1 Mathematische Grundlagen der Robotik

Größe: px
Ab Seite anzeigen:

Download "1 Mathematische Grundlagen der Robotik"

Transkript

1 Robotik - Formelsammlung (powered by LTEX) Seite von 8 Mathematische Grundlagen der Robotik. TI Taschenrechner Befehle [x, x ; x, x ] [ x x ] x x [...] Inverse Matrix [...] (ND CTLOG) T Transponierte Matrix [...] T. Matritzenrechnen.. Vektoren im Raum p B = x B x y B y z B z Transponierung: a T b = (a a... a n ).. Matrizen Multiplikation ( muss gleich viele Spalten haben wie B Zeilen hat). Übersicht Transponierte Matrix: T = [a T ik ] = [a ki] vertauschen der Zeilen mit Spalten Einheitsmatrix: I n = Determinante x Matrix x Matrix [ ] a a det = a a a a a a. a a a det a a a = a a a + a a a + a a a a a a a a a a a a. a a a Null ( = 0) - Wenn eine (n,n)-matrix ist, so wird = 0 unter einer der folgenden Bedingungen: Zwei Zeilen/Spalten sind linear abhängig (gleich oder ein Vielfaches der anderen). lle Elemente einer Zeile/Spalte sind Null. Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

2 Robotik - Formelsammlung (powered by LTEX) Seite von 8.5 Inverse Matrix (Existiert nur wenn Matrix regulär: det 0) x Matrix: [ ] [ ] a b d b = = c d ad bc c a x Matrix: = a b c d e f g h i = ei fh ch bi bf ce fg di ai cg cd af det() dh eg bg ah ae bd.6 Basis Rotationsmatrizen Rotation um die x-chse 0 0 R x (θ) = 0 cosθ sinθ 0 sinθ cosθ Rotation um die y-chse cosβ 0 sinβ R y (β) = 0 0 sinβ 0 cosβ Rotation um die z-chse cosα sinα 0 R z (α) = sinα cosα ufeinanderfolgende Rotationen Koordinatensysteme {}, {B}, {C} mit gleichem Ursprung Körperfestkoordinatensystem (Eulerwinkel) B p = B C R Cp p = B R Bp p = C R Cp C R = B R BC R Raumfestkoordinatensystem ( Roll-Gier-Nick Winkel) B p = B RB C R C R Cp p = B R Bp p = C R Cp C R = B C R B R.8 Konvention rctan : Θ = arctan( y x ) : Θ = + arctan( y Θ = arctan (y, x) = x ) : Θ = + arctan( y x ) 4: Θ = arctan( y x ) sin {}}{ θ = arctan( y, cos {}}{ x ) 4 θ = arctan( y x ) θ = + arctan( y x ) θ = + arctan( y x ) θ = arctan( y x ) 0 θ θ θ θ 0 für +y, +x für +y, x für y, x für y, +x θ = für x = 0, y > 0 θ = für x = 0, y < 0 θ = 0 für x = 0, y = 0 rctan mit TR: R P θ(x, Y ) CHTUNG: X und Y sind vertauscht!!!.9 Rücktransformation auf Winkel Raumfestes Koordinatensystem (X-Y-Z Roll-Gier-Nick Winkel) Rotationsmatrix: B R(α, β, γ) = r r r r r r r r r nsatz: cosβ = r + r sinβ = r Winkel: β = arctan( r, r + r ) α = arctan( r cosβ, r cosβ ) γ = arctan( r cosβ, r cosβ ) wenn β = 90 : α = 0, γ = arctan(r, r ) wenn β = 90 : α = 0, γ = arctan(r, r ) Körperfestes Koordinatensystem (Z-Y-Z Euler Winkel) Rotationsmatrix: B R(α, β, γ) = r r r r r r r r r nsatz: sinβ = r + r cosβ = r Winkel: β = arctan( r + r, r ) α = arctan( r sinβ, r sinβ ) γ = arctan( r sinβ, r sinβ ) wenn β = 0 : α = 0, γ = arctan( r, r ) wenn β = 80 : α = 0, γ = arctan(r, r ) Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

3 Robotik - Formelsammlung (powered by LTEX) Seite von 8.0 Transformations Matrix.0. ufbau (RotationsMatrix und Verschiebung in einer Matrix) r r r o ab Transformationsmatrix: T = r r r o ab x = bei Ortsvektor r r r o ab x = 0 bei Feiem Vektor x.0. Multiplikation Transformations Matrix über mehrere Koordinatensysteme: 0 nt = 0 T T... n n T; B T Transformationsmatrix von Koordinatensystem nach B.0. Punkte in verschiedenen Koordinatensystemen B P = B T P P = B T BP = B T BP. Jacobi Matrix (erklärt durch Beispiel) Die Jacobi-Matrix eines Roboterarms beschreibt die bbildung von Gelenkgeschwindigkeiten auf die Lineargeschwindigkeit des TCP und die zeitlichen Änderungen der Orientierung des End-Effektors bezogen auf ein Referenzkoordinatensystemk z.b. auf das Basiskoordinatensystem O auf. In der Positionsbeschreibung werden alle Parameter die einen Einfluss auf den Greifer haben aufgestellt und dann für die Jakobi-Matrix nach diesen Partiell abgeleitet. Für die Jacobi Matrizen empfehlen sich Kurzschreibweisen c = cos(θ + θ ) s = sin(θ + θ ).. Vorwärtskinematik Geg: Gelenkkoordinaten und Geschwindigkeiten: q; ẋ Ges: Geschwindigkeit des Endeffektors: Ẋ = [ẋẏż α β γ] T Lsg: Jacobi-Matrix = Ẋ = J(q) q Positionsbeschreibung [ ] [ des Endeffektors: ] xe d cosθ = + l cos(θ + θ ) und Φ y e d sinθ + l sin(θ + θ ) e = θ + θ Jacobi-Matrix: J = x e θ y e θ Φ e θ x e d y e d Φ e d x e θ y e θ Φ e θ d sin(θ ) l sin(θ + θ ) cos(θ ) l sin(θ + θ ) = d cos(θ ) + l cos(θ + θ ) sin(θ ) l cos(θ + θ ) 0.. Rückwertskinematik Geg: Geschwindigkeiten des Endeffektors: ẋ Ges: Gelenkgeschwindigkeiten: q Lsg: Jacobi-Matrix = q = J ẋ Singularität: Die Jacobi-Matrix kann in singulären Stellungen nicht invertiert werden (d.h. die Determinante von J ist 0) und der Roboter kann in bestimmten Richtungen keine Bewegungen vornehmen. Mehr: Skript-Kinematik (S. ff) & UB5 Bahnplanung (ufg. )) Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

4 Robotik - Formelsammlung (powered by LTEX) Seite 4 von 8. Denavit-Hartenberg blauf:. Gelenke nummerieren in aufsteigender Reihenfolge. Starten in der Basis mit Nummer null.. Jeden chskörper mit Koordinatensystem belegen.. Die z i -Koordinatenachse muss mit der i+ Gelenkachse zusammenfallen. 4. Die x i -chse liegt entlang der Normalen zwischen der z i und z i -chse und zeigt vom Gelenk i zum Gelenk i+. 5. y i -chsen vervollständigen mit der Rechten-Hand-Regel. (x:daumen, y:zeigfinger, z:mittelfinger) 6. Festlegen der DH-Parameter (siehe DH-Parameter) und eintragen in DH-Tabelle. 7. DH-Matrizen berechnen und miteinander mulitplizieren. nmerkung Koordinatensysteme: z i -chse muss grundsätzlich mit Bewegungsachse des zugehörigen chskörper zusammenfallen. Bei Rotationsgelenken gilt die Rechte-Handregel für Drehungen. Ursprung des Koordinatensystems im Schnittpunkt der Bewegungsachsen. DH-Parameter: Linklänge a i (Fixwert): Linkdrehung α i (Fixwert): Link Offset d i (Variable): Gelenkwinkel θ i (Variable): Für z i - und z i -chse wird die gem. Normale mit Länge a i in x i -Richtung gemessen. Drehwinkel um x i -chse bis z i - und z i -chse in gleiche Richtung zeigen. bstand von x i - und x i -chse entlang der z i -chse. Drehwinkel um z i -chse bis x i - und x i -chse in gleiche Richtung zeigen. DH-Tabelle: Gelenk Nr. Linklänge a i Linkdrehung α i Link Offset d i Gelenkwinkel θ i i i+... DH-Matrizen: cos(θ i ) sin(θ i )cos(α i ) sin(θ i )sin(α i ) a i cos(θ i ) i i T = sin(θ i ) cos(θ i )cos(α i ) cos(θ i )sin(α i ) a i sin(θ i ) 0 sin(α i ) cos(α i ) d i Beispiel: 0 nt = n i= i i T (θ i ) = 0 T T... n n T α i = Linkdrehung a i = Linklänge [chsenabstand] d i = Offset Θ i = Gelenkwinkel Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

5 Robotik - Formelsammlung (powered by LTEX) Seite 5 von 8 Kinematik, Kräfte & Dynamik. Kräfte τ n = 0 J T n 0F n 0 F n = [0 F x,n 0 F y,n 0 F z,n 0 M x,n 0 M y,n 0 M z,n ] T zumbeispiel : τ τ τ = J F x F y F z Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

6 Robotik - Formelsammlung (powered by LTEX) Seite 6 von 8 Wichtige Formeln sin (b) + cos (b) = tan(b) = sin(b) cos(b). Funktionswerte für Winkelargumente deg rad sin cos tan deg rad sin cos deg rad sin cos deg rad sin cos Periodizität cos(a + k ) = cos(a) sin(a + k ) = sin(a) (k Z). Quadrantenbeziehungen sin( a) = sin(a) cos( a) = cos(a) sin( a) = sin(a) cos( a) = cos(a) sin( + a) = sin(a) cos( + a) = cos(a) sin ( a) = sin ( + a) = cos(a) cos ( a) = cos ( + a) = sin(a).4 dditionstheoreme sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b) cos(a ± b) = cos(a) cos(b) sin(a) sin(b) tan(a ± b) = tan(a)±tan(b) tan(a) tan(b).5 Doppel- und Halbwinkel sin(a) = sin(a) cos(a) cos(a) = cos (a) sin (a) = cos (a) = sin (a) cos ( ) a = +cos(a) sin ( ) a = cos(a).6 Summe, Differenz und Produkte sin(a) + sin(b) = sin ( ) ( a+b cos a b ) sin(a) sin(b) = sin ( ) ( a b cos a+b ) cos(a) + cos(b) = cos ( ) ( a+b cos a b ) sin(a) sin(b) = (cos(a b) cos(a+b)) cos(a) cos(b) = sin ( ) ( a+b cos a b ) cos(a) cos(b) = (cos(a b)+cos(a+b)) sin(a) cos(b) = (sin(a b) + sin(a + b)) tan(a) ± tan(b) = sin(a±b) cos(a) cos(b).7 Differentialrechnung a = 0 [a = const.] x = sin(x) = cos(x) cos(x) = sin(x) tan(x) = cos (x) (u + v w) = u + v u (au) = au [a = const.] (uv) = u v + uv ( u v ) = vu uv v (u(v(y(x)))) = u (v)v (y)y (x) Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

7 Robotik - Formelsammlung (powered by LTEX) Seite 7 von 8 4 Symbole und Theorie 4. Darstellung kinematischer Gelenke 4. Bewegungsarten Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

8 Robotik - Formelsammlung (powered by LTEX) Seite 8 von 8 4. PTP-Synchron synchron PTP Synchron PTP Vollsynchron PTP 4.4 Übersicht von Skript und Übungen Silvano Ferretti, Sven rnold, rjen Visser. Januar 009

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Was ist Robotik? Robotik heute:

Was ist Robotik? Robotik heute: Grundlagen Was ist Robotik? Das Wort Robot / Roboter entstand 92 in einer Geschichte von Karel Ċapek und geht auf das tschechische Wort robota (rbeit, Fronarbeit) zurück. Dessen Ursprung ist das altkirchenslawische

Mehr

Entwicklung einer allgemeinen dynamischen inversen Kinematik

Entwicklung einer allgemeinen dynamischen inversen Kinematik Entwicklung einer allgemeinen dynamischen inversen Kinematik Christoph Schmiedecke Studiendepartment Informatik Hochschule für Angewandte Wissenschaften Hamburg 06. Januar 2010 Inhaltsverzeichnis 1 Motivation

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 19. April 2011 J. Zhang 63 Gliederung Allgemeine Informationen

Mehr

Grundlagen der Robotik Klausur am Musterlösung Nachname: Vorname: Matrikelnummer:

Grundlagen der Robotik Klausur am Musterlösung Nachname: Vorname: Matrikelnummer: Prof. Dr. K. Wüst SS 202 Fachbereich MNI TH Mittelhessen Grundlagen der Robotik Klausur am 6.7.202 Musterlösung Nachname: Vorname: Matrikelnummer: Aufgabe Punkte erreicht 22 2 22 3 8 4 8 Bonusfrage 0 Summe

Mehr

Klausur Robotik/Steuerungstechnik

Klausur Robotik/Steuerungstechnik Prof. Dr. K. Wüst SS 2009 Fachbereich MNI FH Gießen-Friedberg Klausur Robotik/Steuerungstechnik 9.7.2009 Nachname: Vorname: Matrikelnummer: Aufgabe Punkte erreicht 1 30 2 30 3 40 4 20 Summe 120 Mit Lösungen

Mehr

Lösungen Serie 5 (Determinante)

Lösungen Serie 5 (Determinante) Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 5 (Determinante) Dozent: R Burkhardt Büro: 463 Klasse: Studienjahr Semester: Datum: HS 2008/09 Aufgabe Bestimme

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 20. April 2010 J. Zhang 63 Gliederung Allgemeine Informationen

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Klausur Mehrkörperdynamik 26/07/2012

Klausur Mehrkörperdynamik 26/07/2012 Klausur Mehrkörperdynamik 26/07/2012 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt zwei Stunden. Zulässige Hilfsmittel

Mehr

AW 1 - Vortrag. Simulationsmodell für visuell geführte Roboter. von Bernd Pohlmann. Betreuender: Prof. Dr. Andreas Meisel

AW 1 - Vortrag. Simulationsmodell für visuell geführte Roboter. von Bernd Pohlmann. Betreuender: Prof. Dr. Andreas Meisel AW 1 - Vortrag Simulationsmodell für visuell geführte Roboter von Betreuender: Prof. Dr. Andreas Meisel Inhalt 1. Motivation 2. Ziel 3. Einführung Robotik 4. Kinematik 5. Denavit-Hartenberg 6. Kameramodell

Mehr

Gliederung. Gliederung (cont.) Kinematik-Gleichungen - (1) Allgemeine Informationen Einführung Koordinaten eines Manipulators. Kinematik-Gleichungen

Gliederung. Gliederung (cont.) Kinematik-Gleichungen - (1) Allgemeine Informationen Einführung Koordinaten eines Manipulators. Kinematik-Gleichungen - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 20. April 2010 Allgemeine Informationen Einführung

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt Lineare Abbildungen Lineare Abbildungen De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt (L. ) f ist homogen; d.h. f( ~v) = f(~v) für alle 2 R, ~v 2 V, (L. ) f ist additiv;

Mehr

B. Heimann, W. Gerth, K. Popp: Mechatronik. Dritte, neu bearbeitete Auflage. Carl Hanser Verlag, München, 2007.

B. Heimann, W. Gerth, K. Popp: Mechatronik. Dritte, neu bearbeitete Auflage. Carl Hanser Verlag, München, 2007. Vorwort Nachfolgend soll die Koordinatentransformation nach Denavit-Hartenberg-Konvention am Beispiel eines realen Industrieroboters demonstriert werden. In der Kürze kann auf die nötigen Grundlagen nicht

Mehr

Die Festlegung der Koordinatensysteme gemäß Denavit-Hartenberg-Konventionen

Die Festlegung der Koordinatensysteme gemäß Denavit-Hartenberg-Konventionen 1 Die Festlegung der Koordinatensysteme gemäß Denavit-Hartenberg-Konventionen 1. Nummerierung die Armteile Der festgeschraubte Fuß ist Armteil 0, das erste drehbare Armteil ist Armteil 1 usw. Das letzte

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

4 Roboterkinematik. Roboterarm und Gelenke

4 Roboterkinematik. Roboterarm und Gelenke 4 Roboterkinematik Roboterarm und Gelenke 4.1 Grundlegende Begriffe Mechanismus besteht aus einer Anzahl von starren Körpern (Glieder diese sind durch Gelenke verbunden Ein Gelenk verbindet genau zwei

Mehr

Gliederung. Gliederung (cont.) Koordinaten eines Manipulators. Allgemeine Informationen Einführung

Gliederung. Gliederung (cont.) Koordinaten eines Manipulators. Allgemeine Informationen Einführung - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 14. April 2009 Allgemeine Informationen Einführung

Mehr

Bogenmaß, Trigonometrie und Vektoren

Bogenmaß, Trigonometrie und Vektoren 20 1 Einführung Bogenmaß: Bogenmaß, Trigonometrie und Vektoren Winkel können in Grad ( ) oder im Bogenmaß (Einheit: 1 Radiant, Abkürzung 1 rad) angegeben werden. Dabei gilt 2 rad 360. Die Einheit 1 rad

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Papierfalten und Algebra

Papierfalten und Algebra Arbeitsblätter zum Thema Papierfalten und Algebra en Robert Geretschläger Graz, Österreich 009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel und Lineal AUFGABE 1 Zeige, dass die x-koordinaten der

Mehr

Vorwärtskinematik und inverse Kinematik. Andreas Schmidtke

Vorwärtskinematik und inverse Kinematik. Andreas Schmidtke Vorwärtskinematik und inverse Kinematik Andreas Schmidtke Übersicht 1. Vorwärtskinematik 2. Standardframes 3. Inverse Kinematik 4. Bemerkungen zur Numerik Übersicht 1. Vorwärtskinematik 1. Modellierung

Mehr

Ziel: Beschreibung der unterschiedlichen Gelenktypen und deren Einfluss auf die Bewegung der Körper

Ziel: Beschreibung der unterschiedlichen Gelenktypen und deren Einfluss auf die Bewegung der Körper Kinematik Gelenkkinematik Ziel: Beschreibung der unterschiedlichen Gelenktypen und deren Einfluss auf die Bewegung der Körper Definition: Ein (kinematisches) Gelenk ist eine Verbindung zwischen zwei Segmenten,

Mehr

Kinematik (1) Bisher: Darstellung von Vektoren bei bekannten Beziehungen zwischen den Koordinatensystemen

Kinematik (1) Bisher: Darstellung von Vektoren bei bekannten Beziehungen zwischen den Koordinatensystemen Kinematik ( Kinematik Bisher: Darstellung von Vektoren bei bekannten Beziehungen zwischen den Koordinatensystemen Jetzt: Beschreibung der Bewegung von mechanischen Systemen Hier nur Behandlung der Position

Mehr

Aufgaben zur Klausurvorbereitung Mathematik I

Aufgaben zur Klausurvorbereitung Mathematik I Aufgaben zur Klausurvorbereitung Mathematik I 1 Geben Sie eine Beschreibung der Ebene E im R 3, in der die Punkte p = (3, 9, 1), q = (2, 8, 2) und r = (5, 6, 1) liegen, in Hesse-Normalform an 2 Im Rahmen

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

Ferienkurs Mathematik für Physiker I Blatt 3 ( )

Ferienkurs Mathematik für Physiker I Blatt 3 ( ) Ferienkurs Mathematik für Physiker I WS 6/7 Ferienkurs Mathematik für Physiker I Blatt 3 (9.3.7) Aufgabe : Matrizenrechung 3 (a) Ermitteln Sie für die Matrix A = 3 4 den Ausdruck A + A + A + 6 A3. 3 4

Mehr

Einführung in die Matrixalgebra

Einführung in die Matrixalgebra Einführung in die Matrixalgebra Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Bachelor S. Garbade (SRH Heidelberg) Matrixalgebra Bachelor

Mehr

Zusammenfassung und Beispiellösungen. zur Linearen Algebra

Zusammenfassung und Beispiellösungen. zur Linearen Algebra Zusammenfassung und Beispiellösungen zur Linearen Algebra Inhaltsverzeichnis TI Taschenrechner Funktionen für Matrizen... n*m Matrix... Diagonal und Dreiecksmatrix... Transponierte der Matrix A (AT)...

Mehr

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 28. Oktober 2004

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 28. Oktober 2004 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 2. Koordinaten eines Manipulator.................. 32 Warum

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik:

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik: Vektorrechnung 1. Vektoren im R 2, R 3 Größen in Physik und Technik: - skalare Größen: Länge [m], Zeit [sec], Masse [kg], Energie [N m], elektr. Spannung [V ],... gekennzeichnet durch: Maßzahl ( R) [Maßeinheit]

Mehr

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. & 26. November 2008 Definition, Summe & Produkt Transponierte Beispiel: Einwohnerzahlen Leslie-Populationsmodell Beispiel Addition Multiplikation

Mehr

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen Matrizen 28. November 2007 Summe & Produkt Beispiel: Einwohnerzahlen Beispiel Addition Multiplikation Inverse Addition & Multiplikation Anwendung

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h.

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: gleich viel Zeilen wie Spalten dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. 'Identitätsabbildung':

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden.

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Determinante Die Determinante det A = det(a 1,..., a n ) einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Multilineariät: det(..., αa j + βb j,...) = α det(...,

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen In diesem Kapitel werden die mathematischen Grundlagen dargelegt, die für die Darstellung von dreidimensionalen Objekten notwendig sind. 2. 3D-Koordinatensystem Weit

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Mathematiklabor 2. Übungsblatt

Mathematiklabor 2. Übungsblatt Dr. Jörg-M. Sautter 3.4.7 Mathematiklabor. Übungsblatt Aufgabe : (Wiederholung) Laden Sie die Dateien mlintro?.m herunter und gehen Sie diese Schritt für Schritt durch. Aufgabe : (Matrix- und Vektoroperationen,

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

Übung 1: Homogene Transformationen

Übung 1: Homogene Transformationen Übung 1: Homogene Transformationen Aufgabe 1.1: Bestimmen Sie die homogene Transformationsmatri für die folgende Sequenz von Rotationen: T 1 =Rot z,90 Rot,90 und T 2 =Rot,90 Rot z,90 Zeichnen Sie die entsprechenden

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

Regelungstechnik I (WS 15/16) Übung 2

Regelungstechnik I (WS 15/16) Übung 2 Regelungstechnik I (WS 5/6) Übung Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Aufgabe. (Linearität, Zeitinvarianz). Überprüfen Sie die folgenden dynamischen Systeme auf Linearität

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Position und Orientierung

Position und Orientierung Position und Orientierung Grundlagen Koordinatensysteme, Punkte und Körper, Position und Orientierung Allgemeine Transformationen Rotation, homogene Koodinaten, Translation, Transformation 2D-Transformationen

Mehr

Kinematik des Puma 200

Kinematik des Puma 200 Kinematik des Puma 200 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Denavit-Hartenberg-Konfiguration 5 3 Mehrdeutigkeiten 7 4 Direkte Kinematik 10 5 Inverse Kinematik 13 6 Orientierung des

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Aufgaben zur Klausurvorbereitung Seite 1 von 11. Die Aufgaben 7-10 dienen zur Vorbereitung auf die Klausur und müssen nicht abgegeben werden!

Aufgaben zur Klausurvorbereitung Seite 1 von 11. Die Aufgaben 7-10 dienen zur Vorbereitung auf die Klausur und müssen nicht abgegeben werden! Aufgaben ur Klausurvorbereitung Seite 1 von 11 Aufgabe 7.1 Die Aufgaben 7-10 dienen ur Vorbereitung auf die Klausur und müssen nicht abgegeben werden! Thema: Unterlagen: Grundlagen der Robotik Vorlesungsunterlagen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Goniometrische Gleichungen:

Goniometrische Gleichungen: Mathematik/Di FH Regensburg 1 Goniometrische Gleichungen: Für die nachfolgenden Beispiele goniometrischer Gleichungen sind folgende Symmetriegleichungen für die trigonometrischen Funktionen zu beachten

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Koordinaten, Transformationen und Roboter

Koordinaten, Transformationen und Roboter Koordinaten, Transformationen und Roboter Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 48 Einleitung Seit Anbeginn der

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Spender A B AB 0 Empfänger A B AB 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 verträglich 0 unverträglich Modul 210 Koordinatensysteme. Matrizen Lernumgebung Hans

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Skript Lineare Algebra

Skript Lineare Algebra Skript Lineare Algebra sehr einfach Erstellt: 2018/19 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Vektoren... 3 2. Geraden... 6 3. Ebenen... 8 4. Lagebeziehungen... 10 a) Punkt - Gerade...

Mehr