Streuungsmaße. Grundbegriffe

Größe: px
Ab Seite anzeigen:

Download "Streuungsmaße. Grundbegriffe"

Transkript

1 Grundbegriffe Untersuchungseinheiten U,...,U n Merkml X Urliste x,...,x n geordnete Urliste x (),...,x (n) Es gilt i.llg.: xi x() i, i, Κ, n In einer westdeutschen Großstdt gibt es insgesmt drei Träger für Jugendrbeit. Der erste Träger besetzt 50 Prozent seiner Stellen immer mit Vollzeitkräften (8 Stunden pro Tg) und die übrigen 50 Prozent jeweils mit Hlbtgskräften (4 Stunden pro Tg). Je eine Vollzeit- und eine Hlbtgskrft rbeiten immer projektgebunden zusmmen. Interessiert mn sich für die durchschnittliche Arbeitszeit, so erhält mn bei diesem Träger ein rithm. Mittel von 6 Stunden. Beim zweiten Träger gibt es drei Arten von Stellen, nämlich Vollzeit-, Dreiviertel- und Hlbtgskräfte, die jeweils ein Drittel des Stellenpools usmchen. Die Dreiviertelkräfte rbeiten 6 Stunden pro Tg. Auch hier erhält mn ls rithm. Mittel für die Arbeitsduer 6 Std. Beim dritten Träger existieren die gleichen Stellenformen wie beim.träger. Nur sind hier 80 Prozent ller Mitrbeiter Dreiviertelkräfte und nur je 0 Prozent Vollzeit- bzw. Hlbtgskräfte. Wiederum erhält mn ls rithmetisches Mittel für die tägliche Arbeitszeit 6 Stunden. Beispiel (Filile) Geschäftsstelle Mo Di Mi Do Fr S So Huptstelle Filile bei welcher der beiden Geschäftsstellen konzentriert sich die Bertungshäufigkeit mehr uf einen Wochentg? (geringe Vribiliät) bei welcher der beiden Geschäftsstellen liegt eine gleichmäßigere Verteilung uf mehrere Wochentge vor? (große Vribiliät) 3

2 Sklenprmeter für nominle Dten Minimle Streuung: eine Merkmlsusprägung mit der reltive Häufigkeit h( i ), für lle nderen Merkmlsusprägungen j gilt h( j ) 0 (Einpunktverteilung). Mximle Streuung: die reltiven Häufigkeiten sind bei llen Merkmlsusprägungen gleich groß 4 Sklenprmeter für nominle Dten Abstnd zur Verteilung mit minimler Streuung φd : ( h( mod )) Abstnd zur korrespondierenden Häufigkeitsverteilung mit mximler Streuung k φ : h( ) G i i k Sklenprmeter φ( X ) φ : D φd + φg 5 Beispiel (Filile) Geschäftsstelle Mo Di Mi Do Fr S So Huptstelle Filile φ φ D D ( Huptstelle) ( 0.5) ( Filile) ( 0.4). 6

3 Beispiel (Filile) Geschäftsstelle Mo Di Mi Do Fr S So Huptstelle Filile φ ( Huptstelle) G φ ( Filile) G φ( Huptstelle) Beispiel (Filile) φ( Filile) Die Filile zeichnet sich lso durch eine höhere Vribilität us. Bei der Huptstelle findet die Bertung lso konzentrierter n einem Wochentg, nämlich dem Dienstg sttt. Geschäftsstelle Mo Di Mi Do Fr S So Huptstelle Filile Sklenprmeter für ordinle Dten Minimle Streuung: eine Merkmlsusprägung mit der reltive Häufigkeit h( i ), für lle nderen Merkmlsusprägungen j gilt h( j ) 0 (Einpunktverteilung). Mximle Streuung: für die k geordneten Ausprägungen gilt: ( ) h( k ) 0. 5 ( ) h( ) Λ h( ) 0. h h 3 k 9 3

4 Sklenprmeter für ordinle Dten d X : k F j j k ( ) F ( ) F( ) mx j j j 0.5. Normierung: d d, : X X norm k X : d X Sklenprmeter: φo ( ), norm 0 Beispiel (Bewertung) Note Summe Männer Fruen F(Männer) F(Fruen) d X d X ( Männer) ( Fruen) φ o ( X ) Spnnweite R (Rnge) ( n) x( ) Mximum Minimum R : x Beispiel (Hospiz) R

5 Spnnweite R bei klssierten Dten Differenz zwischen der oberen Klssengrenze der größten Klsse (K k ) und der unteren Klssengrenze der untersten Klsse (K ) R k : b K K ( ) ( ) 3 Spnnweite R bei klssierten Dten Beispiel (Anfhrtszeiten) Klsse H(K j) h(k j) K [0,4] K (4,8] 7 0. K 3(8,] K 4(,6] K 5(6,0] K 6(0,4] K 7(4,8] 0.06 Summe R Interqurtilsbstnd IQR Der Interqurtilsbstnd beschreibt die Spnnweite der mittleren 50% ller (geordneten) Beobchtungen. IQR : ~ x ~ x

6 Interqurtilsbstnd IQR Beispiel (Hospiz) ~ x0.5 x ~ x0.75 x ( 3) 5 ( 8) 78 IQR IQR bei klssierten Dten. Bestimmung der Quntile. Bestimmung des Interqurtilsbstndes us den Quntilen 7 Beispiel (Anfhrtszeiten) Klsse H(K j ) h(k j ) F(K j ) K [0,4] K (4,8] K 3 (8,] K 4 (,6] K 5 (6,0] K 6 (0,4] K 7 (4,8] Summe

7 IQR bei klssierten Dten ~ x ( 8 4) 7. 0 ~ x ( 6 ) IQR MAD (Medin Absolute Devition) Der MAD beschreibt den mittleren (medinen) bsoluten Abstnd ller Beobchtungen zum Medin. yi xi ~ x0.5 i, Λ, n Der MAD ist der Medin der y i 0 CD-Bestnd xi Abstnd zum Medin y x ~ i i x ~.5 x 0 50 MAD (Medin Absolute Devition) Beispiel (Hospiz) y() i : ~ y

8 MAD bei klssierten Dten. Bestimmung des Medins. unter Verwendung der Klssenmittel oder der Klssenmitten werden die bsoluten Abweichungen vom Medin bestimmt. Diese Abweichungen sind mit der jeweiligen Klssenhäufigkeit zu gewichten. Ist z.b. H(K i ) 3 und H(K j ) 5, so sind die entsprechenden Abweichungen mehrmls zu verwenden, nämlich H(K i ) 3-fch bzw. H(K j ) 5-fch 3. Abschließend wird dnn der Medin der Abweichungen gebildet. Beispiel (Anfhrtszeiten) ~ x ( 8) K j m j H(K j ) y m ~ j j x0.5 K K K K K K K ~.5 y Mittlere Absolute Abweichung vom Medin Die mittlere bsolute Abweichung beschreibt den durchschnittlichen bsoluten Abstnd ller Beobchtungen zum Medin. n s0.5 : xi ~ x0.5 n i. 4 8

9 CD-Bestnd x i Abstnd zum Medin y x ~ i i x ~.5 x 0 50 s0.5 0 Mittlere Absolute Abweichung vom Medin Beispiel (Hospiz) ( ) bei klssierten Dten. Bestimmung des Medins. unter Verwendung der Klssenmittel oder der Klssenmitten werden die bsoluten Abweichungen vom Medin bestimmt. Diese Abweichungen sind mit der jeweiligen Klssenhäufigkeit zu gewichten. Ist z.b. H(K i ) 3 und H(K j ) 5, so sind die entsprechenden Abweichungen mehrmls zu verwenden, nämlich H(K i ) 3-fch bzw. H(K j ) 5-fch 3. Abschließend wird dnn ds rithmetische Mittel der gewichteten bsoluten Abweichungen vom Medin gebildet. 6 Beispiel (Anfhrtszeiten) K j m j H(K j ) y m ~ j j x0.5 K K K K K K K s ~.5 x

10 Mittlere Absolute Abweichung vom Mittelwert Es gilt immer sm s 0. 5 Die mittlere bsolute Abweichung beschreibt den durchschnittlichen bsoluten Abstnd ller Beobchtungen zum rithmetischen Mittel. n sm : xi x n i n n c ~ xi xi x0.5 für lle Zhlen c. n i n i 8 Die Vrinz und die Stndrdbweichung Die empirische Vrinz beschreibt den durchschnittlichen qudrtischen Abstnd ller Beobchtungen zum rithmetischen Mittel. n s : x i x n i empirische Vrinz ( ). Stndrdbweichung s s 9 Die Vrinz und die Stndrdbweichung Minimumseigenschft des rithmetischen Mittels n x i n i n x i n i ( x) ( d ) für lle Zhlen d. 30 0

11 Beispiel (Hospiz) 39, 44, 78, 5, 348, 5, 0, 0, 48, 5. x 79,6 s s ,4 0.50,67 9 (( 40,6 ) + ( 64,4 ) + (,6 ) + ( 7,6 ) + ( 68,4 ) + ( 7,6 ) ( 69,6 ) + ( 79,6 ) + ( 3,6 ) + ( 54,6 ) ) 0.50,67 0, bei klssierten Dten Klssenmittel s n ( K x), k H ( K j ) j j Klssenmitten s n ( m x), k H ( K j ) j j 3 Beispiel (Anfhrtszeiten) K j m j H(Kj) K 3 K 6 7 K K K K 6 K 7 6 x.7 unter Verwendung der Klssenmitten s s

12 34 Die getrimmte Vrinz () ( ). : + n i t x i x n t s α α ( ) ( ) () ( ) ( ) ( ) : xw n x n i xw i x xw x n sw Die winsorisierte Vrinz

Vorlage zur Dokumentation der täglichen Arbeitszeit

Vorlage zur Dokumentation der täglichen Arbeitszeit Monat/Jahr: Januar 2016 Fr, 01 0:00 Sa, 02 0:00 So, 03 0:00 Mo, 04 0:00 Di, 05 0:00 Mi, 06 0:00 Do, 07 0:00 Fr, 08 0:00 Sa, 09 0:00 So, 10 0:00 Mo, 11 0:00 Di, 12 0:00 Mi, 13 0:00 Do, 14 0:00 Fr, 15 0:00

Mehr

Vorlage zur Dokumentation der täglichen Arbeitszeit

Vorlage zur Dokumentation der täglichen Arbeitszeit Monat/Jahr: Januar 2015 Do, 01 Fr, 02 Sa, 03 So, 04 Mo, 05 Di, 06 Mi, 07 Do, 08 Fr, 09 Sa, 10 So, 11 Mo, 12 Di, 13 Mi, 14 Do, 15 Fr, 16 Sa, 17 So, 18 Mo, 19 Di, 20 Mi, 21 Do, 22 Fr, 23 Sa, 24 So, 25 Mo,

Mehr

Haushaltsbuch Jänner 2013

Haushaltsbuch Jänner 2013 Haushaltsbuch Jänner 2013 Di 1 Mi 2 Do 3 Fr 4 Sa 5 So 6 Mo 7 Di 8 Mi 9 Do 02 Fr 11 Sa 12 So 13 Mo 14 Di 15 Mi 16 Do 17 Fr 28 Sa 19 So 20 Mo 21 Di 22 Mi 23 Do 24 Fr 25 Sa 26 So 27 Mo28 Di 29 Mi 30 Do 31

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Wangerooge Fahrplan 2016

Wangerooge Fahrplan 2016 Fahrplan Dezember 2015 Januar Januar Januar Februar Februar März So, 13.12. 10.15 11.00 12.45 12.30 13.45 14.20 Mo, 14.12. 11.30 13.00 15.30 Di, 15.12. 12.30 13.05 14.45 13.30 15.00 Mi, 16.12. 14.45 16.00

Mehr

Wangerooge Fahrplan 2015 Fahrzeit Tidebus 50 Minuten, Schiff und Inselbahn ca. 90 Minuten.

Wangerooge Fahrplan 2015 Fahrzeit Tidebus 50 Minuten, Schiff und Inselbahn ca. 90 Minuten. Fahrplan Dezember 2014 Januar Januar Februar Februar März März Sa, 27.12. 12.30 13.30 11.30 13.30 16.00 14.00 15.45 15.30 16.30 16.50 So, 28.12. 12.30 14.15 12.15 14.30 15.30 16.45 14.45 16.30 17.15 17.35

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Landgerichtsbezirk Wiesbaden Datum Thema Dozent U-Std. Zeit

Landgerichtsbezirk Wiesbaden Datum Thema Dozent U-Std. Zeit Koordinatorin: Mo. 11.01.16 6 Di. 1.01.16 6 Mi. 13.01.16 6 Do. 1.01.16 Der Anwalt im Zivilprozeß RAuN Alexander Hüttenrauch 6 Fr. 15.01.16 Der Anwalt im Zivilprozeß RAuN Alexander Hüttenrauch 6 Mo. 18.01.16

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

5. Übung Algorithmen II

5. Übung Algorithmen II Johnnes Singler, Prof. Snders 1 Johnnes Singler: KIT Universität des Lndes Bden-Württemberg und ntionles Forschungszentrum in der Helmholtz-Gemeinschft Institut für Theoretische www.kit.edu Informtik Orgnistorisches

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

2.2. Beschreibung von Verteilungen

2.2. Beschreibung von Verteilungen 2.2. Beschreibung von Verteilungen In einer ersten Phse der Infortionsverdichtung werden epirische Dtensätze ittels tbellrischer und grphischer Drstellungen der Häufigkeitsverteilung zusenfssend ufbereitet.

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Datum Wochen Band DVD Band eingelegt Protokoll kontr. Recovery kontr. Tag Nr. RW Sign. Sign. Sign.

Datum Wochen Band DVD Band eingelegt Protokoll kontr. Recovery kontr. Tag Nr. RW Sign. Sign. Sign. Monat: Januar Anzahl Bänder: 9 01.01.2015 Donnerstag Do DO 02.01.2015 Freitag Fr FR 03.01.2015 Samstag 04.01.2015 Sonntag 05.01.2015 Montag Mo1 MO 06.01.2015 Dienstag Di DI 07.01.2015 Mittwoch Mi MI 08.01.2015

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Warmluft-Thermostate. Typenreihe WTHc. Besonderheiten. Kurzbeschreibung. Schaltfunktion. Zulassungen/Prüfzeichen (siehe technische Daten)

Warmluft-Thermostate. Typenreihe WTHc. Besonderheiten. Kurzbeschreibung. Schaltfunktion. Zulassungen/Prüfzeichen (siehe technische Daten) JUMO GmbH & Co. KG Telefon: +9 66 6003-76 Husdresse: Moritz-Juchheim-Strße, 36039 Fuld, Germny Telefx: +9 66 6003-50 Lieferdresse: Mckenrodtstrße, 36039 Fuld, Germny E-Mil: mil@jumo.net Postdresse: 36035

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Seminarreihe Bau-Projektmanagement I + II

Seminarreihe Bau-Projektmanagement I + II Seminarreihe Bau-Projektmanagement I + II Fax-Anmeldeformulare für 2015 www.bau-projektmanagement.de + II Mo., 13.04. Fr., 17.04.2015 Fulda 9:15 17:00 1.276,00 1.518,44 I + II Mo., 13.04. Mi., 15.04.2015

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Universität Stuttgart Wintersemester 2014/2015

Universität Stuttgart Wintersemester 2014/2015 Universität Stuttgrt Wintersemester 2014/2015 Fkultät 5, Institut IPVS Christoph Stch Übungen zu PSE ufgbenbltt 1. EBNF I Gegeben sei dieses Regelsystem einer EBNF: S = B c B ; = ( C); B = ( b b B); C

Mehr

STATUS DES WINDENERGIEAUSBAUS IN DEUTSCHLAND

STATUS DES WINDENERGIEAUSBAUS IN DEUTSCHLAND 1. Hlbjhr Im Auftrg von: Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 04451/95150 - info@windgurd.de - www.windgurd.de Onshore Offshore Gesmt 1. Hlbjhr WINDENERGIEAUSBAUS AM 30. JUNI Im ersten

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Optik. Beugung am Doppelspalt und an Mehrfachspalten. LD Handblätter Physik P5.3.1.2. 0713-Bi. Wellenoptik Beugung. Versuchsziele.

Optik. Beugung am Doppelspalt und an Mehrfachspalten. LD Handblätter Physik P5.3.1.2. 0713-Bi. Wellenoptik Beugung. Versuchsziele. Optik Wellenoptik Beugung LD Hnblätter Physik Beugung m Doppelsplt un n Mehrfchsplten Versuchsziele! Untersuchung er Beugung m Doppelsplt bei verschieenen Spltbstänen.! Untersuchung er Beugung m Doppelsplt

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

FDT-VERLEGESCHULUNGEN

FDT-VERLEGESCHULUNGEN 25 % RABATT SICHERN. BIS 15.11.2015 online buchbr FDT-VERLEGESCHULUNGEN KURSSTAFFEL 2016 WEITERBILDEN. OPTIMIEREN. WISSEN! 02 03 WEITERBILDEN. OPTIMIEREN. WISSEN! FDT-Verlegeschulungen Schulungen für Verleger

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

BÜrO HYPER aufgebautes BÜrOsYsteM

BÜrO HYPER aufgebautes BÜrOsYsteM 5 JAHRE NACHKAUFGARANTIE BÜrO HYPER UFGeBUtes BÜrOsYsteM Gerundete ecken und Knten nch din-fchbericht 147 schreibtisch und ergonomische Mße nch din En 527-1 sthl-orgzrge mit verdeckter Führung, Präzisionsuszüge

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

STATUS DES WINDENERGIEAUSBAUS AN LAND IN DEUTSCHLAND

STATUS DES WINDENERGIEAUSBAUS AN LAND IN DEUTSCHLAND Jhr STATUS DES WINDENERGIEAUSBAUS AN LAND Im Auftrg von: Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 4451/9515 - info@windgurd.de - www.windgurd.de jährlich zu- / bgebute Leistung kumulierte

Mehr

Wälzlagertoleranzen. Definitionen/Messprinzipien

Wälzlagertoleranzen. Definitionen/Messprinzipien Wälzlgerolernzen Definiionen/Messprinzipien Zeichnungseinrg n eispielen Messprinzip Merkml IN/FG (bisher) Scheffler Gruppe (neu) ds (ds) Ds (Ds) dmp (dmp) Dmp (Dmp) Vdp/2 Vp/2 VDp/2 ØD ØD (Dmp) 1 500 Welligkei

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Ferienwohnung Altmühltal, Ferienhaus Eichstätt direkt am Fluss. Belegungskalender und

Ferienwohnung Altmühltal, Ferienhaus Eichstätt direkt am Fluss. Belegungskalender  und Jan 2017 Feb 2017 März 2017 direkt am Fluss.. KW 1 KW 2 KW 3 KW 4 KW 5 So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di letzter update 08.01.2017 KW 5 KW 6 KW

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Leitfden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Stnd: 20.01.2012 Gültig b: 01.01.2012 Inhltsverzeichnis 1 Benötigte Dten... 3 2 Netzentgelte... 4 2.1 Entgelt für Entnhme

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder DAS Einzige Konto, ds uch uf dein HANDY ODER DEINEN LAPTOP AUFPASST. Versichert Hndy oder Lptop 1 Jhr grtis!* Mitten im Leben. monsterhetz.t *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten Die Brückenlppentechnik zum sicheren Verschluss von Nsenseptumdefekten T. Stnge, H.-J. Schultz-Coulon Einleitung Die Rekonstruktion eines defekten Nsenseptums zählt zu den schwierigsten rhinochirurgischen

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

16 Schichten KW 31 KW 32 KW 33 KW 34. Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do

16 Schichten KW 31 KW 32 KW 33 KW 34. Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do 16 Schichten Team 1 Team 2 Team 3 Hierbei handelt es sich um unser normales Schichtsystem mit 16 Schichten in der Woche. Die Arbeitszeit laut Vertrag beträgt 40 Stunden in der Woche. Die Schichten werden

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Schmierstoffverteiler DUOFLEX 1-0012-3

Schmierstoffverteiler DUOFLEX 1-0012-3 Schmierstoffverteiler DUOFLEX --3 für Zweileitungs-Zentrlschmiernlgen Verteiler, -stellig Verteiler, -stellig Verteiler, 3-stellig mit Merkmle der Schmierstoffverteiler Zweileitungsverteiler werden in

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

bei Problemen die Theorie und die Beispiele am Anfang jeder Lerneinheit durcharbeiten

bei Problemen die Theorie und die Beispiele am Anfang jeder Lerneinheit durcharbeiten Ds knnst du schon º Terme umformen º Gleichungen ufstellen und lösen º Funktionsgrphen zeichnen º Whrscheinlichkeiten erechnen Erfolge mithilfe des Aschlusstests üerprüfen ei Prolemen die Theorie und die

Mehr