1.4 Steigung und Steigungsdreieck einer linearen Funktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1.4 Steigung und Steigungsdreieck einer linearen Funktion"

Transkript

1 Werner Zeyen 1. Auflage, 2013 ISBN: Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2

2 1.4 Steigung und Steigungsdreieck einer linearen Funktion In dieser Lerneinheit lernst du, wie man mithilfe eines sogenannten Steigungsdreiecks die Graphen linearer Funktionen ohne Wertetabelle zeichnen kann. > > Öffne die Datei 1.4_Lineare Funktionen.ggb. 1.4_Lineare Funktionen.ggb Durch Ziehen am Schieberegler m kannst du die Steigung der Geraden verändern. Ziehst du am Schieberegler b, so ändert sich der zugehörige y-achsenabschnitt, also die Stelle im Koordinatensystem, an der die Gerade die y-achse schneidet. Das alles ist dir schon bekannt. > > Stelle zunächst den Schieberegler m auf 1 und b auf 0 und zeichne nun ein Steigungsdreieck ein. Schreibe dazu links unten in die Eingabezeile die drei ersten Buchstaben des Begriffs Steigung. Nun wird der vollständige Begriff bzw. der Befehl Steigung [ <Gerade> ] eingeblendet. Drücke Ü, gib den Namen der Geraden (in diesem Fall a) ein und drücke erneut Ü. GeoGebra zeichnet ein Dreieck an die Gerade. > > Färbe das Dreieck rot ein, damit es sich besser vom Hintergrund abhebt. Klicke mit der rechten Maustaste in das Dreieck und wähle im Kontextmenü Eigenschaften Farbe. Du kannst das Steigungsdreieck auch in die Abbildung der Übungsdatei einzeichnen. 1 Ziehe nun den Schieberegler m vom Wert 1 bis zum Höchstwert nach rechts. Was ändert sich am Dreieck, was bleibt gleich? 2 Welchem Wert in der Funktionsgleichung entspricht jeweils der Wert von c? 3 Stelle für m negative Werte ein. Wie ändert sich das Steigungsdreieck, wie der Wert für c? 12 HERDT-Verlag

3 Lineare Funktionen 1 4 Stelle verschiedene Werte für den y-achsenabschnitt b ein. Wie ändert sich das Steigungsdreieck? 5 Beschreibe, wie du mithilfe eines Steigungsdreiecks und der Werte für m und b eine Funktionsgerade einer linearen Funktion zeichnen kannst. Fülle dazu die Lücken aus. Ausgangspunkt für die Zeichnung des Steigungsdreiecks ist der Punkt auf der. Von hier aus zeichne ich eine Seite des Dreiecks mit der Länge nach rechts. Dann zeichne ich im Winkel nach oder nach die 2. Seite des Steigungsdreiecks mit der Länge der. Zum Schluss verbinde ich den oberen/unteren Eckpunkt mit dem auf der y-achse und erhalte das Steigungsdreieck. Wenn ich nun noch die und rechts Seite des Steigungsdreiecks nach links, erhalte ich die Gerade zu der gegebenen Funktionsgleichung. 6 Stelle b auf 0 und m auf 0.75 ( ). Hier kannst du anstelle von 1 nach rechts und nach oben auch andere, ganzzahlige Werte nehmen. Probiere es mit 4 nach rechts und 3 nach oben. 7 Stelle m auf 0.25 ( ). Wie viel Einheiten musst du jetzt nach rechts gehen und wie viele nach oben/unten? 8 Kannst du ein Verfahren angeben, wie du ein Steigungsdreieck zeichnen kannst, wenn der Wert für m ein Bruch ist? HERDT-Verlag 13

