Präbiotische Evolution als evolutorisches Spiel - Hyperzyklendynamik

Größe: px
Ab Seite anzeigen:

Download "Präbiotische Evolution als evolutorisches Spiel - Hyperzyklendynamik"

Transkript

1 Präbiotische Evolution als evolutorisches Spiel - Hyperzyklendynaik von Alex Ginis, Denis Linezki, Lena Shniran und Ernest Zakharov Spieltheorie WS 2008/ Februar 2009

2 Gliederung Einführung Entstehung des Lebens wie alles begann Präbiotische Evolution Anschluss an das atheatische Modell Das atheatische Modell Flussreaktorgleichung Flussreaktorexperient als evolutorisches Spiel Ein einfaches Modell für den Hyperzyklus Das innere Gleichgewicht Berechnung der Eigenwerte der Jacobi-Matrix Asyptotische Stabilität des Gleichgewichts Peranenzeigenschaft des Hyperzyklus Fazit Alex Ginis Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 2

3 Erste Schritte der Entstehung des Lebens Theorie von A. Oparin (1922): Astrocheische und astrobiologische Forschungsergebnisse liefern folgendes Bild: Irdische Uratosphäre enthielt Wasserstoff, Stickstoff, Kohlenstoff und einige Verbindungen wie Methan und Aoniak (jedoch andere Verhältnisse wie in der heutigen Lufthülle). Unter Einwirkung von Energiequellen entstehen dann koplexe Kohlenstoffverbindungen wie Carbon-, Sulfon-, Ainosäuren und Nukleotiden organische Bausteine des Lebens. Bestätigung der Oparinschen Theorie: das Ursuppe-Experient von Miller und Urey (1953). Alex Ginis Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 3

4 Entstehung von organischen Verbindungen Ursuppe-Experient von Miller und Urey (1953): Siulation der Bedingungen der Uratosphäre unter Einwirkung von Energie. Nach einigen Wochen entstehen organische Substanzen i Reaktor! Wichtiger Beitrag zu akroolekularen organischen Verbindungen: Meteoriten und Koeten lieferten außerirdische cheische Verbindungen von der Urwolke auf die Erde. Dies hat die Evolution beschleunigt. Alex Ginis Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 4

5 Weitere Entwicklung des Lebens Entwicklung nach den Regeln der cheischen Kinetik (zeitlicher Ablauf der Reaktionen und Stofftransport unter Einfluss von Wäre): Carbonsäuren, Kohlenstoffe und Polypeptide verbinden sich i Wasser unter Einwirkung von Van-der-Waals-Kräften zu Makroolekülen. Erstals Bildung von potentiellen Zellebranen! Polyerisierung - Bildung von kurzen Ketten unter katalytischer Wirkung in einer unübersehbaren Vielfalt. Aus dieser Vielfalt ussten die biologisch richtigen Ketten ausgewählt und weiterentwickelt werden. Entstehung von vererbungsfähigen Nukleotiden. Alex Ginis Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 5

6 Vererbung und Replikation Vererbungsverfahren: Fehlerloses Kopieren der DNA, d.h. der langen Ketten von Polynukleotiden. Replikation ist eine Vervielfältigung der Erbinforation: Durch die Replikation können, sobald die Katalysatoren (sog. Enzye) itwirken, sehr lange Ketten von Nukleotiden entstehen. Ein höheres Lebewesen hat ein DNA-Molekül der Länge von einigen Mrd. von Nukleotiden trotzde findet eine fehlerlose Replikation statt! Alex Ginis Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 6

7 Anschluss an das atheatische Modell Wie erfolgte dabei die Auswahl und Weiterentwicklung der biologisch richtigen Makrooleküle? Eine ögliche Erklärung bietet die Theorie über die Selbstorganisation von Makroolekülen (Eigen & Schuster), basierend auf eine atheatischen Modell. Mittels atheatischer Modellierung ist es öglich, die Evolution von replizierbaren Molekülen zu beschreiben und zu untersuchen. Schwerpunkt sind Prinzipien der organischen Wechselwirkung: Vielfalt: ehrere Arten von Makroolekülen können koexistieren; Kooperation: die Arten können einander durch katalytische Wechselwirkung bei der Reproduktion helfen. I Folgenden: atheatische Untersuchung von Eigenschaften der Replikation. Alex Ginis Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 7

8 Flussreaktorgleichung Evolutionsreaktor ein Gedankenexperient und Grundlage für atheatische Modellierung. Arten von selbstreproduzierenden Molekülen (Makrooleküle) i Flussreaktor, die sich bei Energiezufuhr verehren sollen. Die Mengen an Nährstoffen und Abfallprodukten seien konstant. Der Zustand des Reaktors ist durch einen Punkt i Konzentrationssiplex beschrieben. S = x R : x = 1, x 0 = 1 Lena Shniran Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 8

9 Flussreaktorgleichung Die Konzentration aller anderen Stoffe, die Teperatur und der Druck, sowie die Geschwindigkeit der Reaktion sind konstant. Die Wachstusgeschwindigkeit x der Makrooleküle vo Typ lässt sich in 2 Tere aufspalten: Wachstuster Γ und Verdünnungster, proportional zur Konzentration x. Γ lässt sich nach den Gesetzen der cheischen Kinetik berechnen. Der Verdünnungster hat die Gestalt x Φ ( x,..., x ). i 1 Φ Der Fluss wird so gesteuert, dass gilt: S = x = 1 = 1 (1) Lena Shniran Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 9

10 Flussreaktorgleichung Geschwindigkeit der Konzentrationsänderung: x =Γ x Φ, = 1,...,. (2) Aus (1) folgt: 0 = S = x = Γ x Φ. (3) Mit Hilfe von (1) bekot an: Unter der Voraussetzung, dass Φ ( x,..., x ) = Γ ( x,..., x ). x x ( G x G ). = 1 1 erhält an schließlich (4) σ σ σ Γ ( x,..., x ) = x G ( x,..., x ) 1 1 Lena Shniran Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 10

11 Flussreaktorexperient als evolutorisches Spiel I Folgenden sei A eine x Matrix it G ( x) = e T Ax, = 1,...,. Dadurch wird die Gleichung (4) zu x T ( t) = x ( t)( e x) Ax, = 1,..., Unter Zugrundelegung eines syetrischen endlichen 2-Personen-Spiels in { } Noralfor G = M, S, u werden kann, kot an zu als Basisspiel, das beliebig oft wiederholt x ( t) = x ( t) ( e x) x T T Ax Ax (5) Lena Shniran Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 11

12 Flussreaktorexperient als evolutorisches Spiel Bei Lösen der GDGL (5) interessiert uns der globale Verlauf und das Langzeitverhalten der Lösungen. Unter Betrachtung nur positiv definiter Matrizen A, kann an beweisen, dass die Mengen der Trajektorien der Gleichung (5) und der vereinfachten Gleichung übereinstien. x () t = x ()( t e x) T Ax (6) Ein Spezialfall der Replikatorgleichung (6) wird i folgenden Teil der Präsentation betrachtet, wobei die Matrix A von einer konkreten Struktur sein wird. Lena Shniran Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 12

13 Die Hyperzyklusgleichung Die Hyperzyklusgleichung: T x = x ( e x) Ax, = 1,..., it 0 0 k = 0, {,..., } 2 A k k 1 0 k 0 k 1 R + Selbstreproduktion des Polynukleotides der Art wird durch das Polynukleotid der Art -1 katalysiert. Wachstuster hat dann folgende konkrete Gestalt: G ( x,, x ) = k x, = 1,, 1 1 Ernest Zakharov Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 13

14 Das innere Gleichgewicht Untersuchung der Hyperzyklusgleichung (HZG) x = x ( k x k x x ), = 1,..., 1 ν ν ν 1 ν = 1 HZG hat einzigen Fixpunkt p i Inneren von p 1 k + 1 =, = 1,, als Lösung des Gleichungsystes: k ν 1 ν k x k x x = 0, =1,, x 1 ν ν ν 1 ν = x = 1 S : Ernest Zakharov Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 14

15 Interpretation der Stabilität Interpretation der asyptotischen Stabilität des Gleichgewichtspunkts: Einpendeln der Konzentrationen x u die Werte p > 0 keine der olekularen Spezies stirbt aus olekulare Erbbotschaften können zusaengefügt werden zyklische Koppelung erfüllt ihren Zweck U die Stabilität von p zu untersuchen, betrachten wir die Eigenwerte der Jacobi-Matrix an der Stelle p. Die Berechung für HZG ist jedoch zielich aufwendig. Ernest Zakharov Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 15

16 Eine baryzentrische Transforation p wird in den Mittelpunkt von transforiert: 1 1 ˆ = (,, ) Und zwar ittels folgender diffeoorpher Abbildung: HZG nit folgende Gestallt an: Bzw.: y y y y = y, = 1,..., S k + 1x kν + 1xν ν y=φ(): x R R ; y =, = 1,, 1 ν ν 1 ν = 1 1 kν + 1 yν ν = 1 y y ( y k y y ) = 1 ν ν ν 1 ν = 1 Ernest Zakharov Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 16

17 Berechnung der Eigenwerte der Jacobi-Matrix Transforierte HZG: Die Erste Zeile der Jacobi-Matrix: y y ( y k y y ) = 1 ν ν ν 1 ν = ,,,, Die anderen Zeilen entstehen durch zyklische Vertauschung. D.h. Jacobi Matrix wird zur zirkulanten Matrix it Eigenwerten 1 1 2π i ˆ, ˆ γ = γ = e, =1,,-1 an der Stelle ˆ 0 Bzw.: γ = k 1 ˆ γ, 1 ν ν = 1,, 1 i Gleichgewichtspunkt p Ernest Zakharov Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 17

18 Asyptotische Stabilität des Gleichgewichts Untersuchung der Stabilität des Gleichgewichtspunkts p für alle 2: Für = 2 hat die Jacobi-Matrix an der Stelle ˆ folgenden Eigenwert: ˆ 1 1 e 1 cos( ) sin( ) 1 Re( ˆ1 ) 1 πi γ = = π i π γ = = < 2 2 Für = 3 gilt analog: 1 1 Re = Re e = < ( ) ( 4πi ) 1 ˆ 3 Re γ 2 = Re e = < ( ) ( 2πi ˆ ) 3 γ1 Nach de Satz von Hartan und Groban ist ˆ und dait p asyptotisch stabil. Denis Linezki Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 18

19 Asyptotische Stabilität des Gleichgewichts Untersuchung der Stabilität des Gleichgewichtspunkts p für alle 2: Für = 4 gilt ( ˆ γ ) ( ˆ γ ) Re = Re = Dait lässt sich der Satz von Hartan und Groban nicht ehr anwenden. Hilfe verschafft in diese Fall der Satz von Ljapunow. Dazu betrachten wir eine Ljapunow-Funktion L für kurze Hyperzyklen: L = x x x 1 2 Nun gilt es die folgende Gleichung zu lösen:!! i 2 ( L) ( x x ) x x ( 7) log = = = 1 Denis Linezki Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 19

20 Asyptotische Stabilität des Gleichgewichts Untersuchung der Stabilität des Gleichgewichtspunkts p für alle 2: Für = 4 lautet die Lösung von (7): ˆ =,,, Nach de Satz von Ljapunow strebt jede Bahn i Inneren von gegen ˆ. = : = 1, S4 x R x x = 1 Soit ist für kurze Hyperzyklen ( = 2, 3, 4) der Gleichgewichtspunkt p asyptotisch stabil. Denis Linezki Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 20

21 Peranenzeigenschaft des Hyperzyklus Untersuchung der Stabilität des Gleichgewichtspunkts p für alle 2: ( ) ( 2 ) Re ˆ = Re e = cos( 2π ) Für 5 gilt stets Daher ist p für 5 asyptotisch instabil! Trotzde kein Weltuntergang! πi γ 1 > 0. Denn der Hyperzyklus ist ein peranentes Syste, d. h.: Es existiert eine Konstante 0, so dass aus x 0 > 0, = 1,, folgt: δ > ( ) ( ) liinf x t > δ für = 1,. t + D. h.: Keine der olekularen Spezies stirbt aus. Auch Zufallsschwankungen können den Rückkoppelungskreis nicht zerstören. Denis Linezki Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 21

22 Fazit ( ) Ist der Hyperzyklus kurz 4, kot es zu eine asyptotisch stabilen Gleichgewicht. ( ) Ist der Hyperzyklus länger 5, so wird lebhaft pulsiert. Auf alle Fälle wird von jeder beteiligten Molekülspezies eine ansehnliche Konzentration vorhanden sein, so dass die gespeicherte Erbinforation nicht verloren gehen kann. Dait erfüllt die zyklische Koppelung ihren Zweck. Denis Linezki Präbiotische Evolution als evolutorisches Spiel Hyperzyklendynaik 22

23 Vielen Dank für f r Ihre Auferksakeit!

Präbiotische Evolution als evolutorisches Spiel - Hyperzyklendynamik

Präbiotische Evolution als evolutorisches Spiel - Hyperzyklendynamik Präbiotische Evolution als evolutorisches Spiel - Hyperzyklendynamik Alex Ginis, Denis Linezki, Lena Shnirman und Ernest Zakharov 18. März 2009 Inhaltsverzeichnis 1 Einführung 3 2 Das mathematische Modell

Mehr

Katalytische Hyperzyklen

Katalytische Hyperzyklen Katalytische Hyperzyklen Lara Münster 20.12.2011 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Katalytische Hyperzyklen 1

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

LINEARE AUSGLEICHSPROBLEME

LINEARE AUSGLEICHSPROBLEME 5 LINEARE AUSGLEICHSPROBLEME Beispiel 51 Bestiung eines unbekannten Widerstands x aus Messungen für die Strostärke t und die Spannung b Angenoen,esliegen Messungen (b i,t i, i =1,,,it 1, t b x Abb 51:

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Nicht-lineare und linearisierte Systeme

Gewöhnliche Differentialgleichungen Woche 7. Nicht-lineare und linearisierte Systeme Gewöhnliche Differentialgleichungen Woche 7 Nicht-lineare und linearisierte Systeme d 71 Gleichgewichtspunkte Wir werden uns mit Anfangswertproblemen der folgenden Form beschäftigen: { y (t f (t, y(t,

Mehr

Die Maxwell-Boltzmann-Verteilung

Die Maxwell-Boltzmann-Verteilung Die Maxwell-Boltzann-Verteilung Sebastian Meiss 5. Oktober 8 Mit der Maxwell-Boltzann-Verteilung kann an Aussagen über die Energie- bzw. Geschwindigkeitsverteilung von Teilchen in eine Syste beschreiben.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn.

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn. Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: Definition 1.2 (Leibniz-Formel) Die Determinante einer n n-matrix ist a 11 a 12 a 13... a 1n a 11 a 12 a 13... a 1n a 21

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti Regelungstechnik II PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Regelungstechnik II FS 6 Inhaltsverzeichnis Wiederholung Regelungstechnik I 3 SISO Reglersynthese 3 3 Realisierung

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Ferienkurs Theoretische Mechanik Frühjahr 2009

Ferienkurs Theoretische Mechanik Frühjahr 2009 Physik Departent Technische Universität München Ahed Oran Blatt 5 Ferienkurs Theoretische Mechanik Frühjahr 009 Hailton Mechanik Lösungen) 1 Poisson-Klaern *) I Folgenden bezeichnen l i, i 1,, 3 die Koponenten

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Wiederholung: Transformationsformel für Dichten

Wiederholung: Transformationsformel für Dichten Der folgende Aufschrieb enthält die fehlenden Beweise aus der Vorlesung. Wiederholung: ransforationsforel für Dichten Zur Herleitung der χ und t-verteilung verwenden wir ehrals die ransforationsforel.

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 2013/2014 Prof. Dr. J. Schmalian Blatt 4 Dr. P. P. Orth Abgabe und Besprechung 22.11.2013 1. Kronecker und

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Die Entstehung des Lebens auf der Erde

Die Entstehung des Lebens auf der Erde Die Entstehung des Lebens auf der Erde Wie war der Weg von den monomeren Grundbausteine der Lebensmoleküle bis zum ersten lebenden Molekülverbund? Die Versuche von Urey und Miller zeigen a) das unter den

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve. Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

1 Lektion 7: Evolutorische Spieltheorie. Evolution?r stabile Strategien und Replikatordynamik als Beitrag aus der Biologie

1 Lektion 7: Evolutorische Spieltheorie. Evolution?r stabile Strategien und Replikatordynamik als Beitrag aus der Biologie 1 Lektion 7: Evolutorische Spieltheorie. Evolution?r stabile Strategien und Replikatordynamik als Beitrag aus der Biologie Verfeinerungen vom Begri Nash-Gleichgewicht Erfahrung hat gezeigt, dass sich Spieler

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

Drehachse und Drehwinkel

Drehachse und Drehwinkel Drehachse und Drehwinkel Jede Drehung Q im R 3 besitzt eine Drehachse, d.h. lässt einen Einheitsvektor u invariant, und entspricht einer ebenen Drehung um einen Winkel ϕ in der zu u orthogonalen Ebene.

Mehr

5.1 Eigenwerte und Eigenvektoren

5.1 Eigenwerte und Eigenvektoren 5 Eigenwerte und Eigenvektoren Die Eigenwerttheorie ist ein besonders wirkungsvolles Werkzeug der linearen Algebra Sie liefert zb Lösungsethoden zur Auffindung von - Fixgeraden linearer Abbildungen, insbesondere

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Inferenzmethoden. Einheit 16. Modallogiken. 1. Syntax & Semantik 2. Erweiterung des Extensionsverfahrens

Inferenzmethoden. Einheit 16. Modallogiken. 1. Syntax & Semantik 2. Erweiterung des Extensionsverfahrens Inferenzmethoden Einheit 16 Modallogiken 1. Syntax & Semantik 2. Erweiterung des Extensionsverfahrens Modallogiken Erweiterung der Prädikatenlogik um Modalitäten Modellierung von Schlußfolgerungen, die

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Chemische Grundgesetze

Chemische Grundgesetze Björn Schulz Berlin,.10.001 p.1 Cheische Grundgesetze Gesetz von der Erhaltung der Masse (Lavoisier 1785) Abbrennen einer Kerze Massenverlust geschlossenes Syste Eisennagel rostet Massenzunahe konstante

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Theorie F (SS 2007) Musterlösung Übungsblatt a

Theorie F (SS 2007) Musterlösung Übungsblatt a Theorie F (SS 7 Musterlösung Übungsblatt 7 1.6.7a 1 Basiswechsel: Alte Basis: α it α α = δ α,α. Neue Basis: γ = c γα α, (c αγ = c γα, α c γα c αγ = δ γ,γ γ γ = δ γ,γ α Dait γ Â γ = γ γ,α,α (c γα α Â α

Mehr

Analysis einer Variablen Lösungen zur Klausur vom F. Merkl

Analysis einer Variablen Lösungen zur Klausur vom F. Merkl Analysis einer Variablen Lösungen zur Klausur vo 8..7 F. Merkl. Gegeben sei eine Folge (f n ) n N von Funktionen f n : R R und eine weitere Funktion f : R R. (a) Definieren Sie, wann f n für n punktweise

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 4 Differenzierbarkeit 16 4 Differenzierbarkeit Wir wollen nun Differenzierbarkeit von Funktionen mehrerer Veränderlicher definieren Dazu führen wir zunächst den Begriff der partiellen Ableitung ein Definition

Mehr

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007 Differenzengleichung Differentialgleichung 1. Ordnung (konstante Koeff.) Gestalt x n+1 =ax n +b allgemeine Lösung x n = a n x 0 +b((a n -1)/(a-1)) für a 1 oder x n = x 0 +b n für a=1 partikuläre Lösung

Mehr

Musterlösungen Blatt Theoretische Physik IV: Statistische Physik

Musterlösungen Blatt Theoretische Physik IV: Statistische Physik Musterlösungen Blatt 4.7.004 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay Eindimensionales Ising-Modell. Das eindimensionale Ising-Modell für N Spins mit Wechselwirkung zwischen

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Planare Systeme II Einleitung Dieser Vortrag beschäftigt sich mit unterschiedlichen, allgemeinen Lösungen von Differentialgleichungssystemen und ihrer graphischen

Mehr

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele Kapitel 3 Matrix Spiele Seminar Spieltheorie, SS 006 3. Matrix-Spiele Vorgegeben sei ein Nullsummenspiel Γ = (S, T, φ, φ mit endlichen Strategiemengen S und T, etwa S = (s,..., s m und T = (t,..., t n.

Mehr

Stabilität von Gleichgewichtslagen

Stabilität von Gleichgewichtslagen Stabilität von Gleichgewichtslagen Sina Loriani Fard und Fabian Anders 3. Juli 203 Prinzip der linearen Stabilität. Linearisierung I Folgenden untersuchen wir die Gleichgewichtslage eines zeitkontinuierlichen

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x

(a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv? x 1 + x Aufgabe Injektiv und Surjektiv) a) Welche der folgenden Funktionen ist injektiv, surjektiv beziehungsweise bijektiv?. f : Z N; x x 2. 2. f : R R; x x x.. f : R [, ]; x sin x. 4. f : C C; z z 4. b) Zeigen

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

ist über C diagonalisierbar.

ist über C diagonalisierbar. Prüfungsaufgaben A 1. (10 Punkte) Kreuzen Sie direkt auf de Aufgabenblatt an, ob die Behauptungen WAHR oder FALSCH sind. Sie üssen Ihre Antworten nicht begründen! Für jede richtige Antwort gibt es 1 Punkt.

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8 Prof. Roland Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 8 Aufgabe 1: Sei (X, d) ein kompakter metrischer Raum. Die Hausdorff-Metrik

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbsmodell Das einfachste Wettbewerbsmodell für zwei Spezies lässt sich aus dem Lotka- Volterra Modell ableiten und sieht folgendermaßen aus: dn1

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Die Exponentialfunktion und ihre Anwendung in der Biologie

Die Exponentialfunktion und ihre Anwendung in der Biologie Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1/3 Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am 06. 10. 2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer:

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Lösungsvorschläge zum 8. Übungsblatt.

Lösungsvorschläge zum 8. Übungsblatt. Übung zur Analysis I WS / Lösungsvorschläge zum 8 Übungsblatt Aufgabe 9 a) : [, ] R definiert durch t) := t, t 3 ) b) : [, π] R mit t) := cost), sint)), : [π, π] R mit t) := cost), sint)) und f : R R mit

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 3 Der Axiator Eigenschaften des Axiators Bestimmung des Kegelschnitts Geometrische Betrachtungen Dualer Kegelschnitt Pol-Polare

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

4.18 Buch IV der Elemente

4.18 Buch IV der Elemente 4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen

Mehr