1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten

Größe: px
Ab Seite anzeigen:

Download "1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten"

Transkript

1 . Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 203 Name: Vorname: Matr.-Nr.: Bearbeitungszeit: 35 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit diesem Deckblatt ausgeteilte Papier. Lösungen, die auf anderem Papier geschrieben werden, können nicht gewertet werden. Weiteres Papier kann bei den Tutoren angefordert werden. Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt wird Schreiben Sie deutlich! Doppelte, unleserliche oder mehrdeutige Lösungen können nicht gewertet werden. Schreiben Sie nicht mit Bleistift! Schreiben Sie nur in blau oder schwarz! Bewertung Aufgabe Punkte erreicht Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite von 2

2 203 A. Aufgabe (5 Punkte): Fragen zur Vorlesung.. Harmonische Größe ( Punkt) Was versteht man unter dem Begriff harmonische Größe? Eine Groe, deren Zeitverlauf durch die Sinus- bzw. Cosinus-Funktion zu beschreiben ist..2. Begriff Ortskurve (2 Punkte) Erklären Sie stichpunktartig, was man unter dem Begriff Ortskurve versteht und welche Voraussetzungen zu deren Verwendung erfüllt sein müssen. Ortskurven sind die Spitzen von Zeigern in der komplexen Ebene bei Variation eines reellen Parameters. Voraussetzungen sind lineare Bauelemente und das Erreichen des eingeschwungenen Zustandes.3. Ortskurve (2 Punkte) Zeichnen Sie den Verlauf der Ortskurve für Impedanz und Admittanz der RL-Reihenschaltung in Abhängigkeit des Parameters L in die vorbereiteten Diagramme ein. ω sei konstant. Markieren Sie die Punkte L = 0 und L in beiden Ortskurven! I(Z) L L = 0 L R I(Y ) R R(Z) L L = 0 /R R(Y ).4. Ausgleichsvorgang (3 Punkte) Skizzieren Sie den Verlauf der Kondensatorspannung u C (t), wenn der Schalter S zur Zeit t = t 0 geschlossen und der Schalter S 2 gleichzeitig geöffnet wird. Es gilt = 2, U B = 0V und u C (t < t 0 ) = 2V. t = t 0 S R u R t = t 0 U B R2 u R2 C u C S 2 2V. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 2 von 2

3 203 A 0V U B U B /2 0V 0V t = t 0.5. Generator im Verbraucherzählpfeilsystem ( Punkt) Was gilt für die Leistung an einem Generator im Verbraucherzählpfeilsystem? Die Pfeilrichtungen von Strom und Spannung sind entgegengesetzt, die Leistung wird negativ gezahlt..6. Quellenteilung ( Punkt) Erläutern Sie das Verfahren der Quellenteilung am Beispiel der gegebenen Schaltung, indem sie die Spannungsquellen zu nur einer Spannungsquelle U B zusammenfassen. R U B L C.7. Torbedingung am Zweitor ( Punkt) Was bedeutet die Einhaltung der Torbedingung an einem allgemeinen Zweitor? i A i 2A 2-Tor i B i 2B. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 3 von 2

4 203 A Fur jedes Tor muss gelten I xa = I xb.8. Z-Matrix eines Zweitors (2 Punkte) I I 2 Geben Sie Elemente der Z-Matrix Z m,n Zweitors in allgemeiner Form an. Hinweis: Es gilt U = Z I eines U [Z] Z, = U U 2 I I2 =0 Z 2, = U 2 I I2 =0 Z,2 = U I 2 I =0 Z 2,2 = U 2 I 2 I =0 ().9. Harmonische Zerlegung ( Punkt) Skizzieren Sie das Amplitudenspektrum der Spannung u(t) = 0Vsin(ω 0 t) + 2Vsin(2ω 0 t) + 4Vsin(5ω 0 t) mit ω 0 = 2π 50Hz u(ω)/v ω/ω 0.0. Tiefpassfilter erster Ordnung ( Punkt) Geben Sie eine schaltungstechnische Realisierung für ein Tiefpassfilter erster Ordnung an. Es sollte ein RC-TP oder ein RL-TP werden.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 4 von 2