4 2.7 Der Satz des Pythagoras Pythagoras von Samos war ein berühmter Philosoph und Mathematiker, der um 500 vor Christus in Griechenland lebte. Sein berühmter Lehrsatz ist einer der wichtigsten Sätze in der Geometrie. In dieser Lerneinheit wirst du entdecken, was dieser Lehrsatz beinhaltet. > > Öffne die Datei 2.7_Dreiecke.ggb. 2.7_Dreiecke.ggb Du siehst ein Dreieck mit den Eckpunkten A, B und C und den Seiten a, b und c. > > Zeige die Größe des Winkels bei Punkt C an, indem du das Werkzeug Winkel aktivierst und erst auf Seite b und dann auf Seite a klickst. Wie groß ist der Winkel bei Punkt C? > > Zeichne über allen drei Seiten des Dreiecks die Quadrate ein. Aktiviere dazu das Werkzeug Regelmäßiges Vieleck und klicke der Reihe nach auf die Punkte A und C. Bestätige im nun eingeblendeten Fenster Regelmäßiges Vieleck die angezeigte Zahl 4 mit OK. Klicke nun der Reihe nach auf die Punkte C und B und bestätige im eingeblendeten Fenster wieder die Zahl 4 mit OK. Gehe genauso beim Einzeichnen des Quadrates über Seite c des Dreiecks vor. Wenn du möchtest, kannst du die Quadrate auch farblich gestalten. Klicke dazu jeweils mit der rechten Maustaste in ein Quadrat und wähle im Kontextmenü Eigenschaften Farbe. Mit dem Werkzeug Bewege kannst du die Textfelder mit der Maus verschieben. > > Miss die Fläche aller drei Quadrate. Wähle zuerst im Menü Einstellungen Runden 1 Dezimalstelle. Aktiviere nun das Werkzeug Fläche und klicke der Reihe nach in jedes Quadrat. 32 HERDT-Verlag

5 Rund ums Dreieck 2 1 Was stellst du fest, wenn du die Summe der beiden kleinen Quadrate a2 und b2 (Kathetenquadrate) mit der Größe des größten Quadrates c2 (Hypotenusenquadrat) vergleichst? 2 Ist das immer so? Verändere durch Ziehen am Punkt A oder C die Form des Dreiecks. Was ändert sich dabei im Dreieck nicht? 3 Wie ist das mit den Quadraten? Gilt immer noch die Feststellung, die du bei Aufgabe 1 aufgeschrieben hast? Damit hast du den berühmten Lehrsatz des Pythagoras entdeckt! Formuliere ihn als Regel, indem du die Lücken ausfüllst. In einem Dreieck haben die beiden zusammen den wie das. Die Kurzform dieses Satzes mit den Seiten a, b und c eines rechtwinkligen Dreiecks mit c als Hypotenuse heißt dann: 4 Bisher hast du nur rechtwinklige Dreiecke untersucht. Gilt der Satz des Pythagoras auch für andere Dreiecke? a) Finde das heraus, indem du in einem neuen GeoGebra-Zeichenblatt ein beliebiges nicht rechtwickliges Dreieck ABC mit den Seiten a, b und c zeichnest, den Winkel bei Punkt C misst, die Quadrate über den Seiten einzeichnest, die Flächeninhalte der Quadrate misst und den Größenvergleich der Summe der beiden Kathetenquadrate mit dem Hypotenusenquadrat für unterschiedliche Winkel durchführst. b) Ergänze die folgende Aussage: Der Satz des Pythagoras gilt HERDT-Verlag 33

6 3.3 Flächeninhalt von Trapezen Es gibt mehrere Wege, eine Formel zur Berechnung des Flächeninhalts von Trapezen aufzustellen. Diese Lerneinheit zeigt dir anhand der Methode Unbekanntes auf Bekanntes zurückführen, wie du eine Formel für den Flächeninhalt von Trapezen findest. Das Unbekannte ist in diesem Falle die Art und Weise, den Flächeninhalt eines Trapezes zu berechnen. Bekannt ist dir, wie man die Flächeninhalte von Rechteck, Dreieck und Parallelogramm berechnet. > > Öffne die Datei 3.3_Vierecke.ggb. 3.3_Vierecke.ggb Abgebildet sind zwei übereinanderliegende Trapeze und ein Schieberegler α. Das rote ist das Trapez ABCD mit der Höhe h (= Abstand der parallelen Seiten a und c), das blaue ist das Trapez A'B'C'D'. Deine Aufgabe ist es nun, eine Formel zur Berechnung des Flächeninhaltes dieses Trapezes zu finden, die du auf alle Trapeze anwenden kannst. Dabei wirst du eine unbekannte Fläche auf eine bekannte Fläche zurückführen. 1 Vergleiche die beiden Trapeze ABCD und A'B'C'D' hinsichtlich ihrer Größe: 2 Du hast sicher schon eine Idee, wie man die unbekannte Fläche des Trapezes in eine dir bereits bekannte Fläche umwandeln kann. Ziehe den Schieberegler für den Winkel α bis auf 180. a) Was ist passiert? b) Welche Gesamtfigur ist entstanden? 38 HERDT-Verlag

7 Vierecke 3 3 Vergleiche die Flächeninhalte von Trapez und Parallelogramm. 4 Du weißt sicher noch, wie man die Fläche eines Parallelogramms berechnet. Schreibe die zugehörige Formel in Worten und als Gleichung auf. Flächeninhalt eines Parallelogramms = 5 Was kannst du über die Höhe von Trapez und Parallelogramm aussagen? 6 Aus welchen Seiten setzt sich die Grundseite des Parallelogramms zusammen? 7 Wie heißt also die Formel zur Berechnung des Flächeninhaltes des Parallelogramms? Achtung: Du musst eine Klammer verwenden! Warum? 8 Vergleiche noch einmal den Flächeninhalt des Trapezes mit dem des Parallelogramms. Kannst du jetzt eine Formel für den Flächeninhalt des Trapezes aufstellen? 9 Die Berechnung des Flächeninhaltes eines Trapezes erfolgt also in drei Schritten: : Berechne zum Schluss die Flächeninhalte von Trapez und Parallelogramm, die in der Abbildung am Seitenanfang dieser Lerneinheit abgebildet sind. HERDT-Verlag 39

8 4.3 Spiegelungen an einem Punkt Spiegelungen an Geraden kennst du schon. Die Spiegelung einer Figur entspricht dabei einer Faltung an der Geraden, sodass beide Figuren aufeinanderfallen. In dieser Lerneinheit spiegelst du ein Dreieck an einem Punkt. Welche Eigenschaften diese Punktspiegelung hat, wirst du anschließend herausfinden. > > Öffne die Datei 4.3_Abbildungen.ggb. 4.3_Abbildungen. ggb Du siehst ein beliebiges Dreieck ABC und den Punkt Z. Spiegle das Dreieck an Punkt Z und gehe dabei wie folgt vor: > > Aktiviere das Werkzeug Spiegle Objekt an Punkt, klicke in das Dreieck und anschließend auf Punkt Z. GeoGebra spiegelt das Dreieck an Punkt Z. 1 Prüfe den Umlaufsinn (die Reihenfolge der Eckpunkte im oder gegen den Uhrzeigersinn) von Originaldreieck und gespiegeltem Dreieck. a) Hat sich der Umlaufsinn geändert? b) Wie war das mit dem Umlaufsinn bei der Geradenspiegelung? > > Aktiviere das Werkzeug Strecke zwischen zwei Punkten und verbinde die Punkte (A, B, C) sowie die Spiegelpunkte (A', B', C') mit Punkt Z. Du kannst die Punktspiegelung auch in die Abbildung der Übungsdatei einzeichnen. 2 Vergleiche jeweils die Abstände der Originalpunkte zum Punkt Z (AZ, BZ und CZ) und die Abstände der Spiegelpunkte zum Punkt Z (A'Z, B'Z und C'Z). Was vermutest du? 46 HERDT-Verlag

9 Kongruenzabbildungen 4 > > Prüfe deine Vermutung, indem du alle Abstände mit dem Werkzeug Abstand oder Länge misst. 3 Verändere durch Ziehen an einem der Eckpunkte des Dreiecks die Lage des Punktes. Beobachte dabei die Abstände von Originalpunkt und Bildpunkt zu Punkt Z. Ziehe auch an Punkt Z. Was stellst du fest? 4 Anstatt das Dreieck an Punkt Z zu spiegeln, kannst du es auch drehen. Wenn die Längenangaben nur ganzzahlig angezeigt werden, wähle im Menü Einstellungen Runden 1 Dezimalstelle. Um welchen Punkt? Um wie viel Grad? Führe die Drehung nach folgender Anleitung durch: > > Erstelle einen Schieberegler. Aktiviere das Werkzeug Schieberegler und klicke auf eine freie Stelle auf dem Zeichenblatt. Klicke im nun erscheinenden Fenster auf Winkel und gib als Winkelnamen α ein. Gib als Intervall min: 0 und max: 180 ein. Klicke auf Übernehmen und ziehe den Winkel am Schieberegler auf 0. > > Bereite die Drehung vor, indem du das Werkzeug Drehe Objekt um Punkt mit Drehwinkel aktivierst. Klicke in das Originaldreieck und dann auf Punkt Z. Gib im nun erscheinenden Fenster als Winkel keine Zahl, sondern α ein und bestätige mit OK. > > Führe die Drehung durch. Aktiviere das Werkzeug Bewege und ziehe am Schieberegler bis Vergleiche eine Punktspiegelung mit einer Drehung. Schreibe einen Regelsatz auf. Die griechischen Buchstaben fügst du per Mausklick auf die Schaltfläche ein. GeoGebra kann dir die Spuren der Punkte beim Drehen anzeigen. Klicke dazu mit der rechten Maustaste auf den Punkt und wähle Spur ein. HERDT-Verlag 47

