Vektoren. 2.1 Darstellung. Kapitel Subtraktion und Addition

Größe: px
Ab Seite anzeigen:

Download "Vektoren. 2.1 Darstellung. Kapitel Subtraktion und Addition"

Transkript

1 Kapitel 2 Vektoren In diesem Kapitel werden wir im wesentlichen die verschiedenen Formen der Darstellung von Vektoren in MatLab sowie Verknüpfungen zwischen Vektoren betrachten. In letzterem Punkt ist die Darstellung von Vektoren bei den verschiedenen Produkten von Bedeutung. 2.1 Darstellung Die Darstellung von Vektoren in MatLab wurde bereits kurz in Abschn angesprochen. Formal unterscheidet MatLab nicht zwischen Vektoren und Matrizen sondern behandelt beide als Matrix, wobei ein Zeilenvektor eine Matrix mit nur einer Zeile ist, ein Spaltenvektor eine Matrix mit nur einer Spalte. MatLab ist sehr empfindlich in der Unterscheidung zwischen Zeilen- und Spaltenvektoren. Die Transponierte einer Matrix entsteht durch Vertauschen von Zeilen und Spalten: A T = (a ij ) T = a ji. Ein Zeilenvektor lässt sich daher in einen Spaltenvektor umwandeln, indem man ihn transponiert: >> a=[1 2 3] a = >> b = a b = Dabei weist das Hochkomma MatLab an, die Transponierte des Vektors zu bilden Subtraktion und Addition Matrizen können nur dann addiert oder subtrahiert werden, wenn sie gleiche Dimensionen haben. In unserem Fall kann eine Addition zwischen Spaltenvektoren oder zwischen Zeilenvektoren erfolgen, es kann jedoch nicht ein Spalten- zu einem Zeilenvektor addiert werden. Mit den Vektoren wie oben liefert MatLab >> a + b??? Error using ==> plus Matrix dimensions must agree. Beschränken wir uns jedoch auf eine der beiden Arten von Vektoren, so lassen sich die Operationen direkt ausführen. 17

2 18 KAPITEL 2. VEKTOREN Beispiel 4 Aus den drei Vektoren a = ( ), b = ( ) und ( ) ist die Summe, das Doppelte des Vektors b sowie der Ausdruck a + 2 b 7 c zu bestimmen. Dazu verwenden wir die Befehlssequenz >> a=[3-2 1]; b=[-2 3 1]; c=[2 3-1]; >> d = a + b + c d = >> e = 2*b e = >> a + 2*b -7*c In dieser Darstellung haben wir alle Vektoren als Zeilenvektoren aufgefasst. Wir hätten alternativ auch alle Vektoren als Spaltenvektoren schreiben können. Die entsprechende Sequenz in MatLab sieht dann folgendermaßen aus: >> a=[3;-2;1]; b=[-2;3;1]; c=[2;3;-1]; >> d = a + b + c d = >> e = 2*b e = >> a + 2*b -7*c Krummlinige Koordinaten MatLab stellt für die Umwandlung von Vektoren von einem in ein anderes Koordinatensystem die folgenden Routinen zur Verfügung: cart2pol [THETA,RHO,Z] = cart2pol(x,y,z) kartesisch in Polar oder Zylinder cart2sph [THETA,PHI,R] = cart2sph(x,y,z) kartesisch in Kugel pol2cart [X,Y,Z] = pol2cart(theta,rho,z) Polar bzw. Zylinder in kartesisch sph2cart [x,y,z] = sph2cart(theta,phi,r) Kugel in kartesisch cart2sph MatLab unterscheidet nicht zwischen Polar- und Zylinderkoordinaten: werden drei Komponenten übergeben, so interpretiert MatLab dies als Zylinderkoordinaten; bei zwei Komponenten sind es Polarkoordinaten. Formal werden alle vier Routinen gleich verwendet: der Vektor ist in drei Komponenten gegeben, der Output der Routine ist wieder ein System aus drei Zahlen. Als Beispiel wandeln wir kartesische Koordinaten in Kugelkoordinaten um: >> x=2;y=3;z=4; [Theta,Phi,R] = cart2sph(x,y,z) THETA = PHI = R = Januar 2005 c M.-B. Kallenrode

3 2.2. PRODUKTE Produkte Stellt man die Produkte über dot bzw. cross dar, so gilt das bei der Addition gesagte: es ist egal, ob die Vektoren Zeilen- oder Spaltenvektoren sind, es müssen nur alle Multiplikanden die gleiche Form haben bzw. durch Transposition auf gleiche Form gebracht werden. Bei der Verwendung des Multiplikationszeichens * dagegen will MatLab eine Matrixmultiplikation durchführen und es gelten die bereits in Abschn erwähnten Einschränkungen Skalarprodukt Das Skalarprodukt wird durch den Befehl dot ausgeführt: dot >> dot(a,b) Alternativ können wir das Skalarprodukt auch durch punktweise Multiplikation und anschließende Summation der Produkte bestimmen: >> sum(a.*b) Den Betrag eines Vektors bestimmt man am einfachsten über die Wurzel aus dem Skalarprodukt des Vektors mit sich selbst: >> a=[3-2 1]; betrag a=sqrt(dot(a,a)) betrag a = MatLab kennt für den Betrag eines Vektors auch die Abkürzung norm: betrag a=norm(a). norm Kreuzprodukt Für das Kreuzprodukt steht in MatLab der Befehl cross zur Verfügung: cross >> cross(a,b) Im Gegensatz zum Skalarprodukt gibt es keine elegante Möglichkeit einer alternativen Schreibweise ohne Verwendung des Befehls cross. Ein Blick in die MatLab-Funktion cross zeigt, dass auch MatLab keine elegante Abkürzung kennt sondern die Regel zur Bildung des Kreuzprodukts explizit angibt Spatprodukt Für das Spatprodukt gibt es keine Abkürzung. Wir können es unter Verwendung von dot und cross bestimmen als 1 Die m-files der in MatLab implementierten Funktionen finden sich im Unterverzeichnis \Toolbox\matlab in verschiedenen Unterverzeichnissen, in diesem Fall in specfun. Ein Blick in die im gleichen Unterverzeichnis zu findende Funktion dot zeigt, das dort in der Tat die weiter oben eingeführte explizite Variante für das Skalarprodukt verwendet wird. c M.-B. Kallenrode 12. Januar 2005

4 20 KAPITEL 2. VEKTOREN oder wenn man berücksichtigt, dass das Spatprodukt die mit Hilfe des Befehls det Determi- nante der aus den drei Vektoren gebildeten Matrix ist: det >> a=[3;-2;1]; b=[-2;3;1]; c=[2;3;-1]; >> dot(cross(a,b),c) Wir müssen nicht alle Vektoren einzeln eingeben sondern können sie auch als eine Matrix mit den Vektoren als Spalten eingeben. Für obiges Spatprodukt lässt sich auch schreiben >> A=[3-2 2;-2 3 3;1 1-1] ; >> f=dot(cross(a(1,:),a(2,:)),a(3,:)) >> A=[3-2 2;-2 3 3;1 1-1] ; >> f= det(a) Dyadisches Produkt Die beiden Vektoren a und b aus Beispiel 4 lassen sich nicht direkt mit Hilfe des Multiplikationszeichens * multiplizieren. Transponieren eines der Vektoren liefert jedoch entweder ein Skalarprodukt aus einem Zeilen- und einem Spaltenvektor oder ein dyadisches Produkt aus einem Spalten- und einem Zeilenvektor: >> a=[3-2 1]; b=[-2 3 1]; >> sp=a*b sp= >> dp=a *b dp= Beide Vektoren werden in der ersten Zeile als Zeilenvektoren angegeben. Für die Produktbildung wird jeweils einer der Vektoren durch Bildung der Transponierten in einen Spaltenvektor überführt. Damit können die Regeln der Matrixmultiplikation bei der Produktbildung berücksichtigt werden. 2.3 GUI Die Datei vektoren enthält ein sehr einfaches GUI, das es Ihnen erlaubt, drei Vektoren einzugeben und auf verschiedene Weise zu verknüpfen. Die drei Vektoren werden als Zeilen- vektoren in den Feldern a, b und c im rechten oberen Teil eingeben. Werden in diese Felder keine Werte eingetragen, so werden die vorgegebenen Vektoren verwendet. Über ein Pop-Up Menü kann die Art der Verknüpfung ausgewählt werden. Dazu gehört die Bestimmung der Winkel zwischen den Vektoren (jeweils paarweise), die Bestimmung der Skalarprodukte, der Kreuzprodukte oder des Spatprodukts. Die entsprechenden Werte werden im Feld rechts unten ausgegeben. Die Lage der Ausgangsvektoren wird im linken Teil des Fensters graphisch dargestellt, vgl. Abb Wie bei einem MatLab-Skript können wir die Datei direkt im Kommandofenster aufrufen oder im Editor öffnen und dann mit der Taste F5 starten. Das Skript vektoren ruft eine Funktion setvektoren auf, die sich im gleichen Verzeichnis befinden muss. vektoren setvektoren 12. Januar 2005 c M.-B. Kallenrode

5 2.3. GUI 21 Fragen Abbildung 2.1: Einfaches GUI zur Manipulation von Vektoren Frage 8 Welche Verfahren zur Multiplikation von Vektoren stehen in MatLab zur Verfügung? Wie unterscheiden sie sich? Frage 9 Wie ist es möglich, eine Funktion wie cart2pol mal mit 2 und mal mit drei Ein- und Ausgabeparametern zu betreiben? Aufgaben Aufgabe 6 Schreiben Sie ein MatLab-Skript zur Bestimmung des Skalarprodukts (ohne Verwendung der eingebauten Funktion). Aufgabe 7 Schreiben Sie eine MatLab-Funktion zur Bestimmung aller Produkte zweier Vektoren. Aufgabe 8 Schreiben Sie eine MatLab-Funktion zur Bestimmung von Produkten mehrere Vektoren, wobei Sie Möglichkeiten zu lassen, die Art des Mehrfachprodukts auszuwählen. c M.-B. Kallenrode 12. Januar 2005

Fachhochschule Südwestfalen Wir geben Impulse. Vektorrechnung in Octave

Fachhochschule Südwestfalen Wir geben Impulse. Vektorrechnung in Octave Fachhochschule Südwestfalen Wir geben Impulse Vektorrechnung in Octave Inhalt Erzeugung von Vektoren Zugriff auf Vektorelemente Addition und Subtraktion von Vektoren Betrag eines Vektors Berechnung des

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Multiplikation von Matrizen

Multiplikation von Matrizen Multiplikation von Matrizen Die Regeln der Multiplikation von Zahlen können nicht direkt auf die Multiplikation von Matrizen übertragen werden. 2-E Ma Lubov Vassilevskaya Multiplikation ccvon Matrizen

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB./7. November 2008 Prof. Dr. H.-R. Metz (Matrix) Matrizen 1 Ein System von Zahlen a ik, die rechteckig in m Zeilen und n Spalten angeordnet

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Mathematiklabor 2. Übungsblatt

Mathematiklabor 2. Übungsblatt Dr. Jörg-M. Sautter 3.4.7 Mathematiklabor. Übungsblatt Aufgabe : (Wiederholung) Laden Sie die Dateien mlintro?.m herunter und gehen Sie diese Schritt für Schritt durch. Aufgabe : (Matrix- und Vektoroperationen,

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

MATLAB Sommersemester 2018 Dr. Ulf Mäder

MATLAB Sommersemester 2018 Dr. Ulf Mäder MATLAB Sommersemester 2018 Dr. Ulf Mäder Dr. Ulf Mäder - IMPS Folie 1 MATLAB - Befehle Allgemeine Form Zuweisungen Zwei Arten von Befehlen Anweisungen >> = Einfache Spezialform

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2...

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2... MATRIZEN Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn A ist eine m n Matrix, dh: A hat m Zeilen und n Spalten A besitzt

Mehr

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 Dr Christoph Kirsch ZHAW Winterthur Lektion 3 In dieser Lektion werden Sie in MATLAB mit Vektoren und Matrizen rechnen 1 Theorie Wie Sie

Mehr

Mathematische Computer-Software

Mathematische Computer-Software Mathematische Computer-Software Kommerzielle Computeralgebrasysteme (CAS) Beispiele: Mathematica, Maple, Numerisches und symbolisches Verarbeiten von Gleichungen: Grundrechenarten Ableitung und Integration

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Kurze Einführung in Octave

Kurze Einführung in Octave Kurze Einführung in Octave Numerische Mathematik I Wintersemester 2009/2010, Universität Tübingen Starten von Octave in einer Konsole octave eintippen (unter Linux) Octave als Taschenrechner Beispiele:

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen

Hochschule Düsseldorf University of Applied Sciences. 27. Oktober 2016 HSD. Physik. Vektoren Bewegung in drei Dimensionen Physik Vektoren Bewegung in drei Dimensionen y (px) ~x x (px) Spiele-Copyright: http://www.andreasilliger.com/index.php Richtung a b b ~x = a Einheiten in Richtung x, b Einheiten in Richtung y y (px) ~x

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Casio fx-cg20 Matrix eingeben, editieren, löschen und einfache Matrizenrechnungen

Casio fx-cg20 Matrix eingeben, editieren, löschen und einfache Matrizenrechnungen R. Brinkmann http://brinkmann-du.de Seite 1 13.02.2014 Casio fx-cg20 Matrix eingeben, editieren, löschen und einfache Matrizenrechnungen Matrix eingeben Bevor die Daten einer Matrix eingegeben werden können,

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Einführung in das rechnergestützte Arbeiten

Einführung in das rechnergestützte Arbeiten Karlsruher Institut für Technologie WS / Institut für theoretische Festkörperphysik Dr. Andreas Poenicke und Dipl.-Phys. Patrick Mack.. http://comp.physik.uni-karlsruhe.de/lehre/era/ era@physik.uni-karlsruhe.de

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 32 8 Lineare Algebra: 1 Reelle Matrizen Grundbegriffe Definition

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag

Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag Rolf Stahlberger Alexander Golfmann Lineare Algebra Grundlagen der Vektorrechnung fsg Verlag Impressum Herausgeber: FSG Verlag Alexander Golfmann Augustenstr. 58 80333 München info@fsg-verlag.de www.fsg-verlag.de

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya Matrizen: Grundbegriffe -E Ma Lubov Vassilevskaya Lineares Gleichungssystem Abb. : Der Schnittpunkt P der beiden Geraden ist die graphische Lösung des linearen Gleichungssystem g : y = x, g 2 : y = 3 x,

Mehr

Trainingsaufgaben Teil 1

Trainingsaufgaben Teil 1 Trainingsaufgaben Teil 1 Update am 13.02.2015 mit reduziertem Aufgabenumfang und Ergebnisangaben Bitte bei Bedarf auch die ausführlich beschriebenen Lösungsverfahren in den Skripten ansehen. Bei vielen

Mehr

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen)

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Aufgabe 1 Fassen Sie soweit möglich zusammen: 54 3

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik 2 Dr. Thomas Zehrt Vektoren und Matrizen Inhaltsverzeichnis Vektoren(Wiederholung bzw. Selbststudium 2. Linearkombinationen..............................

Mehr

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert. R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Vektoren. Vektorrechnung

Vektoren. Vektorrechnung Vektoren Dieser Text behandelt das Thema Vektoren, sowei es die gymnasiale Oberstufe betrifft. Vektoren können mehr als das, aber das würde in diesem Überblich zu weit führen. Ein großes Defizit der meisten

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix 5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V.

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V. L5.6 Orthogonale und unitäre Matrizen (invertierbare Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) Reelles inneres Produkt in -Vektorraum [siehe L3.1b]: 'reeller Vektorraum' (i)

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2 1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Skript Lineare Algebra

Skript Lineare Algebra Skript Lineare Algebra sehr einfach Erstellt: 2018/19 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Vektoren... 3 2. Geraden... 6 3. Ebenen... 8 4. Lagebeziehungen... 10 a) Punkt - Gerade...

Mehr

6 Lineare Algebra. 6.1 Einführung

6 Lineare Algebra. 6.1 Einführung 6 Lineare Algebra 6.1 Einführung Die lineare Algebra ist für die Wirtschaftswissenschaften von zentraler Bedeutung. Einerseits liefert sie die theoretischen und praktischen Grundlagen für das Lösen linearer

Mehr

Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr

Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr 04-09-2016 Einführung in Lineare Algebra Aus der linearen Algebra brauchen wir für diese Vorlesung nur das Rechnen mit Vektoren und Matrizen.

Mehr

Vektoren - Einführung

Vektoren - Einführung Vektoren - Einführung Grundlegendes Verwendete Nomenklatur: Handschriftlich ist es kein Problem, einen Vektor stets durch a zu kennzeichnen. In der Textverarbeitung ist die andere Variante, Fettdruck,

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Formale Matrizenrechnung

Formale Matrizenrechnung LINEARE ALGEBRA Formale Matrizenrechnung Grundlagen: Formales Rechnen mit Matrizen Datei Nr. 6 Stand 3. September 5 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Matrizenrechnung: Grundlagen

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Tutorium: Diskrete Mathematik. Vektoren

Tutorium: Diskrete Mathematik. Vektoren Tutorium: Diskrete Mathematik Vektoren Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition I Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor ein Element

Mehr