Information Retrieval

Größe: px
Ab Seite anzeigen:

Download "Information Retrieval"

Transkript

1 Information Retrieval Bisher: Datenbankabfrage mit Hilfe von SQL in relationalen Datenbanken. Die Informationen liegen geordnet in Tabellen -> exakte Ergebnisse Neu: Die Informationen liegen in Datensammlungen Unscharfe Ergebnisse geordnet nach Relevanz Medienarchive Winter 2 Information Retrieval

2 Beispiel Dokumente enthalten folgende Stichworte: d {Sardinien, Strand, Camping} d 2 {Sardinien, Strand, Ferienwohnung, Italien} d 3 {Korsika, Strand, Ferienwohnung} d 4 {Korsika, Gebirge} d 5 {Strand, Camping} Die Menge aller Terme lautet: {Sardinien, Strand, Camping, Ferienwohnung, Italien, Korsika, Gebirge} Medienarchive Winter 2 Information Retrieval 2 Stichwort: wichtige, sinntragende Wörter innerhalb eines Textes Schlagwort: vorgegebene Begriffe zur Beschreibung eines Objektes, in der Regel aus einem kontrollierten Vokabular 2

3 Dokument d d 2 d 3 d 4 D5 Tabellen und SQL Insel Sardinien Sardinien Korsika Korsika Landschaft Strand Strand Strand Gebirge Strand Unterkunft Camping FeWo FeWo Camping select dokument where Insel = 'Korsika' select dokument where Land = 'Italien' select dokument where Insel = 'Korsika' and Land = 'Italien' select dokument where Insel = 'Korsika' or Land = 'Italien' Land Italien Medienarchive Winter 2 Information Retrieval 3 3

4 Daten Retrieval <-> Information Retrieval Ergebnisse Anfrage Fehlertoleranz Ergebnisse Daten Retrieval exakt einmalig keine Menge Information Retrieval unscharf iterativ Dokumente bis zu einer definierten Abweichung geordnete Liste Medienarchive Winter 2 Information Retrieval 4 Ergebnisse: DR liefert eine exakte Menge, die mit den Suchargumenten übereinstimmt. IR liefert auch Ergebnisse, die nicht vollständig mit den Suchargumenten übereinstimmen Anfrage: Beim DR sind die Suchargumente vollständig bekannt. Beim IR werden die Suchargumente iterativ verändert, bis eine zufrieden stellende Antwort vorliegt. Fehlertoleranz: DR liefert genau die Ergebnisse, die zu den Suchargumenten passen. IR liefert auch Ergebnisse innerhalb einer definierten Abweichung. Ergebnisse: DR liefert eine Menge von gleichwertigen Ergebnissen. IR liefert eine Liste, die nach der Distanz vom Ideal geordnet ist. -> Für das IR ist eine Definition eines Distanzfunktion notwendig. 4

5 Distanzfunktion (Metrik) Metrik: Abbildung R n -> R mit: p, p 2 R n : d(p, p 2 ) = p = p 2 p, p 2 R n : d(p, p 2 ) = d(p 2, p ) p, p 2, p 3 R n : d(p,p 2 )+d(p 2, p 3 ) d(p, p 3 ) Medienarchive Winter 2 Information Retrieval 5 5

6 IR - Prozess Anfrage Dokument Verarbeitung Anfragedarstellung Verarbeitung Int. Dokumentendarstellung Vergleich Ergebnisdokumente Relevanzbewertung Feedback Medienarchive Winter 2 Information Retrieval 6 Dokumentenverarbeitung: Aufbau der Indizes Anfrageverarbeitung: stemming 6

7 Definition: Distanzfunktion Fuzzy - Modell Eine Fuzzy-Menge A = {u; μ A (u)} über einer Menge U ist definiert durch eine Zugehörigkeitsfunktion μ A : U [,] welche jedem u aus der Menge U einen Wert μ A aus dem Intervall [,] zuordnet. Medienarchive Winter 2 Information Retrieval 7 7

8 Fuzzy Modell Erweiterung der Boolschen Operationen μ A B (u) = min (μ A (u), μ B (u) ) μ A B (u) = max (μ A (u), μ B (u) ) μ A (u) = - μ A (u) Medienarchive Winter 2 Information Retrieval 8 8

9 Zugehörigkeitswerte. Berechnung der Term-zu-Term Korrelationswerte n i,j c i,j = n i + n j n i,j 2. Berechnung der Zugehörigkeitswerte μ t i (d j) = Π ( c i,k ) t k d j Medienarchive Winter 2 Information Retrieval 9 C i,j = Korrelation zwischen den Begriffen i und j n i,j = Anzahl der Dokumente, in denen beide Begriffe vorhanden sind. n i = Anzahl der Dokumente, in denen der Begriff i vorkommt. Zugehörigkeitswerte: Wie stark gehört das Dokument d j zu dem Term t i? Doppelte Verneinung (-..(-)) Welche Dokumente haben nicht nichts mit dem Term zu tun? C i,k = Korrelationswerte zwischen dem Term t i und allen Termen in dem untersuchten Dokument. 9

10 Medienarchive Winter 2 Information Retrieval Term-zu-Term Korrelationswerte /2 Gebirge /2 /3 /5 Korsika ½ ¼ ½ Italien /3 ½ ½ /3 FeWo /3 ½ Camp /5 ¼ ½ ½ ½ Strand ½ /3 /3 ½ Sardinien Gebirge Korsika Italien FeWo Camp Strand Sardinien

11 Zugehörigkeitswerte d d 2 d 3 d 4 d 5 Sardinien 2/3 2/3 Strand /5 Camping 2/3 ½ FeWo 7/9 /3 2/3 Italien 5/8 5/8 /4 Korsika /5 7/5 /5 Gebirge ½ Medienarchive Winter 2 Information Retrieval

12 Abfragen mit Fuzzy - Logik d d 2 d 3 d 4 d 5 q Korsika μ Korsika(d i) /5 4 7/5 3 2 /5 5 q 2 Italien μ Italien(d i) 5/8 2 5/8 3 5 ¼ 4 q 3 Korsika Italien min(μ Korsika (d i), μ Italien (d i) ) /5 3 7/5 2 5/8 5 /5 4 q 4 Korsika Italien max(μ Korsika (d i), μ Italien (d i) ) 5/8 /4 Medienarchive Winter 2 Information Retrieval 2 2

13 Vektorraum Ein reeller Vektorraum ist ein Tripel (V, +, ), bestehend aus einer Menge V, einer Abbildung + (Addition) mit + : V x V V, (x,y) x + y und einer Abbildung (skalare Multiplikation) mit : R x V V, (λ,x) λx für die folgende Axiome gelten:. (x + y) + z = x + (y + z) für alle x, y, z V 2. x + y = y + x für alle x, y V 3. Es gibt einen Nullvektor V mit + x = x für alle x V 4. Zu jedem x V gibt es ein -x V mit x + (-x) = 5. λ(μx) = (λμ)x für λ, μ R und x V 6. Es gibt ein Einselement R mit x = x für alle x V 7. λ(x + y) = λx + λy für alle λ, μ R und für alle x, y V 8. (λ + μ )x = λx + μx für alle λ, μ R und für alle x V Medienarchive Winter 2 Information Retrieval 3 3

14 Skalarprodukt V sein Vektorraum über R. Unter einem Skalarprodukt x,y auf V versteht man die Abbildung V x V R, (x,y) x,y für die gilt:. x,x x,x = x = Positiv Definit 2. x,y = x,y Symmetrie 3. x+y,z = x,z + y,z Bilinearität λx,y = λ x,y Ein mögliches Skalarprodukt für den R n ist: n x,y = x i y i i= Ist in einem Vektorraum ein Skalarprodukt definiert, spricht man Medienarchive Winter 2 von einem Euklidischen Vektorraum Information Retrieval 4 4

15 Norm In einem euklidischen Vektorraum wird x = x,x die Norm oder der Betrag von x genannt. Medienarchive Winter 2 Information Retrieval 5 5

16 Vektorraum Modell für das Information Retrieval Die Dokumente werden entsprechend ihrer Zugehörigkeitswerte in einen Vektorraum der Terme abgebildet. Die Anfragen werden ebenso in den Vektorraum der Terme abgebildet. Die Dokumente werden entsprechend ihrem Abstand zur Anfrage ausgewählt Medienarchive Winter 2 Information Retrieval 6 6

17 Italien Beispiel d 2 q 2 q 3 d d 3 d 5 q Korsika d 4 Medienarchive Winter 2 Information Retrieval 7 7

18 Kosinusmaß Der Abstand zwischen einer Anfrage und einem Dokument wird durch den Kosinus des eingeschlossenen Winkels der zugehörigen Vektoren bestimmt q,d sim cos (q,d) = q d Medienarchive Winter 2 Information Retrieval 8 8

19 Italien Kosinusmaß d 2 q 2 q 3 d d 3 d 5 q Korsika d 4 Medienarchive Winter 2 Information Retrieval 9 9

20 Kosinusmaß sim cos (q,d) d d 2 d 3 d 4 d 5 q Korsika, , q 2 Italien,9524,964 2, q 3 Korsika Italien,889 4,9396 3,9744 2, Medienarchive Winter 2 Information Retrieval 2 2

21 Euklidische Distanz Der Abstand zwischen einer Anfrage und einem Dokument wird durch den Abstand der beiden zugehörenden Punkte bestimmt. Je größer der Abstand ist, desto unähnlicher ist das Dokument der Anfrage. dissim L 2 (q,d) = (q i d i ) 2 Medienarchive Winter 2 Information Retrieval 2 2

22 Italien Euklidische Distanz d 2 q 2 q 3 d d 3 d 5 q Korsika d 4 Medienarchive Winter 2 Information Retrieval 22 22

23 Euklidische Distanz dissim L 2 (q,d)) d d 2 d 3 d 4 d 5 q Korsika,5 4,336 5,625 2, q 2 Italien,425,466 2,68 4,442 5, q 3 Korsika Italien,8835 3,534 2, Medienarchive Winter 2 Information Retrieval 23 23

24 Medienarchive Winter 2 Information Retrieval 24 24

25 Medienarchive Winter 2 Information Retrieval 25 25

26 Medienarchive Winter 2 Information Retrieval 26 26

27 Medienarchive Winter 2 Information Retrieval 27 27

28 Medienarchive Winter 2 Information Retrieval 28 28

29 Bewertung von Retrieval-Systemen Bewertungsebenen:. nicht formulierbarer Informationsbedarf 2. Natürlichsprachlich formulierter Informationsbedarf 3. Exakt formulierter Informationsbedarf Medienarchive Winter 2 Information Retrieval 29 29

30 Nicht formulierbarer Informationsbedarf Beispiel: Zu einer Videosequenz wird eine passende Musik gesucht. Die passende Musik kann nicht beschrieben werden Die vorhandenen Musiktitel können nicht entsprechend klassifiziert werden Diese Bewertungsebene wird im Folgenden nicht betrachtet. Medienarchive Winter 2 Information Retrieval 3 3

31 Natürlichsprachlich formulierter Informationsbedarf Beispiel: Zeig mir alle Bilder mit Surfern im Sonnenuntergang Es wird bewertet, wie gut ein Benutzer einen Informationsbedarf formulieren kann und wie gut das Informationsbedürfnis in eine Anfrage umgesetzt werden kann Medienarchive Winter 2 Information Retrieval 3 3

32 Medienarchive Winter 2 Information Retrieval 32 Abfrage bei Google Bilder nach den Stichworten Surfer und Sonnenuntergang Das mittlere Bild in der obersten Zeile zeigt einen Punkt, der nur durch die Beschreibung als Surfer identifiziert werden kann. 32

33 Exakt formulierter Informationsbedarf Beispiel: Alle Texte, die Korsika und Italien enthalten Medienarchive Winter 2 Information Retrieval 33 33

34 Bewertungsmaßstäbe Precision: Die Menge der tatsächlich relevanten Dokumente in der Menge der vom System als relevant eingestuften Dokumente Relevant System Relevant System Relevant System Medienarchive Winter 2 Information Retrieval 34 34

35 Bewertungsmaßstäbe Recall: Die Menge der von System gelieferten relevanten Dokumente aus der Menge der tatsächlich vorhandenen relevanten Dokumente Relevant Relevant Relevant System System System Medienarchive Winter 2 Information Retrieval 35 35

36 Bewertungsmaßstäbe Fallout: Die Menge der vom System gelieferten irrelevanten Dokumente aus der Menge aller irrelevanten Dokumente Relevant System Medienarchive Winter 2 Information Retrieval 36 36

37 Dokumentenmenge Vom System als relevant berechnet Vom System als nicht relevant berechnet Beispiel 2 Relevant = 8 Irrelevant = 2 Davon vom Menschen akzeptiert Davon vom Menschen akzeptiert 2 4 Relevant 8 2 System Medienarchive Winter 2 Information Retrieval 37 37

38 Bewertung Precision 2 / =,2 Recall 2 / (2 + 6) =,25 Fallout ( 2) / 2 =,66 Medienarchive Winter 2 Information Retrieval 38 Extremsituationen: Es werden alle Dokumente vom System als relevant gemeldet: rp = 8, fp = 2, fn, rn = Precision = 8 / 2 =,4 Recall = 8 / 8 = Es wird nur ein relevantes Dokument zurückgegeben: rp =, fp =, fn 7, rn = 2 Precision = / =, Recall = / ( + 7) =,25 38

39 Eigene Messung der Precision Diplomarbeit von Frau Ilham Achkar Suchbegriff: Java Bewertung der ersten Treffer von Yahoo durch 34 Testpersonen Aufgabe: Wie relevant ist der Link für ein Referat zum Einführung in die Programmiersprache Java Bewertung zwischen 5 = sehr relevant und = überhaupt nicht relevant Medienarchive Winter 2 Information Retrieval 39 39

40 Mittelwerte über alle Bewertungen eines Links Mittelwert 4,5 4, 3,5 3, 2,5 2, Mittelwert,5,,5, Medienarchive Winter 2 Information Retrieval 4 4

41 Mittelwerte über alle Bewertungen eines Links Standardabweichung 6, 5, 4, 3, 2,,, Medienarchive Winter 2 Information Retrieval 4 4

42 Individuelle Bewertungen Etreme Einschätzungen zweier Testpersonen Proband C Proband R Medienarchive Winter 2 Information Retrieval 42 42

43 Verwaltung und Suche von Multimedia - Daten Anfrage Ergebnis Anfrageaufbereitung Feature Extraktion Optimierung Feature Werte Anfrageplan Ergebnisaufbereitung Formatumwandlung Transformation Rekonstruktion Ergebnisdaten Ähnlichkeitsberechnung Anfragebearbeitung Feature Index Feature Extraktion Feature Werte Feature Erkennung Feature Aufbereitung Rohdaten Vorverarbeitung Relationale DB Metadaten Strukturdaten MM Objekte Relationale Daten Medienarchive Winter 2 Information Retrieval 43 Vorverarbeiten: z.b. Bilder skalieren oder drehen oder entzerren, segmentieren in abgebildete Personen, einzelne Filmsequenzen Relationale Daten: beschreibende Elemente, technische Daten (Bildgröße, Speicherformat, Abspielzeit, ExiF ) Featurewerte: Texturen, Farbverteilung, Bewegungsvektoren Feature Index: Grundlage für die Suche nach gleichen oder ähnlichen Einträgen, mehrdimensionale features (Farbverteilung) Anfrageaufbereitung: Aufteilung in SQL-Abfragen mit exakten Treffen und Informationretrieval mit ähnlichen Ergebnissen, Ermittlung der Feature Werte des Vergleichsobjekts Ergebnisaufbereitung: An das Geräteprofil des Benutzers anpassen, Koordination unterschiedlicher Objekte 43

44 Beispiel Erstellung eines Fotoalbums Zeitlich zusammenhängende digitale Fotos, z.b. Urlaub, Familienfeier Automatische Auswahl der besten Fotos Boll, S., Sandhaus, P., Scherp, A., Thieme, S.: Multimedia Information Retrieval aus der Persperktive eines Fotoalbums Datenbankspektrum 8, 26 (33-39) Medienarchive Winter 2 Information Retrieval 44 44

45 Extraktion und Anreicherung von Features Personen erkennung Auswahl des besten aus N Fotos Klassifikation Innen / Aussen Schärfen analyse Belichtungs analyse Kalendarische Ereignisse Lichtbedingungen Season Detection Farb- / Helligkeits Histogramme Kanten Erkennung Bild ähnlichkeiten Gesichtserkennung Datum / Zeit Extraktion ExiF Aufnahme Features ExiF GPS Extraktion ExiF Medienarchive Winter 2 Information Retrieval 45 45

46 Exchangeable Image File Format ExiF Datum und Uhrzeit Orientierung (Hoch- oder Querformat) Brennweite Belichtungszeit Blendeneinstellung Belichtungsprogramm ASA-Wert ( Lichtempfindlichkeit ) GPS-Koordinaten (siehe Fotoverortung Geo-Imaging) Vorschaubild ( Thumbnail ) Medienarchive Winter 2 Information Retrieval 46 46

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

2 Volltext-Suchmaschinen

2 Volltext-Suchmaschinen 2 Volltext-Suchmaschinen Volltext-Suchmaschinen werden vor allem für die Suche im Internet benutzt, jedoch gibt es auch Erweiterungen (Data Cartridge, Oracle) um Volltextsuche bei SQL-Suchmaschinen wie

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Übungsaufgaben mit Lösungsvorschlägen

Übungsaufgaben mit Lösungsvorschlägen Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik Prof. Dr. Andreas Henrich Dipl. Wirtsch.Inf. Daniel Blank Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Suchmaschinenalgorithmen. Vortrag von: Thomas Müller

Suchmaschinenalgorithmen. Vortrag von: Thomas Müller Suchmaschinenalgorithmen Vortrag von: Thomas Müller Kurze Geschichte Erste Suchmaschine für Hypertexte am CERN Erste www-suchmaschine World Wide Web Wanderer 1993 Bis 1996: 2 mal jährlich Durchlauf 1994:

Mehr

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine

Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Gesucht und Gefunden: Die Funktionsweise einer Suchmaschine Prof. Dr. Peter Becker FH Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@fh-bonn-rhein-sieg.de Vortrag im Rahmen des Studieninformationstags

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Einführung in die Software-Umgebung

Einführung in die Software-Umgebung Ortsbezogene Anwendungen und Dienste WS2011/2012 Einführung in die Software-Umgebung Die Software-Umgebung Zentrale Postgres-Datenbank mit Geodaten von OpenStreetMap: Deutschland: 13 mio. Datensätze Topologie-Informationen

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

Suchmaschinen und ihre Architektur. Seminar: Angewandtes Information Retrieval Referat von Michael Wirz

Suchmaschinen und ihre Architektur. Seminar: Angewandtes Information Retrieval Referat von Michael Wirz Suchmaschinen und ihre Architektur Seminar: Angewandtes Information Retrieval Referat von Michael Wirz Ziel Rudimentäre Grundkenntnisse über die Funktionsweise von Suchmaschinen und Trends Einführung in

Mehr

Proseminar Multimedia Datenbanken und Retrieval QBIC

Proseminar Multimedia Datenbanken und Retrieval QBIC Proseminar Multimedia Datenbanken und Retrieval QBIC Venera Fefler Institut für Web Science and Technologies Universität Koblenz-Landau, Campus Koblenz Zusammenfassung: Inhaltsbasiertes Multimedia Retrieval

Mehr

Einführungsvortrag: Webgraph, Klassisches IR vs. Web-IR

Einführungsvortrag: Webgraph, Klassisches IR vs. Web-IR Einführungsvortrag: Webgraph, Klassisches IR vs. Web-IR Seminar Suchmaschinen, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Der Webgraph 3. Modelle

Mehr

Alternativen zur OpenText Suche. 29. OpenText Web Solutions Anwendertagung Mannheim, 18. Juni 2012 Sebastian Henne

Alternativen zur OpenText Suche. 29. OpenText Web Solutions Anwendertagung Mannheim, 18. Juni 2012 Sebastian Henne Alternativen zur OpenText Suche 29. OpenText Web Solutions Anwendertagung Mannheim, 18. Juni 2012 Sebastian Henne Übersicht Allgemeines zur Suche Die OpenText Common Search Indexierung ohne DeliveryServer

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14

Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14 Universität Augsburg, Institut für Informatik Wintersemester 2013/14 Prof. Dr. W. Kießling 10. Oktober 2013 F. Wenzel, D. Köppl Suchmaschinen Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Large-Scale Image Search

Large-Scale Image Search Large-Scale Image Search Visuelle Bildsuche in sehr großen Bildsammlungen Media Mining I Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.{de,org}

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

Java Connectivity mit Caché extreme (Persist & Perform ohne Umwege) Gerd Nachtsheim, Senior Sales Engineer, InterSystems

Java Connectivity mit Caché extreme (Persist & Perform ohne Umwege) Gerd Nachtsheim, Senior Sales Engineer, InterSystems Java Connectivity mit Caché extreme (Persist & Perform ohne Umwege) Gerd Nachtsheim, Senior Sales Engineer, InterSystems InterSystems Unternehmensprofil Internationales Softwareunternehmen Hauptsitz in

Mehr

4. Nicht-Probabilistische Retrievalmodelle

4. Nicht-Probabilistische Retrievalmodelle 4. Nicht-Probabilistische Retrievalmodelle 1 4. Nicht-Probabilistische Retrievalmodelle Norbert Fuhr 4. Nicht-Probabilistische Retrievalmodelle 2 Rahmenarchitektur für IR-Systeme Evaluierung Informations

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Bildbearbeitung mit GIMP: Erste Schritte Eine kurze Anleitung optimiert für Version 2.6.10

Bildbearbeitung mit GIMP: Erste Schritte Eine kurze Anleitung optimiert für Version 2.6.10 Bildbearbeitung mit GIMP: Erste Schritte Eine kurze Anleitung optimiert für Version 2.6.10 Nando Stöcklin, PHBern, Institut für Medienbildung, www.phbern.ch 1 Einleitung Einfache Bildbearbeitungen wie

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Whitepaper. Produkt: combit Relationship Manager 7, address manager 17. Import von Adressen nach Firmen und Kontakte

Whitepaper. Produkt: combit Relationship Manager 7, address manager 17. Import von Adressen nach Firmen und Kontakte combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager 7, address manager 17 Import von Adressen nach Firmen und Kontakte Import von Adressen nach Firmen und Kontakte

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Die folgenden Features gelten für alle isquare Spider Versionen:

Die folgenden Features gelten für alle isquare Spider Versionen: isquare Spider Die folgenden s gelten für alle isquare Spider Versionen: webbasiertes Management (Administratoren) Monitoring Sichten aller gefundenen Beiträge eines Forums Statusüberprüfung Informationen

Mehr

Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern

Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern Björn Burow SE Mustererkennung in Bildern und 3D-Daten Lehrstuhl Graphische Systeme BTU Cottbus Inhaltsübersicht

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131 Architekturen Von der DB basierten zur Multi-Tier Anwendung DB/CRM (C) J.M.Joller 2002 131 Lernziele Sie kennen Design und Architektur Patterns, welche beim Datenbankzugriff in verteilten Systemen verwendet

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Grenzen überschreiten Intelligente Suche im Input Management

Grenzen überschreiten Intelligente Suche im Input Management Grenzen überschreiten Intelligente Suche im Input Management Carsten Fuchs Lead Consultant / TPO XBOUND ReadSoft AG Carsten.Fuchs@ReadSoft.com #InspireEU15 Agenda Integration überschreitet Grenzen Anwendungsfälle

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

5. Suchmaschinen Herausforderungen beim Web Information Retrieval. 5. Suchmaschinen. Herausforderungen beim Web Information Retrieval

5. Suchmaschinen Herausforderungen beim Web Information Retrieval. 5. Suchmaschinen. Herausforderungen beim Web Information Retrieval 5. Suchmaschinen Herausforderungen beim Web Information Retrieval 5. Suchmaschinen Herausforderungen beim Web Information Retrieval Architektur von Suchmaschinen Spezielle Bewertungsfunktionen Information

Mehr

Die Fuzzy-Logik als methodischer Ansatz in der wissensbasierten Informationsverarbeitung

Die Fuzzy-Logik als methodischer Ansatz in der wissensbasierten Informationsverarbeitung Ilka Kürbis, Ruhr-Universität Bochum, 20.Jan. 200 Die Fuzzy-Logik als methodischer Ansatz in der wissensbasierten Informationsverarbeitung am Fallbeispiel der Bewertung von luftchemischen Messdaten Logik

Mehr

9. IR im Web. bei Anfragen im Web gibt es eine Reihe von zusätzlichen Problemen, die gelöst werden

9. IR im Web. bei Anfragen im Web gibt es eine Reihe von zusätzlichen Problemen, die gelöst werden IR im Web 9. IR im Web bei Anfragen im Web gibt es eine Reihe von zusätzlichen Problemen, die gelöst werden müssen Einführung in Information Retrieval 394 Probleme verteilte Daten: Daten sind auf vielen

Mehr

Universität ulm. Seminar Data Mining. Seminararbeit über Text Mining. Matthias Stöckl

Universität ulm. Seminar Data Mining. Seminararbeit über Text Mining. Matthias Stöckl Universität ulm Seminar Data Mining Seminararbeit über Text Mining Matthias Stöckl 1 Inhaltsverzeichnis: 1. Einführung 2. Grundlagen 3. Erschließung des Dokumenteninhaltes 3.1. Schlüsselwortextraktion

Mehr

Übung Medienretrieval WS 07/08 Thomas Wilhelm, Medieninformatik, TU Chemnitz

Übung Medienretrieval WS 07/08 Thomas Wilhelm, Medieninformatik, TU Chemnitz 02_Grundlagen Lucene Übung Medienretrieval WS 07/08 Thomas Wilhelm, Medieninformatik, TU Chemnitz Was ist Lucene? (1) Apache Lucene is a high-performance, full-featured text search engine library written

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

Multimedia-Metadaten und ihre Anwendung

Multimedia-Metadaten und ihre Anwendung Multimedia-Metadaten und ihre Anwendung 14.02.2006 Video Retrieval und Video Summarization Maria Wagner Aspekte des Video Retrieval 2/14 Videoanalyse Analyse nötig, um Struktur und Metadaten zu erkennen

Mehr

Jimdo Fortsetzung Die eigene Jimdo-Webseite begutachten und erweitern"

Jimdo Fortsetzung Die eigene Jimdo-Webseite begutachten und erweitern Jimdo Fortsetzung Die eigene Jimdo-Webseite begutachten und erweitern" Yvonne Seiler! Volkshochschule Bern! Lernziele" Sie tauschen sich über Vor- und Nachteile aus und geben sich gegenseitig Tipps.! Sie

Mehr

Übertragung von Terminen und Baustellen

Übertragung von Terminen und Baustellen In dieser Dokumentation wird die Anwendung und die Konfiguration der Programme beschrieben, die für die Übertragung der Baustellen und Termine aus der KWP SQL-Datenbank an das virtic-system verwendet werden

Mehr

Teil I: Technische Grundlagen 15

Teil I: Technische Grundlagen 15 Teil I: Technische Grundlagen 15 Kapitel 1 Was ist eine Systemkamera? 17 Kapitel 2 Einstellen der Kamera 21 2.1 Vorab: Filmformat einstellen...................................................... 23 2.2

Mehr

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test?

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Auch wenn die Messungsmethoden ähnlich sind, ist das Ziel beider Systeme jedoch ein anderes. Gwenolé NEXER g.nexer@hearin gp

Mehr

Dieser Artikel wurde manuell übersetzt. Bewegen Sie den Mauszeiger über die Sätze im Artikel, um den Originaltext anzuzeigen.

Dieser Artikel wurde manuell übersetzt. Bewegen Sie den Mauszeiger über die Sätze im Artikel, um den Originaltext anzuzeigen. Dieser Artikel wurde manuell übersetzt. Bewegen Sie den Mauszeiger über die Sätze im Artikel, um den Originaltext anzuzeigen. LIKE (Transact-SQL) SQL Server 2012 Dieser Artikel wurde noch nicht bewertet

Mehr

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Ziel Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Einteilung (=Klassifikation) der Pixel eines multispektralen Datensatzes in eine endliche Anzahl von Klassen. Es sollen dabei versucht

Mehr

Tipps zum Pflegen der Texte auf deiner Mrs.Sporty Clubseite

Tipps zum Pflegen der Texte auf deiner Mrs.Sporty Clubseite Tipps zum Pflegen der Texte auf deiner Mrs.Sporty Clubseite In dieser Anleitung findest du konkrete Tipps und Beispiele, wie du deine Texte auf der neuen Clubseite gestalten kannst, damit: 1. deine Clubseite

Mehr

Erste Schritte, um selber ConfigMgr Reports zu erstellen

Erste Schritte, um selber ConfigMgr Reports zu erstellen Thomas Kurth CONSULTANT/ MCSE Netree AG thomas.kurth@netree.ch netecm.ch/blog @ ThomasKurth_CH Erste Schritte, um selber ConfigMgr Reports zu erstellen Configuration Manager Ziel Jeder soll nach dieser

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

Unterrichtsinhalte Informatik

Unterrichtsinhalte Informatik Unterrichtsinhalte Informatik Klasse 7 Einführung in die Arbeit mit dem Computer Was ist Informatik? Anwendungsbereiche der Informatik Was macht ein Computer? Hardware/Software Dateiverwaltung/Dateien

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

Prüfungsnummer: 70-461-deutsch. Prüfungsname: Querying. Version: Demo. SQL Server 2012. http://zertifizierung-portal.de/

Prüfungsnummer: 70-461-deutsch. Prüfungsname: Querying. Version: Demo. SQL Server 2012. http://zertifizierung-portal.de/ Prüfungsnummer: 70-461-deutsch Prüfungsname: Querying Microsoft SQL Server 2012 Version: Demo http://zertifizierung-portal.de/ 1.Sie sind als Datenbankadministrator für das Unternehmen it-pruefungen tätig.

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose. Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.com 13.06.20 15 SQLSaturday Rheinland 2015 1. Zu komplex: Man kann

Mehr

Carl-Engler-Schule Karlsruhe Datenbank 1 (5)

Carl-Engler-Schule Karlsruhe Datenbank 1 (5) Carl-Engler-Schule Karlsruhe Datenbank 1 (5) Informationen zur Datenbank 1. Definition 1.1 Datenbank-Basis Eine Datenbank-Basis ist eine Sammlung von Informationen über Objekte (z.b Musikstücke, Einwohner,

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Dipl. Inf. Eric Winter. PostgreSQLals HugeData Storage Ein Erfahrungsbericht

Dipl. Inf. Eric Winter. PostgreSQLals HugeData Storage Ein Erfahrungsbericht Dipl. Inf. Eric Winter Entwicklungsleiter PTC GPS-Services GmbH PostgreSQLals HugeData Storage Ein Erfahrungsbericht Inhalt 1. Problembeschreibung 2. Partielle Indexierung 3. Partitionierung 1. Vererbung

Mehr

Robuste Hashes zur forensischen Bilderkennung

Robuste Hashes zur forensischen Bilderkennung Robuste Hashes zur forensischen Bilderkennung Dr. Martin Steinebach Information Assurance (IAS) Fraunhofer SIT Rheinstrasse 75, 64295 Darmstadt Telefon: 06151 869-349, Fax: 06151 869-224 E-mail: martin.steinebach@sit.fraunhofer.de

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

Eine Abfrage (Query) ist in Begriffe und Operatoren unterteilt. Es gibt zwei verschiedene Arten von Begriffen: einzelne Begriffe und Phrasen.

Eine Abfrage (Query) ist in Begriffe und Operatoren unterteilt. Es gibt zwei verschiedene Arten von Begriffen: einzelne Begriffe und Phrasen. Lucene Hilfe Begriffe Eine Abfrage (Query) ist in Begriffe und Operatoren unterteilt. Es gibt zwei verschiedene Arten von Begriffen: einzelne Begriffe und Phrasen. Ein einzelner Begriff ist ein einzelnes

Mehr

Wo sind meine Bilder?

Wo sind meine Bilder? Wo sind meine Bilder? SEO-Campixx 2012 Ingo Henze http://schnurpsel.de/ http://putzlowitsch.de/ Übersicht Bilder im Web Hotlinks, Links und Kopien Links und Kopien in der Google Bildersuche Hotlinks und

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Text Mining Praktikum Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Rahmenbedingungen Gruppen von 2- (max)4 Personen Jede Gruppe erhält eine Aufgabe Die

Mehr

Symmetrie und Anwendungen

Symmetrie und Anwendungen PC II Kinetik und Struktur Kapitel 6 Symmetrie und Anwendungen Symmetrie von Schwingungen und Orbitalen, Klassifizierung von Molekülschwingungen Auswahlregeln: erlaubte verbotene Übergänge IR-, Raman-,

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Kontextbasiertes Information Retrieval

Kontextbasiertes Information Retrieval Kontextbasiertes Information Retrieval Modell, Konzeption und Realisierung kontextbasierter Information Retrieval Systeme Karlheinz Morgenroth Lehrstuhl für Medieninformatik Fakultät Wirtschaftsinformatik

Mehr

Lerox DB/2 Datenbankreferenz in QlikView für IBM System AS/400, iseries i5, System i

Lerox DB/2 Datenbankreferenz in QlikView für IBM System AS/400, iseries i5, System i Lerox DB/2 Datenbankreferenz in QlikView für IBM System AS/400, iseries i5, System i Inhaltsverzeichnis Überblick... 3 Die QlikView Applikation im Kontext... 4 Technische Rahmenbedinungen... 5 Funktionelle

Mehr

PHP und MySQL. Integration von MySQL in PHP. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (michael.kluge@tu-dresden.

PHP und MySQL. Integration von MySQL in PHP. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (michael.kluge@tu-dresden. Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) PHP und MySQL Integration von MySQL in PHP Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424 (michael.kluge@tu-dresden.de) MySQL

Mehr

Informatik Programmiersprachen eine kurze Übersicht

Informatik Programmiersprachen eine kurze Übersicht Informatik eine kurze Übersicht Seite 1 natürliche Sprachen (nach Wikipedia) ca 6500 gesprochene Sprachen davon etwa die Hälfte im Aussterben etwa 500 Schriftsprachen mit gedruckten Texten P. Bueghel Turmbau

Mehr

Visualisierung von Indikatoren des Monitor der Siedlungs- und Freiraumentwicklung auf Basis eines SVG-Viewers. GI2009 Dresden 14./15.

Visualisierung von Indikatoren des Monitor der Siedlungs- und Freiraumentwicklung auf Basis eines SVG-Viewers. GI2009 Dresden 14./15. Visualisierung von Indikatoren des Monitor der Siedlungs- und Freiraumentwicklung auf Basis eines SVG-Viewers GI2009 Dresden 14./15. Mai 2009 Vortragender: Dipl. -Ing. (FH) Jochen Förster Problemstellung

Mehr

KLASSIFIZIERUNG VON SCHADSOFTWARE ANHAND VON SIMULIERTEM NETZWERKVERKEHR

KLASSIFIZIERUNG VON SCHADSOFTWARE ANHAND VON SIMULIERTEM NETZWERKVERKEHR Retail KLASSIFIZIERUNG VON SCHADSOFTWARE ANHAND VON SIMULIERTEM NETZWERKVERKEHR Technology Life Sciences & Healthcare Florian Hockmann Ruhr-Universität Bochum florian.hockmann@rub.de Automotive Consumer

Mehr

Language Model basierte Suchterm Klassifizierung. Marcus Fabarius Kamila Kedzior Philipp Liepert Rim Sahnoun Enterprise Data Management SoSe 2014

Language Model basierte Suchterm Klassifizierung. Marcus Fabarius Kamila Kedzior Philipp Liepert Rim Sahnoun Enterprise Data Management SoSe 2014 Language Model basierte Suchterm Klassifizierung Marcus Fabarius Kamila Kedzior Philipp Liepert Rim Sahnoun Enterprise Data Management SoSe 2014 Problem Die Intention des Nutzers ist nicht immer eindeutig

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Whitepaper. Automatisierte Akzeptanztests mit FIT. Einleitung. Die Bedeutung von Akzeptanztests

Whitepaper. Automatisierte Akzeptanztests mit FIT. Einleitung. Die Bedeutung von Akzeptanztests Automatisierte Akzeptanztests mit FIT Einleitung Dieses beschreibt, wie man Tests aus Anwender-/Kundensicht mit dem Open-Source-Werkzeug FIT beschreibt und durchführt. Das ist für Kunden, Anwender und

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Datenbankenseminar: SAP Reporting Vergleich ABAP vs. Quick View. Dipl. WiFo Sven Adolph

Datenbankenseminar: SAP Reporting Vergleich ABAP vs. Quick View. Dipl. WiFo Sven Adolph Datenbankenseminar: SAP Reporting Vergleich ABAP vs. Quick View Dipl. WiFo Sven Adolph Gehalten am Lehrstuhl PI III Prof. Moerkotte 28.11.2003 Übersicht 1. Motivation 2. Die betriebliche Standardsoftware

Mehr