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN:

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN: Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-238-1 Mathe mit GeoGebra 9/10 Funktionen, Pythagoras, Ähnlichkeiten Arbeitsheft mit CD RS-MA-GEGE3 2 Quadratische Funktionen 2.1 In der Umwelt häufig anzutreffen:

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Das Grafikfenster ist dein Zeichenfeld. In das Eingabefenster kannst du mathematische Ausdrücke eingeben, zb die Koordinaten eines Punktes.

Das Grafikfenster ist dein Zeichenfeld. In das Eingabefenster kannst du mathematische Ausdrücke eingeben, zb die Koordinaten eines Punktes. Körper und Figuren Eigenschaften von Figuren So zeichnest du Figuren mit der Geometrie-Software Geogebra Wenn du Geogebra startest, siehst du drei Fenster: das Grafikfenster, das Algebrafenster und das

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0

GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0 GeoGebra Quickstart Eine Kurzanleitung für GeoGebra 3.0 Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Tutorial zum Umgang mit Scratch

Tutorial zum Umgang mit Scratch Tutorial zum Umgang mit Scratch In diesem Tutorial sollst du die grundlegenden Funktionen von Scratch ausprobieren und kennen lernen Danach solltest du gut mit dem Programm umgehen können und eigene Programme

Mehr

Umkreis eines Dreiecks

Umkreis eines Dreiecks Umkreis eines Dreiecks Zeichne mit GeoGebra ein Dreieck mit den Eckpunkten A (-5-1), B (4-2), C (2 3) und konstruiere dessen Umkreis. Mit Werkzeugleiste 1 Konstruiere mit dem Werkzeug Vieleck das Dreieck

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Die Punktespiegelung 1

Die Punktespiegelung 1 Die Punktespiegelung 1 1. Was geschieht, wenn du das Zentrum Z verschiebst? Formuliere deine Beobachtungen: a) Wenn das Zentrum auf eine Ecke der Originalfigur zu liegen kommt, dann b) Wenn das Zentrum

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Mathematik II (Geometrie)

Mathematik II (Geometrie) Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der

Mehr

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung?

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? 1 Finde möglichst viele Gemeinsamkeiten und Unterschiede der folgenden Abbildungen.

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Komplexe Zahlen und Funktionen

Komplexe Zahlen und Funktionen Komplexe Zahlen und Funktionen 1. komplexes Gleichungssystem z 1 iz 2 = i 2 z 2 + 3z 3 = 6 6i 2iz 1 3iz 3 = 1 8i 2. komplexe Gleichung Welche z C erfüllen die Gleichung 4z 2 4 z + 1 = 0? 3. konjugiert-komplexe

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Eine Einführung Hartmut Braun 2011

Eine Einführung Hartmut Braun 2011 Eine Einführung Hartmut Braun 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung...4 2. Zeichenerklärung...4 3. Die GEONExT- Oberfläche...5 3.1. Menüleiste...6 3.2. Kopfleiste...6 3.3. Konstruktionselemente...7

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

GeoGebra - Kurzanleitung Eine aufgabenorientierte Einführung in GeoGebra

GeoGebra - Kurzanleitung Eine aufgabenorientierte Einführung in GeoGebra GeoGebra - Kurzanleitung Eine aufgabenorientierte Einführung in GeoGebra Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Geometrie am Computer Werkstattposten

Geometrie am Computer Werkstattposten 2 Höhen im Dreieck Erleben, wie Höhenschnittpunkt aus dem Innern des Dreiecks über eine Ecke ins Gebiet ausserhalb des Dreiecks want. Flächenberechnungen im Dreieck. 1. Konstruiere die Höhen in einem spitzwinkligen

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

3e 1. Schularbeit/ A

3e 1. Schularbeit/ A 3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Einführung in GeoGebra Geometrie

Einführung in GeoGebra Geometrie ICT an der KZN Einführung in GeoGebra Geometrie Ähnlichkeit Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2017 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 freeware

Mehr

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. L = { 5} oder x = 5, denn x 5 = 0 oder x 5 = 0 x = 5 oder x = 5 x = 5 oder x = 5 L = {... ; ; ; 0; 4; 5;...}, denn x 5 >

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Aufwärmübung 1 Lösungen

Aufwärmübung 1 Lösungen Aufwärmübung 1 1) Die Tabellen gehören zu direkt proportionalen Zuordnungen. Ergänze die fehlenden Werte. a) b) Weg in km Zeit in h Menge in kg Preis in 20 1 1_ 4 4 1_ 4 60 120 12 24 2) Vereinfache. (n

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil Mit geometrischen Figuren arbeiten der aseball der Drachen das Hüpfkästchen das Gummiseil Was machen die Kinder auf dem ild? Schreibe drei bis fünf Sätze in dein Heft. Welche geometrischen Figuren siehst

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt.

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Name: Arbeitsblatt zur Aufgabe "Dreiecksfläche" Datum: Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt. Die Lerneinheit findest Du unter

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

(5) Grafische Darstellung

(5) Grafische Darstellung (5) Grafische Darstellung Lineare Funktionen Das letzte Beispiel leitet sehr gut zur grafischen Darstellung über. Wir wollen die Graphen der Funktionen zeichnen. g: x + 2y = 3 h: 3x+ 2y = 1 Wir geben in

Mehr

Arbeiten mit dem Geometrieprogramm GeoGebra

Arbeiten mit dem Geometrieprogramm GeoGebra Fachdidaktik Modul 1, WS 2012/13 Didaktik der Geometrie III: Konstruieren Planarbeit Arbeiten mit dem Geometrieprogramm GeoGebra I. Erstes Erkunden der Programmoberfläche: Grund- und Standardkonstruktionen

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr

Station Gleichdicks. Hilfestellungen

Station Gleichdicks. Hilfestellungen Station Gleichdicks Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Gleichdicks. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

DEMO für Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

DEMO für  Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Abbildungen Verkettung von Kongruenzabbildungen Für Interessenten. Datei Nr. 11059 Stand: 3. Oktober 2013 DEMO für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 11059 Verkettung von Kongruenzabbildungen

Mehr

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra GeoGebra Quickstart Eine Kurzanleitung für GeoGebra Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt

Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt Name: Klasse: Datum: Besondere Vierecke erkunden Öffne die Datei 2_3_BesondereVierecke.ggb. 1 Im Fenster siehst du drei Vierecke: ein rotes, ein blaues und ein gelbes. Durch Verschieben der Eckpunkte kannst

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

GeoGebra. Desktop Version. Was ist GeoGebra?

GeoGebra. Desktop Version. Was ist GeoGebra? GeoGebra Desktop Version Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket. Vereint interaktive 2D- und 3D-Geometrie, Algebra, Tabellen, Grafiken, Analysis und Statistik.

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden.

Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden. Quickstart Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket Zum Lernen und Lehren in allen Schulstufen Vereint Geometrie, Algebra, Tabellen, Grafiken, Analysis und

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise (v0.1 16.1.09) Schuljahr 008/009. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Der Satz des Pythagoras lässt sich zum Beispiel so formulieren: In einem rechtwinkligen Dreieck

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen Reihe 19 S 1 Verlauf Material LEK Glossar Lösungen GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen Marcel Schmengler, Emmelshausen Klasse: 7 bis 10 Dauer: Die Materialien sind in der Regel

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

Chemielabor. Benötigte Hard- oder Software. Präsentationsprogramm PowerPoint. Anmerkung: Die Anleitung ist optimiert für Microsoft PowerPoint 03.

Chemielabor. Benötigte Hard- oder Software. Präsentationsprogramm PowerPoint. Anmerkung: Die Anleitung ist optimiert für Microsoft PowerPoint 03. Benötigte Hard- oder Software Präsentationsprogramm PowerPoint Anmerkung: Die Anleitung ist optimiert für Microsoft PowerPoint 03. Ziele Die einzelnen Folien/Präsentationen des Projekts Chemische Elemente

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Fläche und Umfang Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Fläche und

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr