Erste Ergebnisse zur Anpassung eines intra-individuellen Modells an Querschnittsdaten zur Onchozerkose

Größe: px
Ab Seite anzeigen:

Download "Erste Ergebnisse zur Anpassung eines intra-individuellen Modells an Querschnittsdaten zur Onchozerkose"

Transkript

1 Erste Ergebnisse zur Anpassung eines intra-individuellen Modells an Querschnittsten zur Onchozerkose Hans-Peter Dürr & Martin Eichner Institut für Medizinische Biometrie 21. Januar 00

2 Mikrofilarien in Abhängigkeit von Wurmlast und Wirtsalter Anzahl adulter Würmer W Mikrofilarien [pro mg] W Anzahl adulter Würmer Mikrofilarien [pro mg] age age Liberia Burkina Faso

3 Grundmodell (a) W M I W M + I I Adultwürmer dw Mikrofilarien dm Immunität di ( a) W W W ( M I) M ( M I) M

4 Grundmodell für Adultwürmer (a) W W B B D Übertragung von Würmern dw Würmer werden braun db dd (a( a) W W W W B B Würmer sterben und verkalken B B Anzahl Würmer [pro Person] W 30 8 B D des Menschen [Jahre]

5 1 fertile dead brownish Burkina Faso (Savanne) n=87 Liberia (Regenwald) n= immatur dead fertile 0 ohne imm

6 Grundmodell für Adultwürmer n w,b,d n w,b,d Anzahl Personen mit w intakten Würmern b braunen Würmern d toten Würmern

7 Grundmodell für Adultwürmer n w,b,d W w W (w+1) n w-1,b+1,d n w+1,b-1,d wird braun Ein intakter Wurm wird mit einer Rate w braun

8 Grundmodell für Adultwürmer B (b+1) n w,b,d B b W w W (w+1) n w-1,b+1,d n w+1,b-1,d wird braun n w,b+1,d-1 n w,b-1,d+1 verkalkt Ein brauner Wurm verkalkt mit einer Rate B

9 Grundmodell für Adultwürmer Mensch stirbt H (a)+w B (b+1) n w,b,d B b W w W (w+1) n w-1,b+1,d n w+1,b-1,d wird braun n w,b+1,d-1 n w,b-1,d+1 verkalkt Menschen sterben normalerweise mit einer Rate H (a). Zusätztlich erhöht jeder Wurm w die Sterberate um

10 Grundmodell für Adultwürmer Neuinfektion n w+c,b,d n w-c,b,d Mensch stirbt H (a)+w (a) (a) n w,b,d B (b+1) B b W w W (w+1) n w-1,b+1,d n w+1,b-1,d wird braun n w,b+1,d-1 verkalkt n w,b-1,d+1 Menschen werden mit einer Rate (a) infiziert. Bei einer Infektion kommen mit Wahrscheinlichkeit p c c = 1, 2, 3,... neue Würmer hinzu

11 Grundmodell für Adultwürmer Neuinfektion n w+c,b,d n w-c,b,d Mensch stirbt H (a)+w (a) (a) n w,b,d B (b+1) B b W w W (w+1) n w-1,b+1,d n w+1,b-1,d wird braun d n c1 w, b, d ( a) ( a) p c n w c, b, d n w,b+1,d-1 w c1 ( a) p ( a) c W verkalkt ( w W w 1) n n w,b-1,d+1 b B w 1, b1, d H w n ( a) ( b B w, b, d 1) n ( a) w, b1, d 1 ( a)

12 Verwendung des Grundmodells Numerische Lösung von n w,b,d (a) 3 unpraktisch, Gleichungen Stochastische Simulation Moment Closure Modellierung Berechnung der Mittelwerte, Stanrbweichungen und der höheren Momente von intakten, braunen und toten Würmern

13 Moment Closure (1): Allgemeines Es sei P(z=i) = p i die Wahrscheinlichkeit für s Ereignis z = i. Dann heißt i P( x) p i x i 0 die wahrscheinlichkeitserzeugende Funktion (pgf) von Z. Den Mittelwert der Zufallsvariable Z erhält man durch die erste Ableitung der pgf an der Stelle x=1: m Z P'(1) i p i i 0 Entsprechend erhält man die Varianz von Z durch 2 Z P' (1) P''(1) P '(1) 2

14 Moment Closure (2): Grundmodell Für die Anzahl von Personen n w,b,d (a) mit w intakten, b braunen und d toten Würmern ist die pgf P( a, x, y, z) w0b0 d0 nw, b, d ( a) x S( a) wobei S(a) die Anzahl der Personen ist, die im a noch am Leben sind. Durch Ableitung der pgf nach x, y und z erhält man (analog zum univariaten Fall) für x=y=z=1 die Mittelwerte, Varianzen und Covarianzen der Zufallsvariablen W, B und D. Höhere Momente Approximation durch Verteilungsannahme w y b z d

15 Moment Closure (2): Grundmodell Für die Anzahl von Personen n w,b,d (a) mit w intakten, b braunen und d toten Würmern ist die pgf P( a, x, y, z) w0b0 d0 nw, b, d ( a) x S( a) Problem: n w,b,d (a) ist nicht bekannt, sondern nur die Ableitung dn ( a w, b, d ) (1) Leite P(a,x,y,z) nach x, y und z ab (2) Setze x=y=z=1 Mittelwerte, Varianzen, etc. (3) Leite s Ergebnis nach a ab und setze dn w,b,d / ein (4) Man erhält Gleichungen für Mittelwerte und Varianzen w y b z d

16 Moment Closure (3): Grundmodell Man erhält ein System von Differentialgleichungen für die Mittelwerte und Varianzen von W, B und D W W mittlere Anzahl Würmer pro Vektor dmw mc ww wm Mittelwert intakter Würmer w d WW d WB Varianz von W Covarianz W,B B B dmb wmw WB Bm Mittelwert brauner Würmer B d BB d BD Varianz von B Covarianz B,D D dmd BmB WD Mittelwert toter Würmer d DD... Varianz von D

17 Moment Closure (4): Maximum Likelihood W W B B Bei vorgegebenen Modellparametern können für jedes die Mittelwerte und Varianzen der diversen Wurmtypen berechnet werden Damit kann die Likelihood der Daten berechnet werden Allerdings muss man zu eine Verteilungsannahme machen D

18 Moment Closure (5): Schätzung Verteilungsannahme multivariate Normalverteilung Spezifikation von (a)p c (Adultwurm-Input): Übertragungsrate steigt mit dem sigmoid an Wurminput hat negative Binomialverteilung Gruppierung der Daten in sklassen mit etwa gleich vielen Beobachtungen Minimierung des quadratischen Abstandes ( 2 -Kriterium) zwischen beobachteten und erwarten Mittelwerten, Varianzen etc.

19 Burkina Faso (Savanne) Moment Closure 6 BF: Schätzwerte 30 mean W Var W mean B Var B mean D Var D W = 0,012/Jahr Verweiluer W = 83 J. B = 0,083 Verweiluer B = 12 J. D 0 (nicht geschätzt) = 0,0029 Wurm-induzierte Mortalität 70 Cov WB Cov BD Cov WD

20 Moment Closure 6 BF: Schätzwerte (a) [pro Jahr] a [Jahre] e ( ) ( aa) p c ist negativ binomial verteilt mit Mittelwert m c und Varianz 2 c mc 1 m k c W = 0,012/Jahr Verweiluer W = 83 J. B = 0,083 Verweiluer B = 12 J. D 0 (nicht geschätzt) = 0,0029 Wurm-induzierte Mortalität A = 1,5; = 1,9 Wendepunkt u. Steig. (a) m c = 1,8 mittl. Wurmzahl / Vektor k = 0,23 Param. f. neg. Binomialv.

21 Liberia (Regenwald) Moment Closure 6 Lib: Schätzwerte 1.4 mean L Var L Cov LW mean W Var W mean D Var D Cov WD Cov LD mw := 1.73 mb := a := - 8 mc := 2.44 k = sc 2 := mc 1 + m C k A:= 14.9 b := 0.22 j a := 1 1+E -b a- A md := 0. * LI* LS:= altersabh. Exposition:

22 Moment Closure (7 BF + Lib): Normalverteilung (ohne sgruppen) 1 BF: fertile BF: dead BF:Exposition LI:Exposition LI: fertile LI: dead

23 Moment Closure (8 BF): Negative Binomialverteilung 60 Var W Varianz BF: fertile Anzahl Adultwürmer Burkina Faso (Savanne)

24 Moment Closure (8 Lib): Negative Binomialverteilung 50 Var W Varianz LI: fertile Anzahl Adultwürmer Liberia (Regenwald)

25 Hans-Peter Duerr Universität Tübingen Institut für Medizinische Biometrie

Der Parasit im Lebenslauf des Menschen:

Der Parasit im Lebenslauf des Menschen: Der Parasit im Lebenslauf des Menschen: die Modellierung von Querschnittsdaten zur Flussblindheit in Afrika Hans-Peter Dürr Martin Eichner, Klaus Dietz, Hartwig Schulz-Key Institut für Medizinische Biometrie,

Mehr

Simulationsbasierte Maximum-Likelihood Schätzung epidemiologischer Parameter

Simulationsbasierte Maximum-Likelihood Schätzung epidemiologischer Parameter Simulationsbasierte Maximum-Likelihood Schätzung epidemiologischer Parameter Hans-Peter Dürr Martin Eichner, Klaus Dietz 20. Juni 2001 Institut für Medizinische Biometrie Universität Tübingen Universitätsklinikum

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Mathematische Grundlagen (Bayes sches Lernen)

Mathematische Grundlagen (Bayes sches Lernen) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Mathematische Grundlagen (Bayes sches Lernen) Tobias Scheffer Michael Großhans Paul Prasse Uwe Dick Anwendungsbeispiel 1: Diagnostik

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 8.04.009 1 Inhalt der heutigen Vorlesung Zusammenfassung der letzten Vorlesung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Statistik für Bachelorund Masterstudenten

Statistik für Bachelorund Masterstudenten Walter Zucchini Andreas Schlegel Oleg Nenadic Stefan Sperlich Statistik für Bachelorund Masterstudenten Eine Einführung für Wirtschaftsund Sozialwissenschaftler 4y Springer 1 Der Zufall in unserer Welt

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare 17.1.3 Die Momentenmethode Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare Lösungen. Sei ϑ = (ϑ 1,...,ϑ s ) der unbekannte, s-dimensionale

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Lineare Regression und Varianzanalyse

Lineare Regression und Varianzanalyse Lineare Regression und Varianzanalyse Von Prof. Dr. Fritz Pokropp Universität der Bundeswehr Hamburg R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Grundstruktur linearer Modelle

Mehr

Stochastik Praktikum Parametrische Schätztheorie

Stochastik Praktikum Parametrische Schätztheorie Stochastik Praktikum Parametrische Schätztheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 05.10.2010 Prolog Momentenmethode X : Ω 1 Ω Zufallsgröße, die Experiment beschreibt. Ein statistisches

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Influenza-Interventionserfolg und Kontaktnetzwerke in der Bevölkerung

Influenza-Interventionserfolg und Kontaktnetzwerke in der Bevölkerung Influenza-Interventionserfolg und Kontaktnetzwerke in der Bevölkerung Hans-Peter Duerr Markus Schwehm, Chris Leary 2, Martin Eichner Institut für Medizinische Biometrie, Universität Tübingen 2 Dept. of

Mehr

Bedingte Wahrscheinlichkeiten: Ein Baumdiagramm der nachstehenden Art bzw. die zugehörige Vierfeldertafel gibt jeweils absolute Häufigkeiten an.

Bedingte Wahrscheinlichkeiten: Ein Baumdiagramm der nachstehenden Art bzw. die zugehörige Vierfeldertafel gibt jeweils absolute Häufigkeiten an. Bedingte Wahrscheinlichkeiten: Ein Baumdiagramm der nachstehenden Art bzw. die zugehörige Vierfeldertafel gibt jeweils absolute Häufigkeiten an. Interpretiert man die numerischen Einträge als Beschreibungen

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren Kapitel 9 Schätzverfahren und Konfidenzintervalle 9.1 Grundlagen zu Schätzverfahren Für eine Messreihe x 1,...,x n wird im Folgenden angenommen, dass sie durch n gleiche Zufallsexperimente unabhängig voneinander

Mehr

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98

Inhaltsverzeichnis. 4 Statistik Einleitung Wahrscheinlichkeit Verteilungen Grundbegriffe 98 Inhaltsverzeichnis 1 Datenbehandlung und Programmierung 11 1.1 Information 11 1.2 Codierung 13 1.3 Informationsübertragung 17 1.4 Analogsignale - Abtasttheorem 18 1.5 Repräsentation numerischer Daten 20

Mehr

3.2 Maximum-Likelihood-Schätzung

3.2 Maximum-Likelihood-Schätzung 291 Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen. 292 3.2.1 Schätzkonzept Maximum-Likelihood-Prinzip: Finde

Mehr

Prüfungsfächer: Die Prüfung erstreckt sich auf die folgenden Prüfungsfächer: Maß- und Integrationstheorie Wahrscheinlichkeitstheorie Statistik

Prüfungsfächer: Die Prüfung erstreckt sich auf die folgenden Prüfungsfächer: Maß- und Integrationstheorie Wahrscheinlichkeitstheorie Statistik B Zulassungsprüfung in Stochastik Zielsetzung: Durch die Zulassungsprüfung in Stochastik soll der Nachweis geführt werden, dass die Bewerber über solide Grundkenntnisse in Wahrscheinlichkeitstheorie und

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

7.2 Theoretische Kennwerte

7.2 Theoretische Kennwerte 7.2 Theoretische Kennwerte Theoretische Varianz und Standardabweichung Definition und Notation Verschiebungsformel für die theoretische Varianz 391 7.2 Theoretische Kennwerte Interpretation der theoretischen

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

DWT 314/460 csusanne Albers

DWT 314/460 csusanne Albers 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schatzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schatzvariablen fur Parameter von Verteilungen. Sei ~X = (X 1 ; : : : ; X n ):

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. Juli 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Kapitel 1: Deskriptive und explorative Statistik Empirische Verteilungsfkt (S15): Quantile (S24): Bei Typ7 1.Pkt = 0 Danach 1/(n-1) Median (S24):

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst.

Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst. 2.7 Validierung durch Backtesting Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst. Modell besteht im Wesentlichen aus zwei Faktoren: 1. Einflussgrößen 2. Modellierungsalgorithmus

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Was machen wir in der Vorlesung? Testen und Lineares Modell Was machen wir zu Beginn: Wir wiederholen und vertiefen einige Teile aus der Statistik I: Konvergenzarten

Mehr

VU mathematische methoden in der ökologie: räumliche verteilungsmuster 1/5 h.lettner /

VU mathematische methoden in der ökologie: räumliche verteilungsmuster 1/5 h.lettner / VU mathematische methoden in der ökologie: räumliche verteilungsmuster / h.lettner / Analyse räumlicher Muster und Verteilungen Die Analyse räumlicher Verteilungen ist ein zentrales Gebiet der ökologischen

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Statistik in Geodäsie, Geoinformation und Bauwesen

Statistik in Geodäsie, Geoinformation und Bauwesen Wilhelm Benning Statistik in Geodäsie, Geoinformation und Bauwesen 2., überarbeitete und erweiterte Auflage Herbert Wichmann Verlag Heidelberg Matrix-Theorie 1 1.1 Matrizen und Vektoren 1 1.2 Matrixverknüpfungen

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz:

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Kapitel VI - Maximum-Likelihood-Schätzfunktionen

Kapitel VI - Maximum-Likelihood-Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VI - Maximum-Likelihood-Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0.

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0. Übungsbeispiele. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei { für und f(,) sonst (a) Skizzieren Sie die Dichtefunktion. f(,) (b) Berechnen Sie P(.5,.75) Lösung:.75 Volumen über schraffierter

Mehr

Mathematische Modelle in der Infektionsepidemiologie

Mathematische Modelle in der Infektionsepidemiologie Düsseldorf, 26. Januar 2007 Mathematische Modelle in der Infektionsepidemiologie Hans-Peter Duerr Institut für Medizinische Biometrie Klinikum der Universität Tübingen Programm Theoretische Grundlagen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

How To Find Out If A Ball Is In An Urn

How To Find Out If A Ball Is In An Urn Prof. Dr. P. Embrechts ETH Zürich Sommer 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Rechnernutzung in der Physik

Rechnernutzung in der Physik Vorlesung: Rechnernutzung in der Physik Parameteranpassung mit der Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Christoph Sawade/Niels Landwehr/Tobias Scheffer Überblick Problemstellung/Motivation Deterministischer i ti Ansatz:

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 13.10.2017 Wir gehen stets von einem Wahrscheinlichkeitsraum Ω,A,P aus. Aufgabe 1 15 Punkte Seien a,b > 0 und x,y fest. Gegeben sei das Maß µ : B 1 [0,, µa := a1 A x+b1 A

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Sonntag, 16. Mai 2010

Sonntag, 16. Mai 2010 ÖLV 2021/10 30. H f d S Sg, 16. M 2010 21. WALDVIERTLER LÄUFERCUP S/Z: Sppz Bdsgymsm H Bfz HOBBYLAUF 5km Bfz NORDIC WALKIN 5km HAUPTLAUF 10km NACHWUCHSLÄUFE 300m - 1500m Bfz STAFFELLAUF 2 x 2,5km 09.30

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

10 Statistisches Schätzen

10 Statistisches Schätzen 10 Statistisches Schätzen 620 10 Statistisches Schätzen 10.1 Punktschätzung 623 10.1.1 Schätzer und ihre Gütekriterien 623 10.1.2 Erwartungstreue 627 10.1.3 Erwartete quadratische Abweichung (MSE) 634

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Christoph Sawade/Niels Landwehr Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Christoph Sawade/Niels Landwehr Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Tobias Scheffer Überblick Wiederholung: Konfidenzintervalle Statistische Tests

Mehr

Uwe Hassler. Statistik im. Bachelor-Studium. Eine Einführung. für Wirtschaftswissenschaftler. ^ Springer Gabler

Uwe Hassler. Statistik im. Bachelor-Studium. Eine Einführung. für Wirtschaftswissenschaftler. ^ Springer Gabler Uwe Hassler Statistik im Bachelor-Studium Eine Einführung für Wirtschaftswissenschaftler ^ Springer Gabler 1 Einführung 1 2 Beschreibende Methoden univariater Datenanalyse 5 2.1 Grundbegriffe 5 2.2 Häufigkeitsverteilungen

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Elementare Stochastik

Elementare Stochastik Mathematik Primarstufe und Sekundarstufe I + II Elementare Stochastik Mathematische Grundlagen und didaktische Konzepte Bearbeitet von Herbert Kütting, Martin J. Sauer, Friedhelm Padberg 3. Aufl. 2011.

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen

Vorwort zur fünften Auflage. Liste der Beispiele. Häufig benutzte Symbole und Bezeichnungen Vorwort zur fünften Auflage Liste der Beispiele Häufig benutzte Symbole und Bezeichnungen v xiv xvii 1 Einleitung 1 1.1 Typische Aufgaben der Datenanalyse 1 1.2 Zum Aufbau dieses Buches 2 1.3 Zu den Programmen

Mehr

Seminar: Statistische Methoden in der Infektionsepidemiologie

Seminar: Statistische Methoden in der Infektionsepidemiologie Seminar: Statistische Methoden in der Infektionsepidemiologie Verzweigungsprozess-Modelle für surveillance von infektiösen Krankheiten, kontrolliert durch Massenimpfung 1 1. Einleitung Impfprogramme zur

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Zeitreihenanalyse in den Wirtschafts Wissenschaften

Zeitreihenanalyse in den Wirtschafts Wissenschaften Klaus Neusser Zeitreihenanalyse in den Wirtschafts Wissenschaften 2., aktualisierte Auflage STUDIUM VIEWEG+ TEUBNER Abbildungsverzeichnis Tabellenverzeichnis Zeichenerklärung XI XIII XV I Univariate Zeitreihenanalyse

Mehr

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe

UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe UE Statistische Mustererkennung WS 2018 Angaben zur 2ten Aufgabengruppe 1 Aufgabe UE-II.1 Generieren Sie je 1000 Stichproben (samples) mit Umfang 5/30/100/500 für die Normalverteilung N(µ, σ 2 ) = N(4,

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Pearson- Korrelationskoeffizienten höherer Grade

Pearson- Korrelationskoeffizienten höherer Grade Pearson- Korrelationskoeffizienten höherer Grade Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 13. März 2014 Letzte Revision: 16. März 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Der Lineare Korrelationskoeffizient

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr