Grundlagen der Elektrotechnik 2 Seminaraufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Elektrotechnik 2 Seminaraufgaben"

Transkript

1 ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler enthalten. Bitte melden Sie diese bei: Markus Pell, Tel.-NA: 3230,

2 Aufgabe 1: Die in Bild 1 angegebene Schaltung mit dem ohmschen Widerständen 1 = 3 = 4 = 5 Ω, 2 = 10 Ω und 5 = 6 = 20 Ω liegt an einer Spannung von U 0 = 20 V. Wie groß sind die Ströme I 1, I 2 und I 3? I 1 I 3 I U Bild 1 Aufgabe 2: In Bild 2 ist ein Netzwerk angegeben, das von zwei Spannungsquellen mit den Urspannungen U 1 und U 2 gespeist wird a) Bestimmen Sie die Ströme I 1, I 7 und I 8. I 1 I I U 1 U Bild 2 b) Wie groß sind die Ströme, falls für U 1 = U 2 = 10 V, 1 = 4 = 5 Ω, 2 = 3 = 20 Ω und 5 = 6 = 10 Ω gilt? 1

3 Aufgabe 3: Gegeben ist eine Schaltung nach Bild 3. U U 2 I 1 1 e U 1 = 50 V U 2 = 20 V 1 = 60 Ω 2 = 50 Ω 3 = 10 kω 4 = 5 kω Bild 3 a) Wie groß ist der Strom I? (Als allg. Gleichung und mit den gegebenen Größen) b) Wie groß ist der Eingangswiderstand e der Schaltung bezüglich der Klemmen 1-1, wenn 4 abgetrennt wird? (U 1 = 0, U 2 = 0) Aufgabe 4: In Bild 4 ist ein Netzwerk skizziert. a) Geben Sie den Graphen des Netzwerks an. b) Skizzieren Sie alle Bäume des Netzwerkes vollständig. c) Bestimmen Sie einen Satz von linear unabhängigen Maschen und Knoten des Netzwerks und stellen Sie die zugehörigen Maschen- bzw. Knotengleichungen auf. d) Wie müssen die Widerstände 1, 2, 3 und 4 gewählt werden, damit der Strom I 5 = 0 wird? I 5 = U Bild 4 2

4 Aufgabe 5: In der in Bild 5 gezeichneten Schaltung sind die Widerstände 1 = 10 Ω, 2 = 3 = 20 Ω sowie der Leitwert G = 0, 2 S gegeben. a) Wie groß ist der Strom i e, wenn an den Klemmen 1-1 eine Spannung u e angelegt wird? b) Wie groß ist das Spannungsverhältnis u a /u e? i e 2 i a i = G u e Leerlauf U e U a 1 3 Bild 5 Aufgabe 6: Gegeben ist die Schaltung nach Bild 6. Berechnen Sie mit Hilfe der gültigen Maschen- und Knotengleichungen sowie Übertragungsgleichungen die Spannung û 2 als Funktion des Widerstands und skizzieren Sie û 2 für 0. i i = 1 Ω û 0 û 2 n = 4 û 0 = 1 V n : 1 Bild 6 3

5 Aufgabe 7: In Bild 7 ist der Graph eines Netwerks gezeichnet. Berechnen Sie unter der Vorraussetzung, dass alle Zweige des Graphen den gleichen Widerstand besitzen, den Widerstand an den Klemmen 1-1 und Bild 7 Aufgabe 8: In der Schaltung nach Bild 8 sind 1 = 2 = 10 Ω, 3 = 4 = 5 = 20 Ω gegeben. Berechnen Sie das Verhältnis i 1 /u 2 für u 1 = u 3 = u 4 = 0. Die Übertrager sind ideal. 3 3 i1 i 2 u u 2 u u 3 2 i 4 n : 1 4 i 3 4 n : 1 Bild 8 4

6 Aufgabe 9: Gegeben ist folgende Schaltung: i(t) u(t) = û cos(ωt + ϕ) = 10 V cos(ωt + π/3) u(t) u (t) u (t) ω = 2π /s = 6, /s = 0, 5 µf = 1 kω Bild 9 a) Bestimmen Sie die komplexen Scheitelwertzeiger der Ströme und Spannungen der Schaltung sowohl nach eal- und Imaginärteil, als auch nach Betrag und Phase. b) Tragen Sie die komplexen Scheitelwertzeiger der Spannungen maßstäblich in die komplexe Ebene ein und ermitteln Sie die Gesamtstromstärke î nach Betrag und Phase. c) Ermitteln Sie aus der Darstellung in der komplexen Ebene graphisch die Zeitfunktionen u(t), u (t), u (t) und i(t), und geben Sie jeweils Scheitelwert und Nullphasenwinkel an. Aufgabe 10: Gegeben ist folgende Schaltung: î û = 20 V e j π 4 = û e j π 4 û 1 2 û 1 ω = 2π /s û 2 1 = a 2 2 = 1 µf Bild 10 a) Berechnen Sie mit Hilfe der komplexen echnung die Spannungen u 1 (t), u 2 (t) und u(t) allgemein und zeichnen Sie für das Beispiel a = 4 die Zeitverläufe für die Zeit t = 0 bis t = 10 ms auf. b) Berechnen Sie i(t) und zeichnen Sie u(t) und i(t) im angegebenen Zeitbereich. 5

7 Aufgabe 11: û q î î 1 î 2 û û û û 2 û 2 u q (t) = û q e jωt û q = 10 V ω = /s 1 kω 1 = 2 = 1 = 2 = 2 kω F 10 6 F Bild 11 a) Berechnen Sie die komplexen Ströme î 1 und î 2 nach Betrag und Phase. b) Berechnen Sie û 1 ; û 2 ; û 1 und û 2. c) Zeichnen Sie maßstäblich die Zeigerdiagramme der Spannungen und Ströme und entnehmen Sie û dem Diagramm. Maßstäbe: 1 cm = 1 V 1 cm = 1 ma Aufgabe 12: Leiten Sie die für ohmsche Widerstände bekannten Beziehungen für die Stern-Dreieck-Umwandlung für komplexe Impedanzen ab. Berechnen Sie die zu der untenstehenden Stern- bzw. Dreieckschaltung gehörende Dreieck- bzw. Sternschaltung und zeigen Sie, dass dies im Fall a) auf eine realisierbare, im Fall b) auf eine nicht realisierbare Schaltung führt. Versuchen Sie, beide Fälle durch Schaltungen mit -, L- bzw. -Bauelementen zu realisieren L 3 Bild 12a 3 Bild 12b 6

8 Aufgabe 13: Gegeben sind folgende Schaltungen: î 1 î 2 û û Bild 13a Bild 13b Ermitteln Sie für beide Schaltungen a) Impedanz und Admittanz nach eal- und Imaginärteil und nach Betrag und Phase. b) qualitativ den Verlauf von Impedanz und Admittanz in der komplexen Ebene für den Bereich 0 ω. Aufgabe 14: 2 L Bild 14 Ermitteln Sie für die gezeichnete Schaltung die Ortskurve der Eingangsimpedanz Z e. Wie groß ist Z e für den Fall 1 = 25 kω? Gegeben: 2 = 10 kω Maßstäbe: 1 cm ˆ=2, 5 kω L = 31, 83 mh 1 cm ˆ=10 µs f = 100kHz 7

9 Aufgabe 15: L 0 Bild 15 Ermitteln Sie für die gezeichnete Schaltung die Ortskurve der Eingangsimpedanz Z e. Wie groß muss gewählt werden, damit Z e reell wird? Gegeben: = 10 kω Maßstäbe: 1 cm ˆ=2, 5 kω L = 31, 8 mh 1 cm ˆ=10 µs f = 50 khz Aufgabe 16: 1 L 1 2 L 2 2 = 10 kω X 2 = 10 kω Bild 16 a) Bestimmen Sie qualitativ die Ortskurve der Eingangsimpedanz Z e für den Bereich 0. b) Bestimmen Sie 1 und X 1 quantitativ für den Fall, dass die Eingangsimpedanz Z e nur für einen einzigen Wert von reell ist und Z e ( = ) = 12 kω beträgt. c) Wie groß sind für den Fall b) dieses bzw. B = ω, Z e min und Z e max? Maßstäbe: 1 cm ˆ=2, 5 kω und 1 cm ˆ=10 µs 8

10 Aufgabe 17: Gegeben ist die unten gezeichnete Schaltung, in der die beiden Induktivitäten L 1 und L 2 magnetisch gekoppelt sind. î L 1 M L 2 û î 1 î Bild 17 a) Berechnen Sie die Eingangsimpedanz der Schaltung Z = û/î. b) Bestimmen Sie Y = 1/Z für M = 0 und skizzieren Sie die Ortskurve der Eingangsimpedanz Y (ω) für 1 = 2 2 und L 1 = L 2. Geben Sie die Parametrisierung der Ortskurve für ω = 0 und ω = an und konstruieren Sie einen Parametrisierungspunkt für einen beliebigen Wert ω = ω 0. Aufgabe 18: 1 M 2 L 1 L 2 L 1 = 10 mh L 2 = 10 mh = 3 µf 1 2 Bild 18 Zwei gekoppelte Spulen (Induktivitäten L 1 und L 2, Gegeninduktivität M) und eine Kapazität bilden einen Schwingkreis. Wie groß muss die Gegeninduktivität M sein, damit der Schwingkreis eine esonanzfrequenz ω 0 = 6, 666 khz besitzt? 9

11 Aufgabe 19: Z i Z i = 20 Ω 1 ωl = X L = 10 Ω û 0, ω 2 L 2 = 50 Ω ω = 2π 100 1/s û 0 = 10 V Verbraucher Bild 19 a) Bestimmen Sie die Kapazität und den Widerstand 1 so, dass die im Verbraucher in Wärme umgesetzte Wirkleistung maximal wird. b) Wie groß sind für den gefundenen Wert von die in den Widerständen 1 und 2 umgesetzten Wirkleistungen? Aufgabe 20: Gegeben ist die unten gezeichnete Schaltung, in der der Widerstand einstellbar ist. 1 i 1 i 2 u 0 = 10 V sin(ωt) u 0 u 1 u = 10 Ω 2 = 1 Ω n : 1 Bild 20 Bestimmen Sie das Übersetzungsverhältnis n des idealen Übertragers sowie den Widerstand so, dass die am Widerstand 2 auftretende Spannung den Scheitelwert û 2 = 1 V besitzt und die im Widerstand 2 umgesetzte Wirkleistung gleich der Hälfte der in der Schaltung insgesamt umgesetzten Wirkleistung ist. 10

12 Aufgabe 21: Die gezeichnete Schaltung ist so auszulegen, dass bei einer Quellenspannung û g = 120 V, f = 600 Hz, die Anzahl der in eihe geschalteten Widerstände beliebig verändert werden kann, ohne dass die an jedem einzelnen Widerstand liegende Spannung û = 12 V ihren Wert verändert. L î û = 12 V û g û N û = 12 V Bild 21 Wie groß müssen L und gewählt werden, wenn pro Widerstand die aufgenommene Leistung P = 3 W beträgt? Aufgabe 22: Gegeben ist die Schaltung nach Bild 22: î 1 = 100 Ω û variabel = 637 µf f = 100 Hz Bild 22 Bestimmen Sie 2 so, dass zwischen û und î eine Phasenverschiebung von 45 besteht. Zeichnen Sie Y in der komplexen Ebene als Funktion von 2. 11

13 Aufgabe 23: Bestimmen Sie in der Schaltung (Bild 23) mit dem Verfahren der Maschenstromanalyse den Strom î 3. a) Wählen Sie einen vollständigen Baum so, dass î 3 Maschenstrom wird. b) Wie lautet die Mascheninzidenzmatrix für diesen Baum? c) Ermitteln Sie die linear unabhängigen Maschengleichungen. d) Beispiel: = 1 ω = 1 Ω; 1 = 2 = 3 = ; 1 = 2 = ; û q = 1 V î 1 î 2 î 5 û î 4 2 î 3 2 î 6 Bild 23 Aufgabe 24: Gegeben ist die Schaltung nach Bild 24: û 2 î 1 î 2 î 4 2 û 6 î 6 î 5 î 3 Bild 24 a) Wählen Sie einen Baum so, dass die Ströme î 1, î 2, î 3 unabhängige Ströme sind. b) Stellen Sie für diese unabhängigen Ströme mit Hilfe der Maschenstromanalyse das linear unabhängige Gleichungssystem auf und berechnen Sie die unabhängigen Ströme. c) Berechnen Sie sämtliche Ströme für den Fall: û 2 = û 6 = 13 V und = 1 kω. 12

14 Aufgabe 25: Bestimmen Sie den Strom î 3 der Schaltung (Bild 25) mit Hilfe der Maschenstromanalyse. î 1 î 3 î 4 û 1 L î 5 û 2 î 2 î 6 Bild 25 a) Geben Sie die Anzahl der unabhängigen Maschen an. b) Zeichnen Sie den Graphen der Schaltung und wählen Sie einen vollständigen Baum so, dass î 1, î 2, î 3 Maschenströme werden. Tragen Sie die Maschenströme ein. c) Wie lautet die Mascheninzidenzmatrix für diesen Baum? d) Ermitteln Sie die Maschengleichungen. e) Bestimmen Sie î 3 für den Fall: = ωl = 1 ω = 1 Ω; û 1 = û 2 = 1 V. Aufgabe 26: Bestimmen Sie in dem Netzwerk (Bild 26) mit Hilfe der Maschenstromanalyse den Strom î 2. î û î2 2 Bild 26 13

15 Aufgabe 27: Ermitteln Sie für die Schaltung (Bild 27) den Widerstand zwischen den Klemmen A und B, und zwischen A und. 3 A D B Bild 27 Aufgabe 28: Gegeben ist eine Schaltung nach Bild 28 mit einer gesteuerten Stromquelle î q = S û K 1 K 3 K 4 û q 2 î q = Sû 0 û 0 L 3 4 û 4 1 K 2 K 5 Bild 28 a) Zeichnen Sie den Graphen der Schaltung und geben Sie die Knoteninzidenzmatrix für die Schaltung an. b) Ermitteln Sie das Verhältnis der Spannungen û4 û mit Hilfe der Knotenpotentialanalyse. q c) Skizzieren Sie das Verhältnis û4 û = f(ω) für den Fall 1. Für welche Frequenz wird û4 q û q maximal? 14

16 Aufgabe 29: Ermitteln Sie in der Schaltung nach Aufgabe 30 (Bild 30) mit Hilfe der Knotenpotentialanalyse die Spannungen û 5 und û 6. Aufgabe 30: 3 4 û q1 û 1 î û q2 î 6 q 5 û 5 û î 5 Bild 30 Ermitteln Sie für die Schaltung nach Bild 30 mit Hilfe des Superpositionsprinzips die Ströme î 5 und î 6, sowie die Spannungen û 5 und û 6. Aufgabe 31: î 1 1 û û 1 Bild 31 a) In der Schaltung nach Bild 31 soll nach dem Superpositionsprinzip die Beziehung zwischen î und û ermittelt werden. b) Geben Sie die Ersatzspannungs- und Ersatzstromquelle der Schaltung bezüglich der Klemmen an. 15

17 Aufgabe 32: 1 î 0 û 0 2 û 1 3 î 3 Bild 32 Ermitteln Sie für die angegebene Schaltung (Bild 32) mit dem Verfahren der Superposition Innenwiderstand und Leerlaufspannung einer Ersatzspannungsquelle und Innenwiderstand und Kurzschlußstrom einer Ersatzstromquelle. Aufgabe 33: Gegeben ist das in Bild 33 skizzierte Gleichspannungsnetzwerk. 3 U q1 I I 6 Bild 33 a) Zeichnen Sie die Schaltungen für die Teilströme, aus denen mit Hilfe des Überlagerungsprinzips der Strom I berechnet werden kann. b) Berechnen Sie den Strom I, eventuell unter Ausnutzung des Prinzips der Ersatzspannungsquellen für die Berechnung der Teilströme. 16

18 Aufgabe 34: Bestimmen Sie den in den Klemmen 1-1 (Bild 34a) und 2-2 (Bild34b) eingesehenen Gesamtwiderstand der Schaltungen Bild 34a Bild 34b Aufgabe 35: In der in Bild 35 gezeichneten Schaltung sind die Spannungen U 1 = U 2 = 20 V, U 3 = U 4 = U 5 = 20 V sowie die Widerstände 1 = 2 = 3 = 10 Ω und 4 = 5 = 6 = 5 Ω gegeben. Berechnen Sie alle Ströme dieser Schaltung. 1 U 1 4 U 5 3 U U 2 U 4 6 Bild 35 17

19 Aufgabe36: Gegeben sind zwei miteinander gekoppelte Spulen der Induktivitäten L 1 und L 2 und der Gegeninduktivität M (Bild 36). L 1 L 2 M Bild 36 Gesucht ist die resultierende Induktivität L für die unten (Bild34a-c) gezeichneten Schaltungen. L 1 L 2 L L 1 L 2 L M M Bild 36a Bild 36b L L 1 L 2 M Bild 36c 18

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 2: Versuchsinhalt 2 2 Versuchsvorbereitung 2 2. Zeitfunktionen................................ 2 2.. Phasenverschiebung......................... 2 2..2 Parameterdarstellung........................

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. "Parallelschwingkreis"

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. Parallelschwingkreis Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3 "Parallelschwingkreis" Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

Übungsaufgaben Elektrotechnik (ab WS2011)

Übungsaufgaben Elektrotechnik (ab WS2011) Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik (ab WS2011) Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

9. Messung von elektrischen Impedanzen

9. Messung von elektrischen Impedanzen 9. Messung von elektrischen Impedanzen 9.1 Messung von ohmschen Widerständen Ohmscher Widerstand (9.1) 9.1.1 Strom- und Spannungsmessung (9.2) (9.3) Bestimmung des ohmschen Widerstandes durch separate

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

2 Netze an Gleichspannung

2 Netze an Gleichspannung Carl Hanser Verlag München 2 Netze an Gleichspannung Aufgabe 2.13 Die Reihenschaltung der Widerstände R 1 = 100 Ω und R 2 liegt an der konstanten Spannung U q = 12 V. Welchen Wert muss der Widerstand R

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Oszillographenmessungen im Wechselstromkreis

Oszillographenmessungen im Wechselstromkreis Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Die elektrische Spannung ist ein Maß für die Stärke einer Quelle.

Die elektrische Spannung ist ein Maß für die Stärke einer Quelle. Elektrisches und magnetisches Feld -. Grundlagen. Die elektrische Spannung: Definition: Formelzeichen: Einheit: Messung: Die elektrische Spannung ist ein Maß für die Stärke einer Quelle. V (Volt) Die Spannung

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Aufgabe 1 Die folgende Schaltung wird gespeist durch die beiden Quellen

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Übung Halbleiterschaltungstechnik

Übung Halbleiterschaltungstechnik Übung Halbleiterschaltungstechnik WS 2011/12 Übungsleiter: Hannes Antlinger Martin Heinisch Thomas Voglhuber-Brunnmaier Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:

Mehr

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik)

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lössungen Serie 3 Komplexe Zahlen in der Elektrotechnik) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

Einführung in die komplexe Berechnung von Netzwerken

Einführung in die komplexe Berechnung von Netzwerken Physikalisches Praktikum für Anfänger (Hauptfach) Grundlagen Einführung in die komplexe Berechnung von Netzwerken Unter einem elektrischen Netzwerk versteht man eine Schaltung aus beliebigen elektrischen

Mehr

Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten Prüfung GET Seite 1 von 8 Hochschule München FK 03 Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten F. Palme Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt Matr.-Nr.:

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung 1 Bipolartransistor. 1.1 Dimensionierung 3.Transistor Christoph Mahnke 7.4.006 Für den Transistor (Nr.4) stand ein Kennlinienfeld zu Verfügung, auf dem ein Arbeitspunkt gewählt werden sollte. Abbildung

Mehr

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen Jan Luiken ter Haseborg Christian Schuster Manfred Kasper Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen 18 1 Elektrische Gleichstromnetzwerke det(a 2 )

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d A) Gleichstrom-Messbrücken 1/6 1 Anwendung und Eigenschaften Im Wesentlichen werden Gleichstrommessbrücken zur Messung von Widerständen eingesetzt. Damit können indirekt alle physikalischen Grössen erfasst

Mehr

Messung elektrischer Größen bei verschiedenen Spannungsformen

Messung elektrischer Größen bei verschiedenen Spannungsformen Laborversuch Messung elektrischer Größen bei verschiedenen Spannungsformen Begleitend zum Modul Messtechnik und EMV Dipl.-Ing. Ralf Wiengarten Messung elektrischer Größen bei verschiedenen Spannungsformen

Mehr

Praktikum Elektronik WS12/13 Versuch 1 Einführung in P-Spice

Praktikum Elektronik WS12/13 Versuch 1 Einführung in P-Spice FRITZ-HÜTTINGER-PROFESSUR FÜR MIKROELEKTRONIK PROF. DR.-ING. YIANNOS MANOLI ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG Praktikum Elektronik WS12/13 Versuch 1 Einführung in P-Spice Betreuer Dipl.-Ing. Christian

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Übungsaufgaben zum 5. Versuch 13. Mai 2012

Übungsaufgaben zum 5. Versuch 13. Mai 2012 Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe:

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe: Abteilung Maschinenbau im WS / SS Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz Gruppe: Name Vorname Matr.-Nr. Semester Verfasser(in) Teilnehmer(in) Teilnehmer(in) Professor(in) / Lehrbeauftragte(r):

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor

- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor Praktikumsaufgabe Pk 2: R, L, C bei Wechselstrom Versuchsziel:.- - Festigung und Vertiefung der Kenntnisse zum Wechselstromverhalten von R,L,C-Schaltungen - Erwerb von Fertigkeiten bei der meßtechnischen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Energie E= 1 Q r 4 r 2 r F = E q W 12 =Q E ds

Mehr

Brückenschaltungen (BRUE)

Brückenschaltungen (BRUE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus 1 Literatur W. Walcher, Praktikum der Physik, 3. Aufl., Teubner, Stuttgart F. Kohlrausch, Praktische Physik, Band 2, Teubner, 1985 W. D. Cooper, Elektrische

Mehr

Übung Bauelemente und Schaltungstechnik. Wintersemester 2005/2006

Übung Bauelemente und Schaltungstechnik. Wintersemester 2005/2006 Übung Bauelemente und Schaltungstechnik Wintersemester 2005/2006 Prof. Dr. Dietmar Ehrhardt Universität Siegen im Februar 2006 Übung 1 - Widerstände und Heißleiter 1.1 Gegeben sei ein Schichtwiderstand

Mehr

Gleichstromlehre Theorie-Mitschrift

Gleichstromlehre Theorie-Mitschrift Modul: ELA 1 Semester: Wintersemester 06/07 Kurs: Elektrotechnik Dozent: H. Senn Gleichstromlehre Theorie-Mitschrift Martin Züger ELA 1: Elektrotechnik 27.02.2007 Dieses Dokument beinhaltet die im Unterricht

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Fachhochschule Braunschweig / Wolfenbüttel Fachbereich Elektrotechnik

Fachhochschule Braunschweig / Wolfenbüttel Fachbereich Elektrotechnik Fachhochschule Braunschweig / Wolfenbüttel Fachbereich Elektrotechnik Prof. Dr.-Ing. Ose 8. 11. 2006 Labor Grundlagen der ET I V 16: Lineare Netzwerke (AV) Teilnehmer 1: Matr.-Nr.: Datum: Gruppen-Kennzeichen:

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011 Aufgabe 1: Berechnen Sie die Resonanzfrequenz des gegebenen Parallelschwingkreises! Lösen Sie die Aufgabe über den komplexen Leitwert! 5 2,5 10 100 Reihenschaltungszweig Parallelschaltung sämtlicher Bauteile

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Einführung in das Carl-Engler-Schule Datum: Drehstromsystem Karlsruhe Seite: 1 / 12

Einführung in das Carl-Engler-Schule Datum: Drehstromsystem Karlsruhe Seite: 1 / 12 Drehstromsystem Karlsruhe Seite: / Das Drehstromsystem Inhaltsübersicht:. Versuche und Grundbegriffe.... Versuche zum Drehstromsystem.... Die Spannungen im Drehstromsystem..... Erzeugerschaltungen - Verkettung....

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Aufgaben- und Formelsammlung zur Lehrveranstaltung NICHTLINEARE ELEKTROTECHNIK

Aufgaben- und Formelsammlung zur Lehrveranstaltung NICHTLINEARE ELEKTROTECHNIK Aufgaben- und Formelsammlung zur Lehrveranstaltung NICHTLINEAE ELEKTOTECHNIK Technischen Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Fachgebiet

Mehr

E10 Wechselstromwiderstände: Serienschwingkreis

E10 Wechselstromwiderstände: Serienschwingkreis Physikalisches Anfängerpraktikum Universität Stuttgart WS 2013/14 Protokoll zum Versuch E10 Wechselstromwiderstände: Serienschwingkreis Johannes Horn, Robin Lang 28.03.2014 Verfasser: Robin Lang (BSc.

Mehr

Spannung - Stromstärke - Widerstand

Spannung - Stromstärke - Widerstand Spannung - Stromstärke - Widerstand. (a) Es soll der Widerstand einer Glühbirne experimentell ermittelt werden. Zeichne die zugehörige Schaltskizze. (b) Die Skalen, der in diesem Versuch verwendeten Messinstrumente

Mehr

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt:

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt: Parallelschaltung Mit Hilfe des 1. Kirchhoffschen Satzes kann die Parallelschaltung von Widerständen abgeleitet werden. Werden einer idealen Spannungsquelle zwei Widerstände R1 und R2 parallel geschaltet,

Mehr

Modul. Elektrotechnik. Grundlagen. Kurs 1

Modul. Elektrotechnik. Grundlagen. Kurs 1 Berner Fachhochschule BFH Hochschule für Technik und Informatik HTI Fachbereich Elektro- und Kommunikationstechnik EKT Modul Elektrotechnik Grundlagen Kurs 1 Inhaltsverzeichnis und Sachwortregister STR

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

Das Oszilloskop als Messinstrument

Das Oszilloskop als Messinstrument Verbesserung der Auswertung Das Oszilloskop als Messinstrument Carsten Röttele Stefan Schierle Versuchsdatum: 29. 11. 2011 Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 2 2 Messungen im Zweikanalbetrieb

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007 Protokoll zum Versuch E7: Elektrische Schwingkreise Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Physikalischer Zusammenhang 3 2.1 Wechselstromwiderstände (Impedanz)...............

Mehr

6.5 Transformator (Versuch 54)

6.5 Transformator (Versuch 54) 3 6.5 Transformator (Versuch 54) (Fassung 03/0) Physikalische Grundlagen Der ideale Transformator: Ein Transformator besteht aus zwei (oder mehr) Spulen meist unterschiedlicher Windungszahl und. An der

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen

Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen Helmut Haase und Heyno Garbe Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen Mit 156 Aufgaben und 375 Abbildungen UniVerlag Witte Hannover Inhaltsverzeichnis 1. Grundbegriffe und Gleichstromnetzwerke

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

E4 Wechselstromwiderstände

E4 Wechselstromwiderstände Physikalische Grundlagen Grundbegriffe (ohmsche, induktive und kapazitive) Leistung im Wechselstromkreis Effektivwerte Zeigerdiagramm Reihen- und Parallelschwingkreis. Die Bestimmung von Widerständen in

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen ersuchsdurchführung ersuch : Messungen an linearen und nichtlinearen Widerständen. Linearer Widerstand.. orbereitung Der Widerstand x2 ist mit dem digitalen ielfachmessgerät zu messen. Wie hoch darf die

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Praktikumsunterlagen

Leistungselektronik Grundlagen und Standardanwendungen. Praktikumsunterlagen Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 80333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Es gilt also W ~ U, W ~ I, W ~ t. Eine Gleichung, die diese Bedingung erfüllt, lautet: W = U I t [Ws, kwh] 1Nm = 1Ws = 1VAs = 1J

Es gilt also W ~ U, W ~ I, W ~ t. Eine Gleichung, die diese Bedingung erfüllt, lautet: W = U I t [Ws, kwh] 1Nm = 1Ws = 1VAs = 1J Elektrizität 0. Elektrische Arbeit und elektrische Leistung Die in einem elektrischen Leiter verrichtete elektrische Arbeit ist umso größer, je größer die angelegte Spannung ist je größer die Stromstärke

Mehr

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom von Sören Senkovic und Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Versuchsdurchführung...........................................

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr