Klausur zur Mathematik I (Modul: Lineare Algebra I)

Größe: px
Ab Seite anzeigen:

Download "Klausur zur Mathematik I (Modul: Lineare Algebra I)"

Transkript

1 Technische Universität Hamburg Institut für Mathematik Prof. Dr. Marko Lindner Wintersemester 06/7 Klausur zur Mathematik I (Modul: Lineare Algebra I Sie haben 60 Minuten Zeit zum Bearbeiten der Klausur. Tragen Sie bitte zunächst Ihren Namen, Ihren Vornamen und Ihre Matrikelnummer in DRUCKSCHRIFT in die folgenden jeweils dafür vorgesehenen Felder ein. Name: Vorname: Matr.-Nr.: Stg.: AIW BU ET EUT IIW LUM MB MEC SB VT VTBIO Sch. Grundsätzlich gilt für alle Studierenden, dass die Module Analysis I und Lineare Algebra I die Gesamtnote für das Fach Mathematik I ergeben. Ich bin darüber belehrt worden, dass die von mir zu erbringende Prüfungsleistung nur dann als Prüfungsleistung bewertet wird, wenn die Nachprüfung durch das Zentrale Prüfungsamt der TUHH meine offizielle Zulassung vor Beginn der Prüfung ergibt. (Unterschrift Bearbeiten Sie alle wie folgt angegebenen Aufgaben. Es werden insgesamt 0 Punkte vergeben. Aufgabe Punkte Korrektor =

2 Aufgabe : (4 Punkte ( (a Sei A :=. Prüfen Sie f A : R R, f A (x := Ax auf Injektivität, Surjektivität und Bijektivität. Kommentieren Sie auch die Lösbarkeit von Gleichungssystemen mit der Koeffizientenmatrix A. 3 (b Bestimmen Sie die Normalform der Ebene E durch die Punkte 0, und 0 0. Wie groß ist der Abstand von v := zu E? 0 (a Da A quadratisch ist, sind die Eigenschaften Injektivität, Surjektivität und Bijektivität für f A äquivalent. f A ist genau dann injektiv, wenn Kern(A = {o}, und dies gilt genau dann, wenn det(a 0 ist. Wir rechnen det(a = ( = 5. Damit ist f A injektiv, surjektiv und bijektiv. ( Punkt Daraus schließen wir auch, das das lineare Gleichungssystem Ax = b für alle rechten Seiten b R eine eindeutige Lösung x R besitzt. ( Punkt 3 (b Seien p := 0, a := 0 =, b := 0 =. Dann ist E = { p + λa + µb : λ, µ R }. Wir rechnen n := a b = 6 =. Wir normieren noch: n 0 := n n = 6 =. 9 3 Dann ist E = { v R 3 : n 0, v p = 0 }. Da n 0 normiert ist gilt für den Abstand von v zu E dist(v, E = n 0, v p = =. ( Punkt ( Punkt

3 Aufgabe : (5 Punkte Sei A := Bestimmen Sie eine Basis von Bild(A und eine Basis von Kern(A, und ermitteln Sie den Rang von A. Wir nutzen den Gauß-Algorithmus: G ( 3G G G ( Punkte Die Spalten von A, zu denen Pivotelemente gehören, bilden eine Basis von Bild(A. Damit ( ist 6, 6, 7 eine Basis von Bild(A. ( Punkt Der Kern von A ist somit eindimensional. Wir lösen Ax = o. Aus der obigen Zeilenstufenform erhalten wir mit der freien Variablen x 4 : x 3 = x 4, x = x 4, x = 3( 3x 3x 3 = 3x4, ( 3 also ist eine Basis von Kern(A. ( Punkt Weil es drei Pivotelemente gibt (alternativ: eine Basis von Bild(A besteht aus drei Elementen, ist Rang(A = 3. ( Punkt

4 Aufgabe 3: (3 Punkte ( Entscheiden Sie mit Begründung, ob, 3, linear unabhängig ist. 0 Wir nutzen die Determinante (Determinante ungleich Null liefert Unabhängigkeit ( Punkt: det 3 = = 6 0. ( Punkt 0 Damit ist die Familie von Vektoren linear unabhängig. ( Punkt Alternativ können wir auch den Gauß-Algorithmus nutzen: 3 ( G ( 4 G ( Punkte Da jede Spalte ein Pivotelement besitzt, ist der Kern der entsprechenden Matrix trivial und somit die Familie der Spalten linear unabhängig. ( Punkt

5 Aufgabe 4: (3 Punkte Seien 3 A := 0, B := 0 0 0, C := Berechnen Sie det ( A BC. Wir rechnen ( det(a = det = 8, ( 3 Punkte det(a = det(a = 8, ( Punkte det(b = ( 3 det 0 = 8, ( Punkte 0 0 det(c = ( 8 4 = 64. ( Punkte Damit erhalten wir det ( A BC = det(a det(b det(c = 8 ( 64 =. ( Punkt 8

6 Aufgabe 5: (5 Punkte { Sei U := x x = x R 3 : x x 3 = 0 x 3 (a Zeigen Sie, dass U ein Unterraum von R 3 ist. }. (b Ermitteln Sie eine Orthonormalbasis von U. (c Bestimmen Sie die Orthogonalprojektion von x := n o ein Normalenvektor von U ist, also n U gilt. 3 auf Span{n}, wobei (a Offenbar ist o U, also U. Seien u, v U, α R. Dann gelten u u 3 = 0, v v 3 = 0. Damit ist (u + v (u 3 + v 3 = u u 3 + v v 3 = 0, also u + v U. Ebenso ist (αu (αu 3 = α(u u 3 = 0, also αu U. Somit ist U ein Unterraum von R 3. ( Punkte Alternativ kann man feststellen, dass U = Kern(A für A := ( 0, und somit ein Unterraum ist. ( Punkte (b Mit A := ( 0 ist U = Kern(A. Der zweite und dritte Eintrag eines Vektors liefern freie Variablen für das Gleichungssystem Ax = o, und damit erhalten wir ( 0 zunächst, 0 als Basis für U. ( Punkt Wegen 0 0, 0 = 0 0 ist diese Basis schon orthogonal. Wir müssen die Vektoren also nur noch normieren. Der erste ist es schon, den zweiten ersetzen wir durch 0 und erhalten damit ( 0, 0 als Orthonormalbasis von U. ( Punkt 0 (c Der Vektor n ist ein Normalenvektor der Ebene U, also beispielsweise n = 0. Die orthogonale Projektion p von x auf Span{n} ist dann gegeben durch x, n p = n, n n = 0 = 0. ( Punkt.

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Sommersemester 215 Klausur zur Mathematik I (Modul: Lineare Algebra I) 28.8.215 Sie haben 6 Minuten Zeit zum Bearbeiten

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Wintersemester 2014/15 Klausur zur Mathematik I (Modul: Lineare Algebra I) 18.02.2015 Sie haben 60 Minuten Zeit zum

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Sommersemester 4 Klausur zur Mathematik I (Modul: Lineare Algebra I) 6.8.4 Sie haben 6 Minuten Zeit zum Bearbeiten

Mehr

Klausur zur Mathematik II (Modul: Lineare Algebra II) Sie haben 60 Minuten Zeit zum Bearbeiten der Klausur.

Klausur zur Mathematik II (Modul: Lineare Algebra II) Sie haben 60 Minuten Zeit zum Bearbeiten der Klausur. Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Sommersemester 03 Klausur zur Mathematik II (Modul: Lineare Algebra II) 4.08.03 Sie haben 60 Minuten Zeit zum Bearbeiten

Mehr

Klausur zur Mathematik II (Modul: Lineare Algebra II)

Klausur zur Mathematik II (Modul: Lineare Algebra II) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I) : Lösungshinweise

Klausur zur Mathematik I (Modul: Lineare Algebra I) : Lösungshinweise Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 202/20 Klausur zur Mathematik I (Modul: Lineare Algebra I 07.02.20: Lösungshinweise Sie haben 60

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/ Mathematik für Betriebswirte I (Lineare Algebra). Klausur Wintersemester 20/204 06.02.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:... Vorname:... Matrikelnummer: Studienfach:... Name des

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix Formelsammlung Aussagenlogik Für beliebige Aussagen A, B gilt: Konjunktion Disjunktion Implikation Äquivalenz A B w f f f A B w w w f A B w f w w A B w f f w Mengenlehre Für beliebige Mengen A, B gilt:

Mehr

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix Formelsammlung Aussagenlogik Für beliebige Aussagen A, B gilt: Konjunktion Disjunktion Implikation Äquivalenz A B w f f f A B w w w f A B w f w w A B w f f w Mengenlehre Für beliebige Mengen A, B gilt:

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

Mathematik für Ökonomen II

Mathematik für Ökonomen II RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen II 3..993 (WS 9/93) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt 9 Aufgaben; pro Aufgabe sind

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Lösung Test 2 (Nachprüfung)

Lösung Test 2 (Nachprüfung) MLAE Mathematik: Lineare Algebra für ngenieure Herbstsemester Dr Christoph Kirsch ZHAW Winterthur Aufgabe : Lösung Test (Nachprüfung a Wir verwenden den Gauss-Jordan-Algorithmus, um die erweiterte Koeffizientenmatrix

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 0. Entscheiden Sie, ob die Vektoren v = (,,,4), v = (,0, ), v = (0,,,0), v 4 = (,,, ) linear unabhängig sind. Schreiben Sie,

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform:

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform: 1. Aufgabe (9 Punkte) In dieser Aufgabe müssen Sie Ihre Antwort nicht begründen. Es zählt nur das Ergebnis. Tragen Sie nur das Ergebnis auf diesem Blatt im jeweiligen Feld ein. 0 1 3 a) Berechnen Sie die

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

WS 2012/2013. Hinweise

WS 2012/2013. Hinweise Lehrstuhl C für Mathematik (Analysis Prof. Dr. Y. Guo Aachen, den.. Trainingsklausur zur Höheren Mathematik I WS / Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen

Mehr

Übungsklausur Lineare Algebra

Übungsklausur Lineare Algebra Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe

Mehr

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing Musterlösung zur Klausur zur Linearen Algebra I 1 Aufgabe 1: (8 Punkte) Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind: Aussage wahr

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Klausur Lineare Algebra I

Klausur Lineare Algebra I Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 M. Eigel R. Nabben K. Roegner M. Wojtylak.4.4 April Klausur Lineare Algebra für Ingenieure Lösungsskizze. Aufgabe 9 Punkte Gegeben

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang Nachklausur zur Linearen Algebra I - Nr. 1 Bergische Universität Wuppertal Sommersemester 2011 Prof. Dr. Markus Reineke 06.10.2011, 10-12 Uhr Dr. Thorsten Weist Bitte tragen Sie die folgenden Daten leserlich

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil

Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil 14.2.2006 Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 5.2.998 (WS 998) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen Lineare Algebra 03.2.994 (WS 94/95) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt 9 Aufgaben;

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

Aufgaben und Lösungen zur Abschlußklausur zur Mathematik 1 (Wiederholer und Nachzügler) vom

Aufgaben und Lösungen zur Abschlußklausur zur Mathematik 1 (Wiederholer und Nachzügler) vom Aufgaben und Lösungen zur Abschlußklausur zur Mathematik (Wiederholer und Nachzügler) vom 6.3.8. In der Menge M n n aller quadratischen Matrizen vom Format n n mit Einträgen aus R werden die folgenden

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 3: Lineare Analytische Geometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017

Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 3: Lineare Analytische Geometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017 Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 3: Lineare Analytische Geometrie MAC.05043UB/MAC.0504PH, VU im SS 207 http://imsc.uni-graz.at/pfeiffer/207s/linalg.html Christoph GRUBER,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 5 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (FR,..5) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 15.5.1998 (SS 1998) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal

KLAUSUR. Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) Prof. Dr. Andreas Bley Dr. Anen Lakhal KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker) 2..27 Prof. Dr. Andreas Bley Dr. Anen Lakhal Name: Vorname: Matr.-Nr./Studiengang: Versuch-Nr.: Für jede Aufgabe gibt es Punkte.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 26 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64) 2. Haupttest (FR, 2..27) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Lineare Algebra Übungen Hausaufgaben für 8. Nov. mit Lösungen/Ergebnissen

Lineare Algebra Übungen Hausaufgaben für 8. Nov. mit Lösungen/Ergebnissen Lineare Algebra Übungen Hausaufgaben für 8. Nov. mit Lösungen/Ergebnissen Definition. Der Kern (auf Englisch kernel) einer Matrix / einer linearen Abbildung ist die Menge aller Vektoren, die auf den Nullvektor

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL

Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen

Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen MAC.05043UB/MAC.05041PH, VU im SS 2017 http://imsc.uni-graz.at/pfeier/2017s/linalg.html Christoph GRUBER, Florian KRUSE,

Mehr

Klausur zur Vorlesung Lineare Algebra I

Klausur zur Vorlesung Lineare Algebra I Heinrich-Heine-Universität Düsseldorf 23.7.2 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 2 min Bitte

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

x+ 2y = 2 3x+ 3y+ 3z = 0

x+ 2y = 2 3x+ 3y+ 3z = 0 Mathematik für Informatiker III WS 5/ Musterlösung zur Klausur vom 8.. Anmerkung: Für die Aufgaben bis 4 gab es 4 Punkte, zusammen mit der Zusatzaufgabe 5 konnte man 4 Punkte erreichen. Um die Klausur

Mehr