5 203 A2 2. Aufgabe (5 Punkte): Ausgleichsvorgang 2. Ordnung R 2 L i L I R S t = 0 R = 5Ω, R 2 = 0Ω, L = 2mH, C = 00nF, I = 3A Die gezeigte Schaltung befindet sich im eingeschwungenen Zustand. Zum Zeitpunkt t = 0 wird der Schalter S geöffnet. 2.. Randbedingungen (4 Punkte) Geben Sie i L und u C für jeweils t = 0 und t an. i L (t = 0) = R I = 5 3A = A R + R u C (t = 0) = 0V i L (t ) = 0A u C (t ) = R I = 5Ω 3A = 5V 2.2. Differenzialgleichung der Kondensatorspannung (3 Punkte) Stellen Sie für t 0 die Differenzialgleichung für u C in Normalform auf. Es ist moglich und in diesem Beispiel vorteilhaft, die Stromquelle vorher in eine Spannungsquelle umzuwandeln, jedoch wird hier nur der Losungsweg mit der Stromquelle gezeigt. i L = i C = C du C dt u L = L di L dt u R2 = R 2 i L = LC du2 C dt 2 C u C Berechnen... u R = u R2 + u L + u C I = u R R + i L u R + R i L = R I u R2 + u L + u C + R i L = R I u L + (R + R 2 )i L + u C = R I LC du2 C dt 2 + (R + R 2 )C du C dt du 2 C dt 2 + R + R 2 L du C dt + u C = R I + LC u C = R I LC. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 5 von 2

6 203 A Dämpfung und Resonanz (2 Punkte) Berechnen Sie den Dämpfungsfaktor δ und die Resonanzfrequenz ω 0. Die Denition von 2δ = R +R 2 L and ω 2 0 = LC ergibt: δ = R + R 2 = 5Ω 2L 2 2mH = 3,75 03 s, (2) ω 0 = LC = 2mH 00nF = 7,07 04 s. (3) 2.4. Lösungsansatz (2 Punkte) Geben Sie die allgemeinen Lösungsansätze für u C (t) und i L (t) an. Die partikulare Losung von u C (t) lautet: Da gilt: δ < ω 0, lautet die allgemeine Losung fur u C (t) mit ω = ω0 2 δ 2. Summation von (4) und (5): Somit ergibt sich weiter: u Cp (t) = R I. (4) u Ch (t) = e δt [K cos(ωt) + K 2 sin(ωt)], (5) u C (t) = u Ch (t) + u Cp (t) = e δt [K cos(ωt) + K 2 sin(ωt)] + R I. (6) i L (t) = C du C = C d { } e δt [K cos(ωt) + K 2 sin(ωt)] + R I dt dt = C de δt [K cos(ωt) +CK 2 sin(ωt)] + e δt d dt dt [K cos(ωt) + K 2 sin(ωt)] = Cδe δt [K cos(ωt) + K 2 sin(ωt)] +Ce δt [ K ω sin(ωt) + K 2 ω cos(ωt)] = Ce δt [(δk ωk 2 )cos(ωt) + (ωk + δk 2 )sin(ωt)]. (7) 2.5. Lösung (2 Punkte) Berechnen Sie mit Hilfe der Randbedingungen die Lösungen für u C (t) und i L (t). Geben Sie dabei die Konstanten der Lösung als Zahlenwerte an. Einsetzen von t = 0 in (6) und (7): u C (0) = K + R Ii L (0) = C(δK ωk 2 ). (8). Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 6 von 2

7 203 A2 Da gilt: u C (0) = 0V (9) i L (0) = A, (0) Die Gleichungen fur K und K 2 sind: Die Losung der Gleichungen lautet: K + R I = 0V () C(δK ωk 2 ) = A, (2) K = R I = 5V (3) K 2 = A δr CI A = 42V. (4) ωc ωc Einsetzten von (3) und (4) zuruck nach (6) und (7): [ u C (t) = e δt R I cos(ωt) + A δr ] CI sin(ωt) + R I (5) ωc [ i L = Ce δt ( δr I ω A δr CI )cos(ωt) + ( ωr I + δ A δr ] CI )sin(ωt) ωc ωc (6) 2.6. Darstellung der Zeitverläufe (2 Punkte) Skizzieren Sie die Zeitverläufe für u C (t) und i L (t). u C / V i L / A t / ms. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 7 von 2

8 203 A3 3. Aufgabe (5 Punkte): Ortskurve und Maschenstromverfahren I q U R U L2 I L2 UR2 U L I R2 I L R R 2 L Teilnetzwerk Ortskurve U L3 L 3 2 U C C 3 L 2 U R3 I R I L3 I C 3.. Ortskurve (3 Punkte) Skizzieren Sie die Ortskurve der Impedanz Z ( ω) für das Teilnetzwerk bestehend aus L, L 2 und R 3 (gestrichelter Kasten) im unten stehenden Diagramm. Tragen Sie hierfür die Teilortskurven auf und konstruieren Sie daraus den Gesamtverlauf. R 3 L I{Z} ω L 2 Z Z 2 I R3 Z = jωl R 3 ω = 0 Z = 0 ω Z I Q2 U Q U Q2 ω = 0 R{Z} Z 2 = R 3 L 2 = R 3 + = L 2 jωl 2 +R 3 = R 3 jωl 2 R 3 jωl 2 ω = 0 Z 2 = 0 = R 3 jωl 2 + R 3 + R 3 jωl 2. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 8 von 2

9 203 A3 I{Z} ω Z 2 = R 3 ω = beliebig Z = + jx I{Z} ω = 0 ω = 0 R R ω ω R{Z} Z gesamt = Z + Z 2 R{Z} 3.2. Vorbereitung der Schaltung (2 Punkte) Bereiten Sie durch Vereinfachungen die oben gezeigte Schaltung für eine Maschenstromanalyse vor. Verwenden Sie die vorliegende Maschennumerierung. Fassen Sie alle Elemente im gestrichelten Kasten zu einer Impedanz zusammen. U Z3 I Z = I R2 I Z3 = I L I Q2 Z 3 = jωl + R + 3 jωl 2 U Z = R + R Z = U R +U R2 2 Z 3 = L + R 3 L 2 I L3 I C U Q3 = I q R U L3 L 3 2 U C C 3 UQ4 = U Q2 U Q 3.3. Maschengleichungen (3 Punkte) Stellen Sie für die Maschen... 3 die zugehörigen Maschengleichungen auf. Sortieren Sie diese so um, dass sich daraus die Elemente der Impedanzmatrix direkt ablesen lassen.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 9 von 2

10 203 A3 Z I M + Z L3 (I M I M2 ) = U Q3 I M (Z + Z L3 ) + I M2 ( Z L3 ) = U Q3 mit Z = R + R 2,Z L3 = jωl 3 und U Q3 = I q R mit Z 3 = jωl + Z L3 (I M2 I M ) + Z 3 I M2 + Z C (I M2 I M3 ) = 0 I M ( Z L3 ) + I M2 (Z L3 + Z 3 + Z C ) + I M3 ( Z C ) = 0 R + 3 mit U Q4 = U Q2 U Q jωc jωl 2 und Z C = Z C (I M3 I M2 ) = U Q4 I M 0 + I M2 ( Z C ) + I M3 Z C = U Q Impedanzmatrix (2 Punkte) Erstellen Sie aus den Maschengleichungen in Aufgabe 3.3 die Impedanzmatrix Z des Netzwerkes. (Z + Z L3 ) Z L3 0 Z L3 (Z L3 + Z 3 + Z C ) Z C 0 Z C Z C 3.5. Quellenvektor ( Punkt) Erstellen Sie aus den Maschengleichungen in Aufgabe 3.3 den Quellenvektor U q des Netzwerkes. mit U Q3 = I q R und U Q4 = U Q2 U Q U Q3 0 U Q Inzidenzmatrix (4 Punkte) Stellen Sie die Beziehung der echten Ströme des Ausgangsnetzwerks zu den virtuellen Maschenströmen formelmäßig her. Stellen Sie daraus die Inzidenzmatrix A sowie den dazu gehörigen Vektor der Einzelströme des Ausgangsnetzwerks I auf und geben Sie die Berechnungsformel für den Strom I R an. Einzelstrome fur die Inzidenzmatrix: I R = muss separat berechnet werden I R2 = I M I L = I M2. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 0 von 2

11 203 A3 I L3 = I M I M2 I C = I M2 I M3 I Q2 = I M3 Vektor der Einzelstrome : Inzidenzmatrix: Der Strom I R : I q U R I M I R R A = I = I R2 I L I L3 I C I Q I q I M = I R (7). Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite von 2

12 203 A4 4. Aufgabe (5 Punkte): Knotenpotentialverfahren mit Zweitor U R3 U Q2 R 3 R I q A C L 2 U U 2 R Reihen-Parallelmatrix H (5 Punkte) Berechnen Sie für das Zweitor zwischen den Punkten A und B bestehend aus L 2, L 3 und R 4 (gestrichelter Kasten) die Elemente der Reihen-Parallelmatrix H. U sei dabei die Eingangs- und U 2 die Ausgangsspannung. KS am Ausgang: I A U Zweitor L2 R4 L Zweitor L 3 L3 B H = U I = jωl 2 (8) U2 =0 H 2 = I 2 mit I 2 = I H 2 = (9) I U2 =0 B I 2 R 2 LL am Eingang: Zweitor A B I 2 L2 U R4 L3 U 2. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 2 von 2

13 203 A4 H 2 = U U 2 I =0 H 22 = I 2 H = U 2 I =0 mit U = U 2 H 2 = (20) = + (2) R 4 jωl 3 ) (22) ( jωl2 R 4 + jωl Vorbereitung der Schaltung (2 Punkte) Bereiten Sie durch Vereinfachungen die oben gezeigte Schaltung für eine Knotenpotentialanalyse vor. Beachten Sie dabei die Quellen und nummerieren Sie die Knoten. Zeichnen Sie anschließend die Knotenpotenzialpfeile ein. I q Z = R + jωc L 2 L E Z 2 = jωl 3R 4 E 3 R 4 + jωl I q2 R 2 R3 E Knotengleichungen (3 Punkte) Stellen Sie für die Knoten... 3 die zugehörigen Knotengleichungen auf. Sortieren Sie diese so um, dass sich daraus die Elemente der Admittanzmatrix direkt ablesen lassen.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 3 von 2

14 203 A Admittanzmatrix (2 Punkte) Erstellen Sie aus den Knotengleichungen in Aufgabe 4.3 die Admittanzmatrix Y des Netzwerkes.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 4 von 2

15 203 A Quellenvektor ( Punkt) Erstellen Sie aus den Knotengleichungen in Aufgabe 4.3 den Quellenvektor I q des Netzwerkes Einzelspannung (2 Punkte) Berechnen Sie die Formel für die Spannung U R3.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 5 von 2

16 203 A5 5. Aufgabe (5 Punkte): Frequenzverhalten von Vierpolen Gegeben ist die Schaltung eines Zweitores mit = 2 = kω und Ł = 00mH. R 2 U R L U Übertragungsfunktion (2 Punkte) Bestimmen Sie die komplexe Übertragungsfunktion V d es Zweitores in Normalform (= Produkt von Teilfunktionen). Hinweis: Überlegen Sie, welche Elemente des Netzwerkes wirklich für die Übertragungsfunktion relevant sind! V ( ) = 2 = L L 2 + L = 2 + L = τ + τ mit τ = L Zeitkonstanten und Grenzfrequenz (2 Punkte) Berechnen Sie die Zeitkonstante τ und die Grenzfrequenz f Grenz der in Aufgabe 5. berechneten komplexen Übertragungsfunktion V. τ = L 2 = 00mH kω = 0 4 s f Grenz = τ 2π =,59kHz 5.3. Betragsfrequenzgang (3 Punkte) Stellen Sie den Betragsfrequenzgang V db ( jω) der in Aufgabe 5. berechneten komplexen Übertragungsfunktion V i m unten stehenden Diagramm dar. Machen Sie dabei den Verlauf der Teilfunktionen und die Gesamtfunktion kenntlich.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 6 von 2

17 203 A /(+jωτ) jωτ V 20 V / db Frequenzverhalten ( Punkt) Mit welchem Verhalten lässt sich der Betragsfrequenzgang aus Aufgabe 5.3 beschreiben? Hochpass Tiefpass Hochpass Doppelpass Bandpass f / Hz Alpenpass Rückpass Allpass Reisepass 5.5. Verstärkung (2 Punkte) Berechnen Sie die komplexe Verstärkung V nach Betrag und Phase und den Betrag dieser Verstärkung V db in db bei der Frequenz f = 00Hz. ω(00hz) = 2π 00Hz = 628,3s aus Aufgabe davor τ = 0 4 s V ( 00Hz) = j 0,063 + j 0,063 = 0, ,6 = 0,063 86,4 V ( 00Hz) db = 20 lg(0,063) = Kompensation (2 Punkte) Hinter das Netzwerk wird ein Kompensationsnetzwerk geschaltet. Welche Übertragungsfunktion V comp () muss das nachgeschaltete Netzwerk haben, damit sich für das gesamte System ein konstanter Amplituden- oder Betragsfreqeunzgang von 0 über den gesamten Frequenzbereich ergibt? Wie groß muss die Zeitkonstante τ comp dieses Kompensationsnetzwerkes ein?. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 7 von 2

18 203 A5 V ( ) V comp (ω) = 0 V comp = + τ comp τ comp τ comp = τ = 0 4 s 5.7. Ausgangsspannung (3 Punkte) Gegeben ist folgender Betragsfrequenzgang V db 0 00 k 0k 00k V ( jω) U U 2 Gegeben sind die Amplituden des Eingangssignales für drei verschiedene Frequenzen. Füllen Sie die Tabelle mit den Werten für die Amplituden des Ausgangssignales 2 aus. f Û V V Û 2 V 0Hz 0 5 0,78 0V 0,78 =,78V 500Hz 0 5,78 0V,78 = 7,8V f /Hz 0kHz 5 0,78 V 0,78 = 0,78V V = 0 V /20. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 8 von 2

19 203 A6 6. Aufgabe (5 Punkte): Fragen zum Praktikum Beantworten Sie die folgenden Fragen. 6.. Phasenwinkel ( Punkt) u / V t / ms Bestimmen Sie aus den obigen Zeitverläufen den Phasenwinkel ϕ 2 von 2 bezogen auf. 2 eilt um ms nach oder t = ms. ϕ = t 360 T = ms 360 0ms = Ortskurve (3 Punkte) Im Labor wird die unten stehende Ortskurve für die Impedanz Z ( f ) gemessen. Um welche Schaltung handelt es sich? Bestimmen Sie die Bauteilwerte! I{Z}/Ω 62, khz R{Z}/Ω Reihenschaltung von R und L: u (t) u 2 (t) R L Z = 00Ω + j 62,8Ω R{Z } = R = 00Ω I{Z } = jωl = 62,8Ω L = 62,8Ω 2π 00 khz 00µH 6.3. Resonanz (2 Punkte) (a) Wie äußert sich die Resonanzfrequenz f 0 eines RLC-Reihenschwingkreises? Bei konstant anliegender Wechselspannung ist der Strom maximal oder der resultierende Widerstand der Schaltung minimal.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 9 von 2

20 203 A6 (b) Geben Sie die Formel für die Resonanzfrequenz an. In der Schwingungs-DGL (2. Ordnung) wird ω 0 im Term ω0 2 als Resonanzfrequenz deniert. Bei einer RLC-Reihenschaltung ergibt sich bekanntermaen ω0 2 = LC. Also ist ω 0 = LC 6.4. Betragsfrequenzgang (4 Punkte) V db ω / ω Sie messen den oben stehenden Betragsfrequenzgang. Stellen Sie diesen durch eine Übertragungsfunktion in Normalform dar. V = K + jωτ ( + jωτ 2 ) Geben Sie die Kenngrößen der Übertragungsfunktion an. K = 0 = 0,32 τ = ω τ 2 = ω 2 = 00 ω 6.5. Zweitorparameter (2 Punkte) Wie messen Sie den Parameter Y? Geben Sie die Definitionsgleichung an und beschreiben Sie in Stichpunkten den Vorgang der Messung. Kurzschlusseingangsadmittanz: Y = I U U2 =0 KS am Ausgang (Wechsel-)Spannungsquelle mit bestimmeter Frequenz uber Messwiderstand (Shunt) R Mess am Eingang anschlieen.. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 20 von 2

21 203 U nach Betrag und Phase messen. I nach Betrag und Phase durch Spannungsabfall uber R Mess messen. Rechnen! 6.6. Strommessung (2 Punkte) Wie messen Sie im allgemeinen einen zeitlichen Stromverlauf mit dem Oszilloskop? Spannungsabfall u(t) uber einem Messwiderstand (Shunt) R Mess hat die selbe Phasenlage wie der hindurchieende Strom. ϕ ist direkt ablesbar! Momentanwert des Stromes i(t) wird mit i(t) = u(t) R Mess errechnet RC-Ausgleichsvorgang ( Punkt) Gegeben ist folgender Zeitverlauf der Aufladung eines Kondensators über einen Widerstand. Bestimmen Sie die Zeitkonstante τ dieses Ausgleichsvorganges! u C / V /e = 63,2% bei ms t / ms Die Zeitkonstante ist bei einer Auadung bei = 63,2% des Endwertes 0V. Als e Ergebnis ist alles um τ = ms innerhalb der Ablesegenauigkeit zulassig!. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Seite 2 von 2

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2013 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt

Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2010 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

Musterloesung. Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt

Musterloesung. Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt . Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 202 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 80 Minuten

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... Nachklausur Grundlagen der Elektrotechnik I-A 6. April 2004 Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 16. Februar 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe Nachklausur Grundlagen der Elektrotechnik I-A 6. April 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

3. Klausur Grundlagen der Elektrotechnik I-A 11. Februar 2002

3. Klausur Grundlagen der Elektrotechnik I-A 11. Februar 2002 3. Klausur Grundlagen der Elektrotechnik I-A Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Dirk Freyer Karsten Gänger Sandro Jatta Christian Jung Marc

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-A 15. Dezember 23 Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 3. Klausur Grundlagen der Elektrotechnik I-A 5. April 2005 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

A1 A2 A3 A4 A5 Summe

A1 A2 A3 A4 A5 Summe 3. Klausur Grundlagen der Elektrotechnik I-B 17. Juli 2003 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

A1 A2 A3 A4 A5 Summe

A1 A2 A3 A4 A5 Summe 3. Klausur Grundlagen der Elektrotechnik I-A 15. Februar 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Steffen Rohner Karsten Gänger Lars

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.4.2 7.4.2 Musterlösung Grundlagen der Elektrotechnik B Seite von 4 Version vom 6. Mai 2 Aufgabe : Ausgleichsvorgang 2 Punkte).

Mehr

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante Praktikumsbericht Elektrotechnik 3.Semester Versuch 4, Vierpole 7. November Niels-Peter de Witt Matrikelnr. 8391 Helge Janicke Matrikelnr. 83973 1 ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-B 22. Juli 2005 berlin Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B 1 Übertragungsfunktion, Filter Gegeben sei die folgende Schaltung: R U 2 1. Berechnen Sie die Übertragungsfunktion H( jω)= U 2. 2. Bestimmen Sie die Zeitkonstante.

Mehr

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018 +//6+ Prof. Dr.-Ing. B. Schmülling Klausur Grundlagen der Elektrotechnik I im Wintersemester 7 / 8 Bitte kreuzen Sie hier Ihre Matrikelnummer an (von links nach rechts). Vor- und Nachname: 3 4 3 4 3 4

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-A 15. Dezember 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg

Mehr

Probeklausur Grundlagen der Elektrotechnik I Winter-Semester 2012/2013

Probeklausur Grundlagen der Elektrotechnik I Winter-Semester 2012/2013 Probeklausur Grundlagen der Elektrotechnik I Winter-Semester 2012/2013 1. Diese Probeklausur umfasst 3 Aufgaben: Aufgabe 1: teils knifflig, teils rechenlastig. Wissensfragen. ca. 25% der Punkte. Aufgabe

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 19.08.2008 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21)

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 21. Februar 2006 berlin Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer

Mehr

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-A 18. Dezember Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-A 18. Dezember Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten 1. Klausur Grundlagen der Elektrotechnik I-A 18. Dezember 24 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135 Minuten

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Lösungen zur Klausur: Grundlagen der Elektrotechnik am 3. Juli 06 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur

Mehr

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1

Mehr

Wiederholungsklausur Grundlagen der Elektrotechnik I 22. April 2002

Wiederholungsklausur Grundlagen der Elektrotechnik I 22. April 2002 Wiederholungsklausur Grundlagen der Elektrotechnik I Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Benutzen Sie für die Lösung der Aufgaben nur das mit diesem Deckblatt ausgeteilte Papier.

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Wintersemester 27 / 28 Aufgabe : Die Lösungen zu Aufgabe folgen am Ende. Aufgabe 2:. U q = 3 V 2. R i = Ω 3. P =

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

Musterloesung. Wiederholungsklausur Grundlagen der Elektrotechnik I 22. April Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. Wiederholungsklausur Grundlagen der Elektrotechnik I 22. April Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Wiederholungsklausur Grundlagen der Elektrotechnik I Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die ösung der Aufgaben nur

Mehr

Grundlagen der Elektrotechnik 2 Übungsaufgaben

Grundlagen der Elektrotechnik 2 Übungsaufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2006.07 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1 FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-4.) Lineare Schaltungen mit passiven Bauelementen 4. Die Schaltelemente Widerstand, Kapazität, Induktivität und Übertrager 4..

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 4.9.3 4.9.3 Musterlösung Grundlagen der Elektrotechnik B Seite von 6 Version vom 6. September 3 Aufgabe : Übertragungsfunktion,

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur: Grundlagen der Elektrotechnik am 4. Juli 04 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur umfasst

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-A 18. Dezember 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 16.08.2011 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (14) 2 (20) 3 (22) 4 (20) 5 (24) Note

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Universität Ulm Institut für Allgemeine Elektrotechnik und Mikroelektronik Prof. Dr.-Ing. Albrecht Rothermel A A2 A3 Note Schriftliche Prüfung in Grundlagen der Elektrotechnik I 27.2.29 9:-: Uhr Name:

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 07.04.2009 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21) 5 (18) Fachprüfung Leistungsnachweis

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-A 2. Dezember 2002 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten rennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

Klausur Elektronik II

Klausur Elektronik II Klausur Elektronik II Sommersemester 2008 Name:................................................ Vorname:............................................. Matrikelnummer:.......................................

Mehr

Laborpraktikum 2 Kondensator und Kapazität

Laborpraktikum 2 Kondensator und Kapazität 18. Januar 2017 Elektrizitätslehre II Martin Loeser Laborpraktikum 2 Kondensator und Kapazität 1 Lernziele Bei diesem Versuch wird das elektrische Verhalten von Kondensatoren untersucht und quantitativ

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld Grundlagen der Elektrotechnik Protokoll Schwingkreise Christian Kötz, Jan Nabbefeld 29. Mai 200 3. Versuchsdurchführung 3.. Versuchsvorbereitung 3..2. Herleitung Resonanzfrequenz und der 45 o Frequenz

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 06.0.206 06.0.206 Musterlösung Grundlagen der Elektrotechnik B Seite von 3 Aufgabe : Gleichstrommaschine (20 Punkte) In dieser

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-B 25. Mai 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar.

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar. Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 Frequenzabhängiges Übertragungsverhalten Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Aufgabe

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 14.03.2012 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (22) 2 (24) 3 (17) 4 (17) 5 (20) Note

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Klausur Schaltungstechnik WS16/17

Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Klausur Schaltungstechnik WS16/17 Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Klausur Schaltungstechnik WS16/17 Name................................ Vorname................................ Matrikelnummer................................

Mehr

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab!

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Aufgabe 1 (Zuordnung reeller Größen zu komplexen Größen) Der Vorteil der komplexen Rechnung gegenüber der reellen besteht darin,

Mehr

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 1. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001 Elektrotechnik Protokoll - Wechselstromkreise André Grüneberg Mario Apitz Versuch: 6. Mai Protokoll: 9. Mai 3 Versuchsdurchführung 3. Vorbereitung außerhalb der Versuchszeit 3.. Allgemeine Berechnungen

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 01.04.2015 01.04.2015 Musterlösung Grundlagen der Elektrotechnik B Seite 1 von 14 Aufgabe 1: Gleichstrommaschine (20 Punkte) LÖSUNG

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 10: Fourieranalyse

Mehr

Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte

Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte Praktikum ETiT V / Vorbereitungsaufgaben V. Vorbereitungsaufgaben (Versuch Summe pro Aufgabe 4 Punkte. a Geben Sie die Formel für die Kapazität eines Plattenkondensator mit Dielektrikum an (P. Wie groß

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 6.08.20 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) (4) 2 (20) 3 (22) 4 (20) 5 (24) Note Klausur

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2003

1. Laboreinheit - Hardwarepraktikum SS 2003 1. Laboreinheit - Hardwarepraktikum SS 2003 1. Versuch: Gleichstromnetzwerk Berechnen Sie für die angegebene Schaltung alle Teilströme und Spannungsabfälle. Fassen Sie diese in einer Tabelle zusammen und

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Abbildung 2.1: Zweitor. Das obige Zweitor ist ein reziprokes Zweitor, da es nur aus passiven Bauelementen (R, C) besteht, d.h. es gilt Z 21 = Z 12.

Abbildung 2.1: Zweitor. Das obige Zweitor ist ein reziprokes Zweitor, da es nur aus passiven Bauelementen (R, C) besteht, d.h. es gilt Z 21 = Z 12. INFORMATIONSTECHNIK Musterlösungen zur Hausübung Institut für Nachrichtentechnik/Informationstechnik Johannes Kepler Universität Linz c Werner Haselmayr & Andreas Springer SS 009 Kapitel Vierpoltheorie

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

Versuch B2/3: Parallelschwingkreis

Versuch B2/3: Parallelschwingkreis Versuch B2/3: Parallelschwingkreis 3. Einleitung Als realer Parallelschwingkreis wird die Parallelschaltung einer realen Kapazität (physikalisch als kapazitive Admittanz darstellbar) und einer realen Induktivität

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch

Mehr

Name:... Vorname:... Matr.-Nr.:...

Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grundlagen der Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Steffen Rohner Karsten Gänger Lars Thiele

Mehr

Frequenzselektion durch Zwei- und Vierpole

Frequenzselektion durch Zwei- und Vierpole Frequenzselektion durch wei- und Vierpole i u i 1 u 1 Vierpol u 2 i 2 Reihenschwingkreis L R C Reihenschwingkreis Admitanzverlauf des Reihenschwingkreises: Die Höhe ist durch R die Breite durch Q R bestimmt.

Mehr

Wechselstromtechnik. Prof. Dr.-Ing. R. Koblitz Prof. Dr.-Ing. A. Klönne Prof. Dr.-Ing. H. Sapotta. Sommersemester 2014

Wechselstromtechnik. Prof. Dr.-Ing. R. Koblitz Prof. Dr.-Ing. A. Klönne Prof. Dr.-Ing. H. Sapotta. Sommersemester 2014 Wechselstromtechnik Prof. Dr.-Ing. R. Koblitz Prof. Dr.-Ing. A. Klönne Prof. Dr.-Ing. H. Sapotta Sommersemester 2014 14.03.2014, Prof. A. Klönne, Hochschule Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Tel.:

Mehr

Musterlösungen zu Grundlagen der Wechselstromtechnik

Musterlösungen zu Grundlagen der Wechselstromtechnik Musterlösungen zu Grundlagen der Wechselstromtechnik W. Kippels 2. September 2016 Inhaltsverzeichnis 1 Grundgrößen der Wechselstromtechnik 2 1.1 Übungsfragen zu Grundgrößen der Wechselstromtechnik..........

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Fakultät für Elektrotechnik und Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 11: Laplacetransformation 2. Standort GET-Laborräume

Mehr

Diplomprüfungsklausur. Hochfrequenztechnik I/II. 22. Juli 2002

Diplomprüfungsklausur. Hochfrequenztechnik I/II. 22. Juli 2002 Diplomprüfungsklausur Hochfrequenztechnik I/II 22. Juli 2002 Erreichbare Punktzahl: 100 Name: Vorname: Matrikelnummer: Fachrichtung: Platznummer: Aufgabe Punkte 1 2 3 4 5 6 7 8 9 10 11 12 Aufgabe 1 (8

Mehr

2.5.3 Innenwiderstand der Stromquelle

2.5.3 Innenwiderstand der Stromquelle 6 V UA(UE) 0. 1. 2. U E Abbildung 2.4: Kennlinie zu den Messwerten in Tabelle 2.1. 2.5.3 Innenwiderstand der Stromquelle Die LED des Optokopplers wird mittels Jumper kurzgeschlossen. Dadurch muss der Phototransistor

Mehr

Reihenschaltung von Widerständen

Reihenschaltung von Widerständen Reihenschaltung von Widerständen Zwei unterschiedliche große Widerstände werden in Reihe geschaltet. Welche der folgenden Aussagen ist richtig? 1. Durch den größeren Widerstand fließt auch der größere

Mehr

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Berechnung von Ein- und Umschaltvorgängen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ein- und Umschaltvorgänge Einführung Grundlagen der Elektrotechnik

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur: Grundlagen der Elektrotechnik am 5. Juli 03 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur umfasst

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 Lösungsvorschläge

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 Lösungsvorschläge Mathematik - Übungsblatt Lösungsvorschläge Aufgabe (Zuordnung reeller Größen zu komplexen Größen) Der Vorteil der komplexen Rechnung gegenüber der reellen besteht darin, dass die erforderlichen Rechnungen

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-B 17. Juli 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Amra Anneck Christian Jung Andreas Schulz Jörg Schröder Steffen

Mehr

Grundlagen der Elektrotechnik III

Grundlagen der Elektrotechnik III 1 Vordiplomprüfung Grundlagen der Elektrotechnik III 06. April 2006 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni 2002

2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni 2002 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Dirk Freyer Karsten Gänger Lars Thiele Christian Jung Marc

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

Serie 12 Musterlösung

Serie 12 Musterlösung Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Klausur im Modul Grundgebiete der Elektrotechnik II

Klausur im Modul Grundgebiete der Elektrotechnik II Klausur im Modul Grundgebiete der Elektrotechnik II am 11.03.2015, 9:00 10:30 Uhr Matrikel-Nr.: E-Mail-Adresse: Studiengang: Vorleistung vor SS 2014 berücksichtigen? Ja Nein Prüfungsdauer: 90 Minuten Zur

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Versuch P1-53,54,55 Vierpole und Leitungen. Vorbereitung. Von Jan Oertlin. 8. Dezember 2009

Versuch P1-53,54,55 Vierpole und Leitungen. Vorbereitung. Von Jan Oertlin. 8. Dezember 2009 Versuch P1-53,54,55 Vierpole und Leitungen Vorbereitung Von Jan Oertlin 8. Dezember 2009 Inhaltsverzeichnis 1. Vierpole und sinusförmige Wechselspannungen...2 1.1. Hochpass...2 1.2. Tiefpass...3 2. Vierpole

Mehr