2 Funktionen. Inhalt. 2.1 Vorbemerkung

Größe: px
Ab Seite anzeigen:

Download "2 Funktionen. Inhalt. 2.1 Vorbemerkung"

Transkript

1 2 Funktionen Inhalt 2.1 Vorbemerkung Funktionsbegriff Funktionen in Scilab Besondere mathematische Funktionen Summenzeichen Produktzeichen Betragsfunktion Ganzzahlfunktion Potenz-undWurzelfunktion Exponentialfunktionen Logarithmusfunktion Anwendung in Scilab Fazit Vorbemerkung Eine Funktion beschreibt gegenseitige Abhängigkeiten zwischen Variablen und sie ist eine wesentliche Grundlage in der Mathematik. Im Folgenden werden der Funktionsbegriff und einige spezielle Funktionen erläutert. Dazu zählen wir auch das Summen- und Produktzeichen für die fortgesetzte Addition und Multiplikation. Insbesondere das Summenzeichen wird häufig verwendet. Ferner sind die Logarithmusund die Exponentialfunktion, sowie zwei spezielle Funktionen, die Betragsfunktion und die Gauß-Klammer (Auf- und Abrundungsfunktion) von Bedeutung. In Kapitel 8 werden die rationalen Funktionen mit einer Variablen sowie Folgen und Reihen erläutert. Übersicht über die hier eingesetzten mathematischen Symbole: Summenzeichen Produktzeichen W. Kohn, R. Öztürk, Mathematik für Ökonomen, DOI / _2, Springer-Verlag Berlin Heidelberg 2015

2 22 2 Funktionen i, j Subskript, Index Betragsfunktion, Ganzzahlfunktion e Eulersche Zahl f (x),h(x),g(x) Funktionen von x f 1 (x) Umkehrfunktion F ( x, f (x) ) = 0 implizite Funktion e x, a x Exponentialfunktion zur Basis e bzw. a log a x Logarithmus von x zur Basis a lnx Logarithmus x zur Basis e, natürlicher Logarithmus x n Potenzfunktion n x Wurzelfunktion 2.2 Funktionsbegriff Eine Funktion dient zur Beschreibung der gegenseitigen Abhängigkeit mehrerer Faktoren. Sie ist eine Beziehung (auch Relation oder Abbildung genannt) zwischen zwei Mengen, die jedem Element der einen Mengen (x-wert oder Argument) genau ein Element der anderen Menge (y-wert oder Funktionswert) zuordnet. f : X Y Die Betrachtungsweise ist im Allgemeinen so festgelegt, dass man von den Elementen einer Menge x X ausgeht und ihre Beziehung zu den Elementen der anderen Menge y Y untersucht. Man bezeichnet hierbei die Menge X als Definitionsmenge D( f ) oder Urbildmenge der Abbildung f und die Menge Y als Wertebereich W( f ) oder Bildmenge. Beispiel 2.1. Das Hausnummernsystem stellt eine Abbildung dar. Die Menge X ist ein Haus in der Wertherstraße. Dies wird formal mit X = {x x ist ein Haus in der Wertherstraße} beschrieben (lies: Die Menge X für deren Elemente x gilt, x ist...).diemengey ist Y = {y y N} Dann ist f : X N ( {Häuser} {Nummer} ) die formale Beschreibung für das Hausnummernsystem. Im Beispiel 2.1 handelt es sich um eine eindeutige Abbildung, da jedem Element aus dem Wertebereich mindestens ein Element aus dem Definitionsbereich zugeordnet ist. Eine solche Abbildung wird auch surjektiv bezeichnet. Eine Abbildung

3 2.2 Funktionsbegriff 23 heißt injektiv, wenn verschiedenen Elementen des Definitionsbereichs unterschiedliche Elemente des Wertebereichs zugeordnet sind. Hierbei können Elemente aus dem Wertebereich ohne Urbild sein. Wenn beides vorliegt also surjektiv und injektiv dann wird die Abbildung bijektiv genannt. Eine solche Abbildung wird auch eineindeutig genannt. surjektiv nicht injektiv injektiv nicht surjektiv X Y X Y surjektiv und injektiv = bijektiv X Y Abb. 2.1: Surjektive, injektive und bijektive Abbildung In vielen Fällen können Funktionen zwischen den Elementen x D( f ) und den Elementen y in Form einer Gleichung geschrieben werden. y = f (x) für x D( f ) (2.1) Bei der Funktion in Gleichung (2.1) gehört zu jedem Element x des Definitionsbereichs D( f ) genau ein Element y des Wertebereichs W( f ). In dieser Schreibweise tritt auch deutlich die Abhängigkeit zwischen den veränderlichen Größen x und y hervor. Die Variable x kann innerhalb des Definitionsbereichs D( f ) beliebige Werte annehmen und wird deshalb als unabhängige Variable oder Argument bezeichnet. Hingegen ist mittels der Zuordnung f (x) der Wert von y eindeutig festgelegt, sobald x gewählt wird. Aus diesem Grund heißt y die abhängige Variable. Für den funktionalen Zusammenhang wird häufig eine dem Kontext entsprechende Bezeichnung gewählt. So ist es sinnvoll, die Bezeichnung K(x) für eine Kostenfunktion oder p(x) für eine Preis-Absatz-Funktion zu verwenden. Die Funktion wird in der analytischen Form als Gleichung unter Angabe des Definitionsbereichs der unabhängigen Variablen dargestellt. Die Funktionsgleichung

4 24 2 Funktionen (2.1) bezeichnet man dabei als explizite Funktionsform. Alsimplizite Funktion wird die Schreibweise y f (x)=0 F(x,y)=F ( x, f (x) ) = 0 fürd(f)=0 bezeichnet. Eine implizite Funktion besitzt nicht immer eine explizite Darstellung, also eine Funktionsform in der eine Variable auf der rechten Seite isoliert steht. Beispiel 2.2. Die Funktionen F(q)=2000 q = 0 fürq > 1 q 1 oder F(x,y)=y + x xy 2 = 0 fürx 0 können nicht explizit nach q,x oder y aufgelöst werden. Nicht jede Funktion kann als Gleichung geschrieben werden und nicht jede Gleichung ist eine Funktion! So können empirische Beobachtungen nur in Form einer Wertetabelle angegeben werden. Es handelt sich dann um eine diskrete Funktion, die nur punktweise definiert ist. Hingegen ist die Gleichung für den Einheitskreis 1 = x 2 + y 2 keine Funktion, da sie bis auf die Randpunkte jedem Wert von x zwei Werte von y zuordnet. Eine Funktion kann auch in verschiedene Intervalle ihres Definitionsbereichs durch unterschiedliche Funktionszweige beschrieben werden. Dann hat die Funktion die Form: f (x) für x D( f ) y = g(x) für x D(g) h(x) für x D(h) Die Teildefinitionsbereiche müssen dabei disjunkt (nicht überschneidend) sein. Beispiel falls x < 0 y = 0 falls x = 0 +1 falls x > 0 Eine eineindeutige Funktion lässt sich umkehren. Die Auflösung der Funktion nach der unabhängigen Variablen x heißt Umkehrfunktion. x = f 1 (y)=g(y)

5 2.3 Funktionen in Scilab 25 Beispiel 2.4. Die Funktion besitzt die Umkehrfunktion Beispiel 2.5. Die Funktion y = 3x + 2 x = y 2 3 fürx R für y R y = x 2 für x R + besitzt die Umkehrfunktion: Die Funktion x =+ y für y R + y = x 2 für x R besitzt hingegen keine Umkehrfunktion, da die Abbildung nur eindeutig ist. Für x = 2 und für x = 2 erhält man den gleichen Funktionswert. Man beachte, dass der Definitionsbereich (Wertebereich) einer Umkehrfunktion gleich dem Wertebereich (Definitionsbereich) der Ausgangsfunktion ist. Daher kann eine Umkehrfunktion nur für eineindeutige Funktionen existieren. Es werden hier nur einige spezielle reelle Funktionen behandelt. Bei diesen kann man zwischen so genannten algebraischen und transzendenten Funktionen unterscheiden. In algebraischen Funktionen ist die unabhängige Variable ausschließlich durch die elementaren Operationen wie Addition, Subtraktion, Multiplikation, Division, Potenzierung und Radizierung verknüpft. Von den algebraischen Funktionen interessieren hier insbesondere die rationalen und gebrochen-rationalen Polynome. Die transzendenten Funktionen können nicht mit den elementaren Operationen dargestellt werden. Die in der Ökonomie wichtigsten transzendenten Funktionen sind die Exponential- und die Logarithmusfunktionen. Sie werden in den Abschnitten und vorgestellt. y = a x für a > 0 und a 1, x R y = log a x für a > 0 und a 1, x R Funktionen in Scilab Funktionen können in Scilab leicht mit dem Befehlsmakro function [Rückgabewert]=Funktionsname(Variablen) Funktionsgleichung endfunction

6 26 2 Funktionen eingegeben werden. In dem folgenden Code-Beispiel sind die Funktionen aus den Beispielen 2.2 und 2.3 programmiert. // Kapitalwertfunktion function y=kapitalwert(q) y=2000*(q^10-1)/(q-1)-30000; endfunction // Berechnung des Kapitalwerts für q=1.01 kapitalwert(1.01) // q=1.01, 1.02,..., 1.1 q=linspace(1.01,1.1,10) // Berechnung der Kapitalwerte für q=1.01,..., 1.1 feval(q,kapitalwert) // Grafik plot(q,feval(q,kapitalwert)) // oder alternativ fplot2d(q,kapitalwert) // Funktion mit 2 Variablen function z=f(x,y) z=y+sqrt(x)-x*y^2; endfunction // Berechnung der Funktion an der Stelle x=1, y=1 F(1,1) feval(1,1,f) // Berechnung der Lösung für x, wenn y=1 ist y=1 fsolve(1,f) // Grafik der 3-dimensionalen Funktion fplot3d(-10:10,-10:10,f,20,30) // Funktion mit Teilbereichen function y=g(x) if x<0 then y=-1 elseif x==0 then y=0 else y=1 end endfunction

7 2.4 Besondere mathematische Funktionen Summenzeichen 2.4 Besondere mathematische Funktionen 27 Das Summenzeichen steht als Wiederholungszeichen für die fortgesetzte Addition. a i = a 1 + a a n (2.2) In der Gleichung (2.2) bezeichnet man i als Summationsindex, der hier mit Eins beginnt und jeweils um eins hochgezählt wird bis die Obergrenze n erreicht ist. Der Index i kann mit jeder ganzen Zahl beginnen und enden. Beispiel x i = x 2 + x 1 + x 0 + x 1 i= 2 Mit negativen Indizes werden in der Ökonomie oft Werte aus der Vergangenheit, mit positiven Indizes zukünftige Werte und mit dem Index Null der Wert der Gegenwart bezeichnet. Das Summenzeichen ist nützlich, um größere Summen übersichtlich darzustellen, deren Wert zu berechnen ist. Es gelten die folgenden Rechenregeln, die sich aus den Rechengesetzen ergeben: Gleiche Summationsgrenzen a i + b i = (a i + b i ) Additive Konstante Beispiel 2.7. (a i + c)= a i + nc 10 ( ai + 4 ) 10 =(a 1 + 4)+...+(a )= a i

8 28 2 Funktionen Multiplikative Konstante ca i = c Beispiel 2.8. Es wird der Index als Variable verwendet. Um eine Verwechselung mit den imaginären Zahlen zu vermeiden, wird der Index k gewählt. Summenzerlegung 4 3k 2 = 3 k=1 a i = a i 4 k 2 = 3 ( ) = 90 k=1 m a i + i=m+1 a i für m < n Beispiel 2.9. Es werden für die Variablen a i folgende Werte angenommen: 5 a i = a 1 = 2,a 2 = 1,a 3 = 2,a 4 = 2,a 5 = 3 3 a i + 5 a i = = 10 i=4 Das Summenzeichen kann auch doppelt oder mehrfach hintereinander auftreten. Zwei Summenzeichen treten zum Beispiel hintereinander auf, wenn in einer Tabelle alle Werte addiert werden sollen. Die Zeilen einer Tabelle werden in der Regel mit i indiziert und die Spalten einer Tabelle mit j. Die Werte in den Tabellenfeldern werden dann mit a ij bezeichnet (siehe Tabelle 2.1). Tabelle 2.1: Zweidimensionale Tabelle mit Randsummen a 11 a 1 j a mj=1 1m a 1 j a i1 a ij a mj=1 im a ij a n1 a nj a mj=1 nm a nj n a i1 n a ij n a n mj=1 im a ij Wie in der oben stehenden Tabelle ersichtlich, können mit der Doppelsumme alle Werte der Tabelle addiert werden. Dabei ist es egal, ob erst die Zeilen und dann die Spalten addiert werden oder umgekehrt. m m m m a 1 j + a 2 j + + a nj = j=1 j=1 j=1 a ij j=1

9 2.4 Besondere mathematische Funktionen 29 a i1 + a i2 + + a im = j=1 m a ij = m j=1 m j=1 a ij a ij Lediglich die Reihenfolge der Summation ist unterschiedlich. Nach dem ersten Kommutativgesetz führt dies zu keiner Ergebnisänderung. Beispiel j=1 3 (b ij + i j)=(b )+(b )+(b ) +(b )+(b )+(b ) 2 3 = 18 + b ij j=1 Übung 2.1. Berechnen Sie folgende Ausdrücke für x = 5,2,1,2 und y = 1,2,3,4: 4 x i 4 x i y i 4 ( xi + 3 ) Übung 2.2. Berechnen Sie die folgenden Summen: 5 5 ( 1 (n 1) 2 (n + 2) k 1 ) k + 1 n=2 Übung 2.3. Ist die Doppelsumme gleich der Summe 2 2 x ij j=1 2 x i j=1 k=1 2 x j?

10 30 2 Funktionen Produktzeichen Das Produktzeichen steht als Wiederholungszeichen für die fortgesetzte Multiplikation. n a i = a 1 a 2 a n Das Produktzeichen wird wie das Summenzeichen zur übersichtlicheren Darstellung von größeren Produkten verwendet. Es gelten die folgenden Rechenregeln, die sich leicht aus den elementaren Rechenoperationen ableiten lassen: Gleiche Produktgrenzen n n n a i b i = a i Multiplikative Konstante n n c a i = c n b i a i Anmerkung: Im Text wird das Produktzeichen soweit es eindeutig ist durch einen kleinen Freiraum ersetzt. a b = ab Übung 2.4. Berechnen Sie folgende Ausdrücke für x = 5,2,1,2: 4 x i 5 i 4 2x i Übung 2.5. Schreiben Sie das Doppelprodukt aus. 2 2 j=1 x ij Betragsfunktion Die Betragsfunktion liefert von einer reellen Zahl deren vorzeichenlosen Zahlenwert. { x für x 0 x = x für x < 0 Anschaulich kann der Betrag x als der Abstand auf der Zahlengeraden zwischen 0 und x interpretiert werden. Beim Rechnen mit Beträgen ist Folgendes zu beachten. Für x 0 gilt: x y = x y

11

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

2 Besondere mathematische Funktionen

2 Besondere mathematische Funktionen 2 Besondere mathematische Funktionen Inhalt 2.1 Vorbemerkung......... 19 2.2 Summenzeichen... 20 2.3 Produktzeichen......... 23 2.4 Betragsfunktion... 23 2.5 Ganzzahlfunktion....... 24 2.6 PotenzenundWurzeln...

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren.

unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. Funktionsbegriff 2.1 2 Funktionen mit einer unabhängigen Variablen 2.1 Funktionsbegriff Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. In den Wirtschaftswissenschaften

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER 2016 1 / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty Diese Vorlesung: Mengen Reelle Zahlen Elementare Funktionen Anwendungsbeispiel:

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81

Kapitel 5. Reelle Funktionen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 5 Reelle Funktionen 1 / 81 Kapitel 5 Reelle Funktionen Josef Leydold Auffrischungskurs Mathematik WS 207/8 5 Reelle Funktionen / 8 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}.

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}. Grundlagen. Zahlen, Mengen und Symbole In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. Zahlenmengen Die Menge N der natürlichen Zahlen ist gegeben durch N =

Mehr

Mathematik I Herbstsemester 2018 Kapitel 1: Funktionen

Mathematik I Herbstsemester 2018 Kapitel 1: Funktionen Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 23 1. Funktionen Definition einer Funktion Darstellungsformen einer Funktion Funktionseigenschaften Nullstellen

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Etwa mehr zu Exponential- und Logarithmusfunktion

Etwa mehr zu Exponential- und Logarithmusfunktion Etwa mehr zu Exponential- und Logarithmusfunktion Will man einen Logarithmus definieren, so liegt es nahe, diesen als Umkehrfunktion zur Exponentialfunktion zu definieren. Solch eine kann es aber nicht

Mehr

2 Von der Relation zur Funktion

2 Von der Relation zur Funktion 2 Von der Relation zur Funktion 2.1 Relationen Gegeben seien zwei Zahlenmengen P = 1, 2, 3, 4 und Q = 5, 6, 7. Setzt man alle Elemente der Menge P in Beziehung zu allen Elementen der Menge Q, nennt man

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1 .1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

Repetitionsaufgaben: Einführung des Begriffes Funktion

Repetitionsaufgaben: Einführung des Begriffes Funktion Kantonale Fachschaft Mathematik Repetitionsaufgaben: Einführung des Begriffes Funktion Zusammengestellt von Jörg Donth, KSR Lernziele: - Sie kennen die Begriffe Funktion, Funktionswert, Argument der Funktion,

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}.

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}. 1 1 Grundlagen 1.1 Zahlen, Mengen und Symbole In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. Zahlenmengen Die Menge N der natürlichen Zahlen ist gegeben durch

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 2 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 22 1 Funktionen Definitionen

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Vorkurs Mathematik Grad n p(x) =a n x n + a n 1 x n 1 +...+ a 1 x + a 0 führender Koeffizient Absolutglied a n, a n 1,..., a 1, a 0... Koeffizienten a n = 1... normiertes Polynom

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 2 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Der Logarithmus als Umkehrung der Exponentiation

Der Logarithmus als Umkehrung der Exponentiation Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition

Mehr

Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Funktionen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Informationen - Überblick Datei Nr. 800 Stand:

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3]

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] 13 3. Funktionen 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] Definition 1. A und B seien Mengen. a Eine Abbildung (oder Funktion f von A nach B (Schreibweise: f: A B ist eine Vorschrift, die jedem x A genau

Mehr

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet:

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: Abbildung Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: f : A B. Für die Elementzuordnung verwendet

Mehr

Definitions- und Wertebereich von Funktionen und Relationen

Definitions- und Wertebereich von Funktionen und Relationen Definitions- und Wertebereich von Funktionen und Relationen -E -E2 -E3 Wiederholung: Definition einer Funktionen Definition: Unter einer Funktion versteht man eine Vorschrift, die jedem Element x aus einer

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander

Mehr

a x = y log a : R >0 R,

a x = y log a : R >0 R, 1.2.3 Gruppenhomomorphismen Es sei a > 1 eine reelle Zahl. Der Logarithmus von x R >0 zur Basis a ist bekanntlich diejenige Zahl y R, für die die Gleichung a x = y gilt. Man schreibt auch y = log a (x).

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Funktionen und andere Zuordnungen

Funktionen und andere Zuordnungen Funktionen und andere Zuordnungen Rainer Hauser November 2011 1 Allgemeine Zuordnungen 1.1 Pfeildarstellung von Zuordnungen Sätze wie Das ist der Schlüssel zu diesem Schloss und Hänsel ist der Bruder von

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Lektion 7: Einführung in den Funktionsbegriff

Lektion 7: Einführung in den Funktionsbegriff Lektion 7: Einführung in den Funktionsbegriff Definition 1: Eine Funktion ist eine eindeutige Zuordnung. Jedem Wert des Definitionsbereiches ID f der Funktion (meistens die Menge der x-werte ) wird genau

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Analysis Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester 2013 Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Vorwort Die modernen Wirtschaftswissenschaften nutzen in

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =

Mehr

Kapitel 4. Abbildungen = Funktionen. Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit

Kapitel 4. Abbildungen = Funktionen. Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit Kapitel 4 Abbildungen = Funktionen 4.1 Abbildungen Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit b) Volumen eines Würfels von der Kantenlänge c) Alkoholgehalt

Mehr

Mathematik für Studienanfänger

Mathematik für Studienanfänger Mathematik für Studienanfänger von Dr. G. Tinhofer mit 191 Bildern Carl Hanser Verlag München Wien 1977 Kapitel 1: Grundbegriffe der Mathematik 1 1.1 Mengen 1 1.2 Eigenschaften von Objekten - Eigenschaften

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

2. Funktionen einer Variablen

2. Funktionen einer Variablen . Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.

Mehr

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Kapitel 3 Relationen, Ordnung und Betrag

Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Mathematischer Vorkurs TU Dortmund Seite 27 / 254 Kapitel 3 Relationen, Ordnung und Betrag Definition 3.1 (Relationen)

Mehr

Grundlagen komplexe Zahlen. natürliche Zahlen

Grundlagen komplexe Zahlen. natürliche Zahlen Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Einführungsbeispiel Kostenfunktion

Einführungsbeispiel Kostenfunktion Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen

Mehr

Funktionen. Aufgabe 1. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? (b) f : Z Z, f(x) = x 3. (d) f : R R 0, f(x) = x 2

Funktionen. Aufgabe 1. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? (b) f : Z Z, f(x) = x 3. (d) f : R R 0, f(x) = x 2 TH Mittelhessen, Wintersemester 013/014 Lösungen zu Übungsblatt 4 Fachbereich MNI, Diskrete Mathematik 1./13./14. November 013 Prof. Dr. Hans-Rudolf Metz Funktionen Aufgabe 1. Welche der folgenden Abbildungen

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr