm: Isotherme horizontal beim Dampfdruck p D V Gas p Flüssig Koexistenz Koexistenz p D Gas T D T V Flüssig

27 Zustandsdiagramme: Verdampfung (2) p Flüssig Îdeales Gas p p kr T kr Gas Koexistenz V T kr T Im schraffierten Bereich und entlang der Dampfdruckkurve: Koexistenz von Gas & Flüssigkeit Kritische Isotherme: Keine Koexistenz (horizontale Linie) mehr Darüber: Überkritisches Gas (bzw. Fluid) Weiter steigende Temperatur: Annäherung an ideales Gas

28 Phasendiagramm Die Dampfdruckkurve trennt die flüssige und die gasförmige Phase Entlang der Dampfdruckkurve: Koexistenz von Gas und Flüssigkeit Entspricht der Stempeldruck genau dem Dampfdruck p D, so bleibt der Stempel bei jedem gewünschten Volumen innerhalb des Koexistenzbereichs stehen. Ein kleines Zusatzgewicht lässt den Dampf vollständig kondensieren, ein kleines Entlastungsgewicht die Flüssigkeit vollständig verdampfen. Verallgemeinerung auf alle drei Phasen: Phasendiagramm H 2 O

29 Der Kritische Punkt CO 2 Kritischer Punkt: Dichte der Flüssigkeit und des Gases gleichen sich an. Der Unterschied zwischen beiden hört auf zu existieren. Dieser Punkt ist durch drei Zustandsgrößen ausgezeichnet, kritische Temperatur T c, kritische Druck p c und kritische Dichte c Oberhalb des kritischen Punktes: Flüssigkeit und Gas nicht unterscheidbar überkritischer Zustand kritische Opaleszenz: Aufgrund der extrem niedrigen Verdampfungswärme wechseln Teile der Substanz ständig zwischen flüssigem und gasförmigen Zustand hin und her, was sich in einer starken Schlierenbildung äußert.

30 Versuch Nattersches Rohr (kritischer Punkt von CO 2 )

31 Der Tripelpunkt Am Tripelpunkt existieren alle drei Agregatzustände gleichzeitig Wasser: (611,657 ± 0,010) Pa, 273,16 K (0,01 C) Die Eindeutigkeit des Tripelpunktes ermöglicht es, die Skalen von Thermometern festzulegen und wird dafür speziell bei der Kalibrierung selbiger genutzt. Einige Fixpunkte der Internationalen Temperaturskala von 1990 (ITS-90) Wasserstoff Neon Sauerstoff Argon Quecksilber Wasser 13,81 24, ,361 83, , ,1600

32 Phasendiagramme: allgemeiner Fall p-v-t Fläche (ohne Anomalie) p-v-t Fläche (Wasser)

33 Van der Waals Für reale Gase Berücksichtigt Gleichung a p + ( V b) = RT 2 V n n Wechselwirkung zwischen Molekülen Binnendruck a/vn 2 p Vn Grenzfall p, V, T groß = R T Ideales Gas Eigenvolumen der Moleküle Kovolumen b Johannes Diderik van der Waals ( ) Nobelpreis 1910 Stoff a (J. m 3 /mol 2 ) b (m 3 /mol) P kr (MPa) T kr (K) Luft x Kohlendioxid (CO 2 ) x Stickstoff (N 2 ) x Wasserstoff (H 2 ) x Wasser (H 2 O) x Helium (He) x

34 Van der Waals Gleichung (2) a p + ( V b) = 2 V n n RT

35 Van der Waals Gleichung (3) p-v Diagramm für CO 2 Gemäß van-der- Waals-Gleichung Gemäß Gemessener van-der- Waals-Gleichung Verlauf (horizontale Linien) Die van-der-waals-isotherme muss im Bereich des Phasenübergangs flüssig gasförmig modifiziert werden, da während der Phasenumwandlung der Druck konstant bleibt

36 Van der Waals Gleichung (4) Maxwell sche Gerade: Fläche(A,B,D) = Fläche(B,C,E) Dampf übersättigt Siedeverzug Unphysikalischer Bereich

37 Versuch Siedeverzug

38 Aufgaben 1. Wie viel Wasser enthält die Luft eines Wohnraumes (30 m 2 Grundfläche, 2,70 m hoch) bei 20 C und 75% relativer Luftfeuchtigkeit? ( Hinweis: die Sättigungsdichte kann man der Taupunktkurve entnehmen) 2. Für eine Feier soll Eistee zubereitet werden. Dazu werden 3 Liter auf 20 C abgekühlter Tee genommen und ein halbes Kilogramm -10 C kaltes Eis dazu getan. Welche Temperatur hat der fertige Tee? (Hinweis: verwenden Sie folgende Wärmekapazitäten: c(wasser) = 4,18 J/(g K) und c(eis) = 2,1 J/(g K))

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

Kalorimetrie (Wärmelehre)

Kalorimetrie (Wärmelehre) Thermische Molekularbewegung Phasenübergänge Reaktionswärme Kalorimetrie (Wärmelehre) Gase Flüssigkeiten/Festkörper Ideales Gasgesetz Dulong-Petit-Gesetz 1 Thermodynamik Beschreibung der Zustände und deren

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.2 Zustandsgleichungen von Gasen und kinetische Gastheorie........

Mehr

Flüssigkeiten. einige wichtige Eigenschaften

Flüssigkeiten. einige wichtige Eigenschaften Flüssigkeiten einige wichtige Eigenschaften Die Oberflächenspannung einer Flüssigkeit ist die zur Vergröß ößerung der Oberfläche um den Einheitsbetrag erforderliche Energie (H 2 O bei 20 C: 7.29 10-2 J/m

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Physik 6.Klasse Thermodynamik

Physik 6.Klasse Thermodynamik 1) Thermodynamische Zustandsgrößen Physik 6.Klasse Thermodynamik Thermodynamik Thermische Bewegung Temperatur, Druck, Volumen Kräfte zwischen den Molekülen, Oberflächenspannung Temperaturmessung und Skalen

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Die Van der Waals Zustandsgleichung realer Gase

Die Van der Waals Zustandsgleichung realer Gase deale Gase sind dadurch definiert, dass sie die Zustandsgleichung = nrt erfüllen n ist dabei gleich der Molzahl des vorhandenen Gases). n der Praxis ist dies dann der Fall, wenn die Gase bei niedrigem

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Siedediagramme Beispiel: System Stickstoff Sauerstoff - Das Siedeverhalten des Systems Stickstoff Sauerstoff Der Übergang vom flüssigen in den gasförmigen Aggregatzustand. - Stickstoff und Sauerstoff bilden

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure

Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure Heinz W. Siesler (Vorlesung) Miriam Unger (Übungen)( Institut für f r Physikalische Chemie Universität t Duisburg-Essen Schützenbahn

Mehr

Protokoll zum Versuch W1: Reale Gase / Verflüssigung

Protokoll zum Versuch W1: Reale Gase / Verflüssigung Protokoll zum Versuch W1: Reale Gase / Verflüssigung Sven E Tobias F Abgabedatum: 24. April 2007 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalischer Zusammenhang 2 2.1 Ideale Gase................................

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Der Konversionsfaktor ist ein Um rechungsfaktor zwischen m assenund volumenbasierten Mengenangaben von Gasen.

Der Konversionsfaktor ist ein Um rechungsfaktor zwischen m assenund volumenbasierten Mengenangaben von Gasen. Folie 1 Flüchtige Organische Verbindungen in der Gasphase Themen: o Konversionsfaktoren Berechnen o Abschätzen von Dampfdruckkurven aus 2 vorhandenen Werten o Dampfdruck wässriger Lösungen von flüchtigen

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Im Mittel ist die Teilchenenergie im Dampf um die Verdampfungsenergie E V höher als in der Flüssigkeit. Auch hier gilt das BOLTZMANN-Theorem:!

Im Mittel ist die Teilchenenergie im Dampf um die Verdampfungsenergie E V höher als in der Flüssigkeit. Auch hier gilt das BOLTZMANN-Theorem:! 3. Aggregatzustände 3.1. Flüssigkeit und Dampf Wir betrachten Flüssigkeit + angrenzendes Volumen : Die Flüssigkeitsteilchen besitzen eine gewisse Verteilung der kinetischen Energie Es kommt vor, dass ein

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Gase unter Druck: Die Gasgesetze

Gase unter Druck: Die Gasgesetze Gase unter Druck: Die Gasgesetze In diesem Kapitel... Den Begriff»Physikalische Chemie«definieren Den Einfluss von Druck und Temperatur auf Gase beschreiben Ideales und reales Verhalten von Gasen unterscheiden

Mehr

Versuch Nr. 7. = q + p dv

Versuch Nr. 7. = q + p dv Hochschule Augsburg Versuch Nr. 7 Physikalisches Aufbauten 7 a bzw. 27 a Praktikum Spezifische Verdampfungsenthalpie - Dampfdruckkurve 1. Grundlagen_und_Versuchsidee 1.1 Definition der Verdampfungsenthalpie:E

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Reales Gas und kritischer Punkt Seite 1

Reales Gas und kritischer Punkt Seite 1 Reales Gas und ritischer Punt Seite 1 1. Aufgabenstellung 1.1. Die Isothermen des realen Gases Schwefelhexafluorid ( SF 6 ) sind verschiedene Temperaturen aufzunehmen und gemeinsam in einem p() -Diagramm

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

In reiner Form bestehen sie aus 6,022 10 23 Atomen. Sie können weder chemisch noch physikalisch zerlegt werden.

In reiner Form bestehen sie aus 6,022 10 23 Atomen. Sie können weder chemisch noch physikalisch zerlegt werden. 1. Welches der folgenden Gemische ist ein Gemenge? Kalkmilch Granit Rauch 2. Wodurch sind chemische Elemente charakterisiert? In reiner Form bestehen sie aus 6,022 10 23 Atomen. Sie sind unteilbar. Sie

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 5 Absoluter Nullpunkt der Temperaturskala

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

2. Ideale und reale Gase

2. Ideale und reale Gase . Ideale und reale Gase. Ideale und reale Gase... 1.1 Ideales Gas... 1.1.1 Satz von Avogadro:... 1.1.. Gay-Lussac: p=onst:....1.3. Boyle-Mariotte: T=onst:....1.4. Zustandsgleichung (ideales Gasgesetz):...

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen THERMODYNAMIK ELEKTROCHEMIE dynamische Phänomene Änderung der Konzentration

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121

3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3. Helium Im Sommersemester befassen wir uns generell mit Tieftemperaturphysik. Beginnen wollen wir mit einer Temperaturskala (Fig. 3.1),

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Kinetische Gastheorie (Wdh.) Gegenstand der letzten Vorlesung Einführung in die physikalische Chemie Kinetische Gastheorie (Einführung) Ideales Gas, Zustandsgleichung des idealen Gases

Mehr

Physikalische Aspekte der Respiration

Physikalische Aspekte der Respiration Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik

Mehr

Allgemeine Chemie WS 04/05

Allgemeine Chemie WS 04/05 Allgemeine Chemie WS 04/05 Vorlesung: Dienstag 8:30-10:00, Beginn 19. 10. 2004 Grüner Hörsaal D5104 Übungen: Mittwoch 8:30-9:00, Beginn 20. 10. 2004 Grüner Hörsaal D5104 Gez. Prof. A. J. Meixner für die

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

2 Allgemeine Grundlagen 2 2.1 Absolute und relative Luftfeuchtigkeit... 2 2.2 Partialdruck des Wasserdampfes... 2

2 Allgemeine Grundlagen 2 2.1 Absolute und relative Luftfeuchtigkeit... 2 2.2 Partialdruck des Wasserdampfes... 2 Versuch: LF Fachrichtung Physik Physikalisches Grundpraktikum Bearbeitet: M. Kreller. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 2009 Luftfeuchtigkeit Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ.

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ. Wärmelehre Betrachten wir mehrere Körper, die sich in einem Wärmebad befinden, so sagt uns die Erfahrung, dass sie alle dieselbe Temperatur haben werden. Verbinden wir einen heißen Körper mit einem kalten

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

5.2 Thermische Ausdehnung (thermische Zustandsgleichung)

5.2 Thermische Ausdehnung (thermische Zustandsgleichung) 5.2 herische Ausdehnung (therische Zustandsgleichung) Praktisch alle festen, gasförigen und flüssigen Stoffe dehnen sich bei Erwärung bei konstante Druck aus, vergrößern also ihr Voluen. Alle Stoffe lassen

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung reales Gas, Lennard-Jones-Potenzial Zustandsgleichung des realen Gases (van der Waals-Gleichung) Kondensation kritischer Punkt Freiheitsgrade

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov #12 am 26.01.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Lehrbücher der Physikalischen Chemie

Lehrbücher der Physikalischen Chemie VERSUCH - Dampfdruckkure VERSUCH DAMPFDRUCKKURVE hema Messung der Dampfdruckkuren leicht erdampfbarer Flüssigkeiten Grundlagen thermodynamische Gesetze der Phasenübergänge Dampfdruckkure Beschreibung der

Mehr

10. Übergang zu dichteren Stoffen. Gegenstand: Beschreibung realer Gase und Zustandsdiagramme.

10. Übergang zu dichteren Stoffen. Gegenstand: Beschreibung realer Gase und Zustandsdiagramme. 10. Übergang zu dichteren Stoffen Gegenstand: Beschreibung realer Gase und Zustandsdiagramme. 10.1 Die VAN DER WAALS-Gleichung Das allgemeine Gasgesetz ist nur eine Näherung, die umso genauere Ergebnisse

Mehr

BAUPHYSIK Feuchteschutz 1

BAUPHYSIK Feuchteschutz 1 BAUPHYSIK Feuchteschutz 1 Lektion Inhalt Seite Tauwasser an Oberflächen 10 Grundbegriffe Feuchteschutz, Vermeidung von Schimmelbildung an der Oberfläche 2 Tauwasser im Bauteil 11 Dampfdiffusion (Strom,

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Übungsaufgaben Physikalische Chemie A1. Welchen Druck übt gasförmiger Stickstoff mit einer Masse von 2,045 g bei 21 C in einem Gefäß mit einem Volumen von 2,00 l aus? A2. In Haushaltgeräten zur Erzeugung

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 21 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Gase (insbesondere: im Körper) aus: Klinke/Silbernagel: Lehrbuch der Physiologie

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

R 1 T T 1 T 2. Abbildung 5.1: Temperaturabhängigkeit des elektrischen Widerstands als Eichkurve für die Temperaturmessung.

R 1 T T 1 T 2. Abbildung 5.1: Temperaturabhängigkeit des elektrischen Widerstands als Eichkurve für die Temperaturmessung. Kapitel 5 Wärmelehre In den vorangegangenen Kapiteln haben wir gesehen, daß die Eigenschaften mechanischer Systeme mit den Grundgrößen Länge (Einheit: Meter), Zeit (Einheit: Sekunde) und Masse (Einheit:

Mehr

Willkommen. welcome. bienvenu. Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien

Willkommen. welcome. bienvenu. Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien Willkommen bienvenu welcome Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik Dipl.-Ing. Christian Backes backes@howatherm.de Dr.-Ing. Christoph Kaup

Mehr

1. Vakuumphysik und technik: Grundlagen. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

1. Vakuumphysik und technik: Grundlagen. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 1. Vakuumphysik und technik: Grundlagen 1 Vakuum Vakuum(von lat. vacuus(leer, frei)) wird in verschiedenen Bedeutungen gebraucht: Umgangssprachlich: Vakuumist ein materiefreier Raum. Technik und Klassische

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Prüfungsfragen- Chemie Teil I

Prüfungsfragen- Chemie Teil I - 1-1. Das Pauli Prinzip besagt, dass Prüfungsfragen- Chemie Teil I 1) die Hauptquantenzahl immer geradzahlig ist 2) sich die e- eines Atoms in mindestens einer der vier Quantenzahlen unterscheiden müssen

Mehr

LB1 Stoffe. LB1 Stoffe. LB1 Stoffe. Womit beschäftigt sich die Chemie?

LB1 Stoffe. LB1 Stoffe. LB1 Stoffe. Womit beschäftigt sich die Chemie? Lernkartei Klasse 7 LB1: Stoffe Womit beschäftigt sich die Chemie? LB1 Stoffe mit den Stoffen, ihren Eigenschaften und ihren Veränderungen (Stoffumwandlungen) Was sind Stoffe? LB1 Stoffe Stoffe sind die

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe

Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe DT400-1P NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe Allgemein Eine Wärmepumpe ist eine Wärmekraftmaschine. Sie hebt Wärme von einem Körper tieferer Temperatur T 1 auf einen

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Thermodynamik. Vorlesung 1. Nicolas Thomas

Thermodynamik. Vorlesung 1. Nicolas Thomas Thermodynamik Vorlesung 1 Thermodynamik ist nur ein bisschen schwerig. Geschichtlicher Hintergrund! Im 19. Jahrhundert Zunahme an Mechanisierung durch Konstruktion von Maschinen und Motoren.! Besonders

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov # am 25.0.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Gasbeschaffenheit. Siegfried Bajohr. Engler-Bunte-Institut Bereich Gas, Erdöl, Kohle

Gasbeschaffenheit. Siegfried Bajohr. Engler-Bunte-Institut Bereich Gas, Erdöl, Kohle Gasbeschaffenheit Siegfried Bajohr 1 Inhalt Brenntechnische Kenndaten Brennwert H S und Heizwert H i Wobbe-Index W Anwendungsdaten Abgasvolumen Sicherheitskennwerte Zündgrenze Z 2 Brenntechnische Kenndaten

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung Aufgabenstellung: 1. Bestimmen Sie den Taupunkt. Berechnen Sie daraus die absolute und relative Luftfeuchtigkeit. 2. Schätzen Sie die Messunsicherheit ab! Stichworte zur Vorbereitung: Temperaturmessung,

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr