Hydraulik für Bauingenieure

Größe: px
Ab Seite anzeigen:

Download "Hydraulik für Bauingenieure"

Transkript

1 Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hanser München 2008 Verlag C.H. Beck im Internet: ISBN Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

2 Leseprobe Robert Freimann Hydraulik für Bauingenieure Grundlagen und Anwendungen ISBN: Weitere Informationen oder Bestellungen unter sowie im Buchhandel. Carl Hanser Verlag, München

3 74 Dieses Kapitel befasst sich ausschließlich mit stationären Strömungsvorgängen in Druckrohrleitungen. Als Medium werden nur inkompressible Flüssigkeiten behandelt, die sich gemäß dem Newtonschen Reibungsansatz verhalten. Im Bauingenieurwesen ist dabei vor allem Wasser von Interesse. Rohrleitungen sind Anlagen zum kontinuierlichen Transport von Feststoffen (Granulate, Zement), Flüssigkeiten (Wasser, Öl) und Gasen (Erdgas, Heißdampf). Zu einer Rohrleitungsanlage gehören insbesondere Rohre, Formteile, Dehnungsstücke, Armaturen, Dichtungen und Verbindungselemente. Natürlich zählen auch Pumpen zu dieser Zusammenstellung, deren Charakteristika und ihr Zusammenwirken mit der Rohrleitung werden in einem getrennten Kapitel behandelt. Die Rohrhydraulik für Bauingenieure befasst sich im Wesentlichen mit dem Strömungsvorgang von Flüssigkeiten, hier vor allem von Wasser. Zentraler Punkt einer hydraulischen Bearbeitung sind die während des Fließvorganges auftretenden Verluste aufgrund der Viskosität der Flüssigkeiten. Dies sowie die Anwendung der Bernoulligleichung bei Rohrströmungen sind die Hauptthemen des vorliegenden Kapitels. 5.1 Vorbemerkungen Erdöl und Erdgas werden mitunter über tausende Kilometer in Pipelines transportiert. Wasserleitungen erreichen Längen von mehreren hundert Kilometern, in Deutschland unterhält die Bodenseewasserversorgung das aufwendigste Leitungssystem. Im beruflichen Alltag haben Bauingenieure überwiegend mit Druckleitungen bis zu mehreren Kilometern Länge zu tun. Was ist unter Rohrhydraulik zu verstehen? Gehören die Geschehnisse in einem teilgefüllten Abwasserrohr mit freiem Wasserspiegel zur Rohrhydraulik? Nein, folgendes Bild grenzt das Thema Rohrhydraulik ein: Englische Fachbegriffe: Druckrohrleitung pressure pipe, pressure main Rohrhydraulik pipe hydraulics teilgefülltes Rohr partially filled pipe vollgefülltes Rohr filled pipe Bild 5.1 Füll- und Druckzustand einer Rohrleitung Die Vorgänge im teilgefüllten Rohr werden in der Gerinnehydraulik behandelt, da hier ein freier Wasserspiegel und somit andere Gesetzmäßigkeiten vorliegen. Der Zustand des vollgefüllten Rohres tritt stationär nicht auf, hier erfolgt ein ständiges Auf- und Zuschlagen des gesamten Rohrquerschnitts. Unter Rohrhydraulik wird also ein unter Druck stehendes Rohr verstanden.

4 5.2 Reibungsverluste 75 In diesem Kapitel wird die Rohrhydraulik somit unter folgenden Randbedingungen dargestellt (siehe auch Bild 5.1): Die Druckhöhe p/ρg ist deutlich größer als der Rohrdurchmesser d. Unter Druckabfluss wird der vollständige Ein- und deutliche Überstau einer Rohrleitung verstanden. Die Druckhöhe p/ρg wird auf die Rohrachse bezogen. Die Druckhöhe p/ρg wird relativ zum Atmosphärendruck dargestellt. Die Strömungsbewegungen erfolgen unter stationären, also zeitunabhängigen Bedingungen dv/dt = Reibungsverluste In Abschn. 3.5 wurde die Energiegleichung nach BERNOULLI für inkompressible, stationäre und reibungsfreie Strömungen (Gl. (3.14)) sowie reale Flüssigkeiten (Gl. (3.19)) hergeleitet. Dabei wurde die Gesamtverlusthöhe h v in der Addition aus streckenabhängigen Reibungsverlusten h r und den lokal wirksamen Einzelverlusten Δh e eingeführt (Gl. (3.21)) und deren Abhängigkeit von der Geschwindigkeitshöhe erwähnt (Gl. (3.22)) Ermittlungskonzept Durch die Reibung an der Rohrwandung sowie durch innere Verluste in der turbulenten Strömung nimmt die Reibungsverlusthöhe h r entlang der Stromröhre mit der Abschnittslänge L kontinuierlich zu. Erfahrungsgemäß ist dieser Verlust zudem proportional zum Quadrat der Fließgeschwindigkeit v und umgekehrt proportional zum Rohrdurchmesser d. Für die Berechnung der Reibungsverlusthöhe h r wird damit die von DARCY-WEISBACH abgeleitete Gleichung erhalten: Für die detaillierte Herleitung der von DARCY ( , Wasserbauingenieur) und WEISBACH ( , Ingenieur) aufgestellten Gleichung sei auf tiefer gehende Fachliteratur verwiesen. 5 2 h L v r = λ d 2 (5.1) g Damit werden allgemein die Reibungsverluste für das gerade Kreisrohr berechnet, unabhängig von der Fließart (laminar oder turbulent). Der dimensionslose Reibungsbeiwert λ ist dagegen eine Größe, die sich in Abhängigkeit vom Fließzustand, ausgedrückt durch die Reynoldszahl Re, und von der Rohrrauheit ergibt. Bezieht man die Reibungsverlusthöhe h r auf die Leitungslänge L, so ergibt sich das Energieliniengefälle I E: 2 hr 1 v = λ = IE l d 2g (5.2) Englische Fachbegriffe: Druckhöhe pressure head Energieliniengefälle energy gradient Reibungsbeiwert friction coefficient Reibungsverlust friction loss/frictional drag Reibungsverlusthöhe friction loss head

5 Laminare Strömung Für Re < liegt eine laminare Strömung vor. Aus der parabolischen Geschwindigkeitsverteilung bei laminarer Strömung (Abschn ) erhält man durch Integration über den Kreisrohrquerschnitt die mittlere Geschwindigkeit in Abhängigkeit vom Energieliniengefälle I E g IE 2 v max v = r = 8ν 2 (5.3) Der Reibungsbeiwert λ istimlamina- ren Bereich durch umfangreiche Messungen hervorragend bestätigt worden. Aufgabe 5.1: Berechnen Sie für eine gerade Rohrleitung d = 50mmsowie Q = 0,05 l/s den Reibungsbeiwert λ und das Energieliniengefälle I E bei einer Wassertemperatur T = 20 C. Die Auflösung von Gl. (5.3) nach I E und Gleichsetzen mit Gl. (5.2) liefert bei Einführung der Reynoldszahl Re = (vd)/ν (Gl. (3.9)) den Reibungsbeiwert λ für die laminare Strömung 64 λ = (5.4) Re Diese einfache Gleichung macht deutlich, dass die Wandrauheit bei laminarer Strömung keine Rolle spielt. In der Praxis des Bauingenieurwesens kommen laminare Strömungen allerdings kaum vor; Ausnahme sind hier Sickerströmungen (Kapitel 8) und einige spezielle Anwendungen Turbulente Strömung Für Re > liegen turbulente Strömungen vor. Neben den durch die Wandung ausgelösten Schubspannungen (Abschn ) treten zusätzliche turbulente Scheinschubspannungen durch die Scherbewegungen auf, deren Größen auf theoretischem Wege nicht vorhersagbar sind. Daher werden zur Quantifizierung des Reibungswiderstands bei turbulenter Strömung Laborversuche und Messungen an Originalrohren herangezogen. Im Unterschied zur laminaren Strömung gewinnt durch die hohen Geschwindigkeiten in der Nähe der Rohrwandung deren Rauheit einen bedeutenden Einfluss auf den Reibungsbeiwert λ. Das Ausmaß der Rauheitserhebungen k bestimmt schließlich das Reibungsverhalten des Rohres. In Wandnähe bildet sich ein Bereich δ l aus, die viskose Unterschicht (Bild 5.2). Je mehr die Rauheitserhebungen k in die viskose Unterschicht δ l hineinragen oder diese sogar durchstoßen, desto rauer ist das Rohr: Bild 5.2 Rauheitseinfluss der Rohrwand Werden die Rauheitserhebungen k durch die viskose Unterschicht δ l vollständig überdeckt, dann wirkt letztere wie eine Schmierschicht für die turbulente Strömung. Das Rauheitsverhalten wird als hydraulisch glatt bezeichnet. Sind die Rauheitserhebungen k und die viskose Unterschicht δ l etwa gleich stark, dann kommt die turbulente Strömung in leichten Kontakt

6 5.2 Reibungsverluste 77 mit den Rauheitserhebungen k. Das Rauheitsverhalten wird dem Übergangsbereich zugeordnet. Durchstoßen die Rauheitserhebungen k die viskose Unterschicht δ l deutlich, dann wird die turbulente Strömung durch die Rauheitserhebungen k gestört. Das Rauheitsverhalten wird dann als hydraulisch rau bezeichnet. Untersuchungen zur Bestimmung der Energieverlusthöhe aufgrund von Wandrauheiten wurden sowohl an technisch rauen Rohren mit zufälligen unregelmäßigen Rauheitsverteilungen wie auch an normierten Rauheiten durchgeführt. Für Letztere wurden Rohrleitungen mit Sandkörnern gleicher Abmessungen beschichtet. Zum Zwecke der Vergleichbarkeit der natürlichen Rauheit werden Rohrrauheiten mit der äquivalenten Sandrauheit k s angegeben. Diese wird mit dem Rohrdurchmesser d zur dimensionslosen relativen Rauheit k s/d zusammengefasst: ks rs = d (5.5) In Richtlinien und Vorschriften zur Dimensionierung von Rohrleitungsanlagen der Trinkwasserversorgung und der Abwasserentsorgung werden Vorgaben für den Ansatz der Rauheit k gemacht. Diese orientieren sich an der jeweiligen Nutzung einer Leitung. Genaueres dazu folgt in Abschn Zusätzlich zur relativen Rauheit r s bestimmt wie im laminaren Fall die Reynoldszahl Re den Reibungsbeiwert. Damit ergibt sich der Reibungsbeiwert für Kreisquerschnitte als Funktion von 5 v d ks λ = f Re =, (5.6) ν d Für die drei in Bild 5.2 dargestellten unterschiedlichen Rauheitsbereiche wird der Reibungsbeiwert λ wie folgt berechnet: Hydraulisch glatter Bereich: Übergangsbereich: Hydraulisch rauer Bereich: 1 λ 2,51 = 2,0 lg Re λ (5.7) 2,51 = 2,0 lg λ Re λ r + 3,71 1 S (5.8) 1 = 2,0 lg rs (5.9) λ 3,71 nach PRANDTL und v. KÁRMÁN, für nach COLEBROOK und WHITE, für nach NIKURADSE, für Re λ < 10 Re λ < 200 Re λ > 200 r s r s r s Da die Gln. (5.7) und (5.8) auf iterativem Weg gelöst werden müssen, existieren verschiedene Gebrauchsformeln und Näherungslösungen zur direkten Berechnung des Reibungsbeiwertes λ. Durch den in der Praxis üblichen PC-Einsatz können die genauen iterativen Formeln heutzutage jedoch ohne großen Aufwand gelöst werden. Manchmal ist für überschlägige λ-abschätzungen noch das MOODY-Diagramm (Bild 5.3) in Gebrauch, das Gl. (5.8) schließt die Lücke zwischen hydraulisch glattem und rauem Bereich durch logarithmische Superposition.

7 78 unabhängig davon einen sehr guten Überblick über den gesamten Zusammenhang zwischen Reynoldszahl Re, relativer Rauheit r s, der laminaren und turbulenten Fließbewegung, den hydraulischen Rauheitsbereichen und dem gesuchten Reibungsbeiwert λ bietet. Bild 5.3 MOODY-Diagramm zur Ermittlung des Reibungsbeiwertes λ Beispiel 5.1 Durch eine Rohrleitung mit Durchmesser d = 3,0 m erfolgt ein Wasserdurchfluss von Q = l/s. Gesucht sind der Reibungsbeiwert λ und das Energieliniengefälle I E bei einer Wassertemperatur von 10 C. Die äquivalente Sandrauheit für die Rohrleitung ist mit k s = 0,5 mm anzusetzen. Englische Fachbegriffe: äquivalente Sandrauheit equivalent uniform grain roughness hydraulisch glatt hydraulically smooth hydraulisch rau hydraulically rough Rauheitserhebung roughness asperity relative Rauheit relative roughness Übergangsbereich transition regime Aus den vorliegenden Daten lassen sich die Geschwindigkeit v und die Reynoldszahl Re (mit der kinematischen Zähigkeit für Wasser bei 10 C aus Tab. 1.2) berechnen: Q 1,1 4 m v d 0,156 3,0 v = = = 0,156 und Re = = A 2 3,0 π s ν 6 1,31 10 = Zusammen mit der relativen Rauheit r s = k s /d = 0,0005/3,0 = 1, kann λ mit den Gln. (5.7) bis (5.9) berechnet werden. Zur Abschätzung des Rauheitsbereiches wird zunächst als Startgröße λ = 0,02 angesetzt. Dies ist eine mittlere Größenordnung für den Reibungsbeiwert (vgl. Bild 5.3).

Vorwort. Robert Freimann. Hydraulik für Bauingenieure. Grundlagen und Anwendungen ISBN:

Vorwort. Robert Freimann. Hydraulik für Bauingenieure. Grundlagen und Anwendungen ISBN: Vorwort Robert Freimann Hydraulik für Bauingenieure Grundlagen und Anwendungen ISBN: 978-3-446-41054-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41054-1 sowie im Buchhandel.

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hanser München 2008 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 41054 1 Zu Leseprobe schnell und portofrei

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 2., aktualisierte Auflage Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 42786 0 Zu Leseprobe schnell

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hydraulik für Bauingenieure Freimann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser

Mehr

Strömende Flüssigkeiten und Gase

Strömende Flüssigkeiten und Gase Strömende Flüssigkeiten und Gase Laminare und turbulente Strömungen Bei laminar strömenden Flüssigkeiten oder Gasen bewegen sich diese in Schichten, die sich nicht miteinander vermischen. Es treten keine

Mehr

17 Hydraulische Berechnung

17 Hydraulische Berechnung E-Book Guss-Rohrsysteme 17. Kapitel: Hydraulische Berechnung 17/1 17 Hydraulische Berechnung 17.1 Allgemeines 17. Berechnung des Druckverlustes 17.3 Literatur E-Book Guss-Rohrsysteme 17. Kapitel: Hydraulische

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Robert Freimann Hydraulik für Bauingenieure Grundlagen und Anwendungen is mit Verzeichn chbegriffe englischer Fa Freimann Hydraulik für Bauingenieure Lehrbücher des Bauingenieurwesens Dallmann Baustatik

Mehr

Tutorium Hydromechanik I + II

Tutorium Hydromechanik I + II Tutorium Hydromechanik I + II WS 2015/2016 Session 3 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 13 (Klausuraufgabe am 07.10.2012) Der bekannte Bergsteiger Reinhold Messner befindet sich mal wieder auf Himalaya

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen Bearbeitet von Robert Freimann 3., aktualisierte und erweiterte Auflage 014. Buch. 46 S. Gebunden ISBN 978 3 446 43799 9 Format (B x L): 19, x 30,

Mehr

Stationäre Rohrströmung ohne Reibung. 2002 Büsching, F.: Hydromechanik 07.1

Stationäre Rohrströmung ohne Reibung. 2002 Büsching, F.: Hydromechanik 07.1 Stationäre Rohrströmung ohne Reibung. 00 Büsching, F.: Hydromechanik 07.1 Stationäre Rohrströmung mit Reibung. 00 Büsching, F.: Hydromechanik 07. FLIEßVORGANG REALER FLÜSSIGKEITEN: 1. Laminare und turbulente

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied Zum Verständnis der folgenden Kapitel werden wir zuerst die in dieser Broschüre verwendeten Fachbegriffe der definieren und erläutern. Im Stichwortverzeichnis finden Sie diese Begriffe alphabetisch geordnet

Mehr

Leseprobe. Robert Freimann. Hydraulik für Bauingenieure. Grundlagen und Anwendungen ISBN:

Leseprobe. Robert Freimann. Hydraulik für Bauingenieure. Grundlagen und Anwendungen ISBN: Leseprobe Robert Freimann Hydraulik für Bauingenieure Grundlagen und Anwendungen ISBN: 978-3-446-4786-0 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4786-0 sowie im Buchhandel.

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

4. Hydromechanik realer Strömungen 4.1 Reale versus ideale Strömungen: Allgemeine Betrachtungen

4. Hydromechanik realer Strömungen 4.1 Reale versus ideale Strömungen: Allgemeine Betrachtungen 4. Hydromechanik realer Strömungen 4.1 Reale versus ideale Strömungen: Allgemeine Betrachtungen Wie in Kap. 3.3.1 erwähnt, ist der wesentliche Unterschied zwischen einer idealen und einer realen Strömung,

Mehr

8. Tubulente Rohrströmung

8. Tubulente Rohrströmung 8-1 8. Tubulente Rohrströmung Aufgabe 8.1 [2] Das Geschwindigkeitsprofil einer ausgebildeten turbulenten Strömung im glatten Rohr kann in guter Näherung durch ein Potenzgesetz v/v max = (1 - r/r) l/n,

Mehr

Hydraulik für Bauingenieure Grundlagen und Anwendungen mit Verzeichn

Hydraulik für Bauingenieure Grundlagen und Anwendungen mit Verzeichn Robert Freimann Hydraulik für Bauingenieure Grundlagen und Anwendungen is mit Verzeichn chbegriffe englischer Fa 2., aktualisierte Auflage Freimann Hydraulik für Bauingenieure Lehrbücher des Bauingenieurwesens

Mehr

Rohrhydraulik. apl.prof. Dr.-Ing.habil. Th. Hackensellner

Rohrhydraulik. apl.prof. Dr.-Ing.habil. Th. Hackensellner Rohrhydraulik apl.prof. Dr.-Ing.habil. Th. Hackensellner Begleitmaterial ausschließlich zur Vorlesung Brauereianlagen. Veröffentlichung und Vervielfältigung nur mit Genehmigung des Verfassers. Alle Rechte

Mehr

Mathematische Modelle im Bauingenieurwesen

Mathematische Modelle im Bauingenieurwesen Mathematische Modelle im Bauingenieurwesen Mit Fallstudien und numerischen Lösungen von Kerstin Rjasanowa 1. Auflage Hanser München 010 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 415 7 Zu

Mehr

6.Übung Strömungslehre für die Mechatronik

6.Übung Strömungslehre für die Mechatronik 6.Übung Strömungslehre für die Mechatronik Prof. Dr.-Ing Peter Pelz Dipl.-Ing. Thomas Bedar 18. Juli 2009 Inhaltsverzeichnis 1 Hinweise 1 2 Korrektur zur Vorlesung vom 14.07.2009 2 3 laminare Schichtenströmung

Mehr

Kontinuitätsgleichung und Bernoulli Gleichung

Kontinuitätsgleichung und Bernoulli Gleichung Kontinuitätsgleichung und Bernoulli Gleichung Kontinuitätsgleichung: Stromlinie Stromröhre C m& konst inkomressible (dichtebest. ) Fluide m& V& (Massenstrom) V & m& (Volumenstrom) Bs. : Durch eine Rohrleitung

Mehr

Mechanik der Flüssigkeiten und Gase

Mechanik der Flüssigkeiten und Gase BIBLIOTHEK DES TECHNIKERS UXMT Mechanik der Flüssigkeiten und Gase Technische Physik von Horst Herr VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KLEINER WERTH 50 POSTFACH 201815 5600 WUPPERTAL

Mehr

Einführung in die Technische Strömungslehre

Einführung in die Technische Strömungslehre Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

Technische Strömungsmechanik für Studium und Praxis

Technische Strömungsmechanik für Studium und Praxis Albert Jogwich Martin Jogwich Technische Strömungsmechanik für Studium und Praxis 2. Auflage

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Messung turbulenter Rohrströmung

Messung turbulenter Rohrströmung Fachlabor Strömungs- und Wärmetechnik Messung turbulenter Rohrströmung Bearbeiter: Gruppe: Name :... Vorname :... Matrikel-Nr. :... Tag des Versuchs :... Teilnahme am Versuch :... Korrekturhinweis : Endtestat

Mehr

Wärmeverteilung. Video Druckverlust. Inhaltsverzeichnis. Druckverlust 2 Dimensionieren 15 Ventile 25 Abgleich Hydraulik 30 Herleitung k vs Wert 33

Wärmeverteilung. Video Druckverlust. Inhaltsverzeichnis. Druckverlust 2 Dimensionieren 15 Ventile 25 Abgleich Hydraulik 30 Herleitung k vs Wert 33 Wärmeverteilung Video Druckverlust Inhaltsverzeichnis Druckverlust 2 Dimensionieren 15 Ventile 25 Abgleich Hydraulik 30 Herleitung k vs Wert 33 24.06.2015 Prof. Werner Betschart 1 Der Druckverlust in Rohren

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

Film: Abhebender Porsche, Petit Le Mans Strömungsbereiche Zweiphasenströmung Tacoma-Brücke. Reibung

Film: Abhebender Porsche, Petit Le Mans Strömungsbereiche Zweiphasenströmung Tacoma-Brücke. Reibung Strömungsbereiche, Reibung, Oberflächenspannung 1. Tafelübung Strömungen in der Technik Dampfabscheider Film: Abhebender BMW, Petit Le Mans Anlagen-Fließschema Gasfraktionierung Film: Abhebender Mercedes,

Mehr

Hydraulische Verluste Anwendung des Individualkonzeptes

Hydraulische Verluste Anwendung des Individualkonzeptes 1 Hydraulische Verluste Anwendung des Indiidualkonzeptes Prof. Dr.-Ing. Norbert Engel, 1 Grundlagen der Hydromechanik Der Schweizer Mathematiker und Physiker Daniel Bernoulli (1700-178) beobachtete, dass

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018)

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) 4.1 Begriff

Mehr

VDI-Buch. Lagerstättentechnik. Berechnungsmethoden für das Reservoir Engineering. Bearbeitet von Hans-Dieter Voigt

VDI-Buch. Lagerstättentechnik. Berechnungsmethoden für das Reservoir Engineering. Bearbeitet von Hans-Dieter Voigt VDI-Buch Lagerstättentechnik Berechnungsmethoden für das Reservoir Engineering Bearbeitet von Hans-Dieter Voigt 1. Auflage 2011. Buch. XV, 148 S. Hardcover ISBN 978 3 642 21012 9 Format (B x L): 15,5 x

Mehr

Die drei Engel der Weihnacht

Die drei Engel der Weihnacht Die drei Engel der Weihnacht Freude, Liebe und Licht zum schönsten Fest des Jahres von Sabine Fels 1. Auflage tredition 2013 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 8495 5070 7 schnell und

Mehr

Praxis der Wärmeübertragung

Praxis der Wärmeübertragung Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben von Rudi Marek, Klaus Nitsche 1. Auflage Hanser München 2010 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 42510 1 Zu Leseprobe

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik Frühjahr 205 5. März 205, Beginn 6:30 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Von Prof. Dr.-lng. Ekkehard Heinemann Prof. Dipl.-lng."Runo Paul Fachhochschule Köln Mit 130 Bildern und 20 Tabellen 83 Springer Fachmedien Wiesbaden GmbH 1998 Die Deutsche

Mehr

Grundlagen der Hydromechanik

Grundlagen der Hydromechanik Berichte aus der Umweltwissenschaft Rainer Helmig, Holger Class Grundlagen der Hydromechanik / Shaker Verlag Aachen 2005 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

Technische Strömungsmechanik I

Technische Strömungsmechanik I Technische Strömungsmechanik I Lehrbuch Autoren: Prof. Dr.-Ing. habil. Gert Naue, Merseburg (federführender Autor) Prof. Dr. sc. teehn. Friedrich Liepe, Köthen Doz. Dr.-Ing. habil. Hans-Joachim Mascheck,

Mehr

Strömungslehre, Gasdynamik

Strömungslehre, Gasdynamik Egon Krause Strömungslehre, Gasdynamik und Aerodynamisches Laboratorium Mit 656 Abbildungen, 42 Tabellen, 208 Aufgaben mit Lösungen sowie 11 ausführlichen Versuchen im Aerodynamischen Laboratorium Teubner

Mehr

Strömung realer inkompressibler Fluide

Strömung realer inkompressibler Fluide 4 STRÖMUNG REALER INKOMPRESSIBLER FLUIDE 4.1 EIGENSCHAFTEN REALER FLUIDE 4.1.1 Fluidreibung und Viskosität Wesentlichstes Merkmal realer Fluide ist die Fluidreibung. Sie wurde erstmals von I. Newton (engl.

Mehr

DIN EN ISO 9000:2000 ff. umsetzen

DIN EN ISO 9000:2000 ff. umsetzen DIN EN ISO 9000:2000 ff. umsetzen Gestaltungshilfen zum Aufbau Ihres Qualitätsmanagementsystems von Jörg-Peter Brauer 1. Auflage DIN EN ISO 9000:2000 ff. umsetzen Brauer schnell und portofrei erhältlich

Mehr

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm 0,09 0,0 0,07 0,0 0,0 0,0 0,03 0,0 0,01 0,01 0,01 0,01 0,010 0,009 0,00 0,007 hydraulisch rau (k >0) d/k = 0 λ = 0 Re Grenzkurve 00 00 laminar turbulent 0 000 A 000 10 000 0 000 0 000 hydraulisch glatt

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

3. Laminar oder turbulent?

3. Laminar oder turbulent? 3. Laminar oder turbulent? Die Reynoldszahl Stokes- Gleichung Typisch erreichbare Reynoldszahlen in der Mikrofluik Laminare Strömung Turbulente Strömung 1 Durchmesser L Dichte ρ TrägheitskraG: F ρ ρu 2

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

1. Aufgabe (10 Punkte)

1. Aufgabe (10 Punkte) Prof. Dr.-Ing. J. Jensen, Teil: Technische Hydromechanik 13.02.2008, Seite 1 NAME:.... MATR.NR.:... Aufgabe 1 2 3 4 5 6 Summe Note Mögliche 10 30 25 15 15 25 120 Punktzahl Erreichte Punktzahl Bearbeitungszeit

Mehr

Strömung durch Rohre und Ventile

Strömung durch Rohre und Ventile IHWB- Bibliothek Inv.-Nr. Heinz Zoebl/Julius Kruschik * 5 Strömung durch Rohre und Ventile Tabellen und Berechnungsverfahren zur Dimensionierung von Rohrleitungssystemen Hydraulik und Hydrologie technische

Mehr

Technische Hydromechanik Band 1. Grundlagen. 6., durchgesehene und korrigierte Auflage. Gerhard Bollrich. huss. HUSS-MEDIEN GmbH Berlin

Technische Hydromechanik Band 1. Grundlagen. 6., durchgesehene und korrigierte Auflage. Gerhard Bollrich. huss. HUSS-MEDIEN GmbH Berlin Technische Hydromechanik Band 1 Grundlagen 6., durchgesehene und korrigierte Auflage Gerhard Bollrich HUSS-MEDIEN GmbH 10400 Berlin huss Inhaltsverzeichnis Symbolverzeichnis 14 1. Einführung 17 1.1. Die

Mehr

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 2., aktualisierte Auflage. Hanser München 2009

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 2., aktualisierte Auflage. Hanser München 2009 Baustatik 2 Berechnung statisch unbestimmter Tragwerke von Raimond Dallmann 2., aktualisierte Auflage Hanser München 2009 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 41998 8 Zu Leseprobe schnell

Mehr

V. Ähnlichkeitsgesetze und dimensionslose Kennwerte

V. Ähnlichkeitsgesetze und dimensionslose Kennwerte V. Ähnlichkeitsgesetze und dimensionslose Kennwerte Die Entwicklung großer hydraulischer Strömungsmaschinen wird am Modell durchgeführt. Weitere Beispiel: Ausnahme: Autos, Flugzeuge, Schiffe Kleine Maschinen,

Mehr

2.1. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen

2.1. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen 36.. Durchflussgleichung, Kontinuitätsgleichung, Bernoulligleichung, Verluste in Rohrleitungen Fundamentale strömungsmechanische Zusammenhänge sind ohne Kenntnisse der Durchflussgleichung und der Kontinuitätsgleichung

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 003 Strömungsmechanik I Bearbeitungsdauer: PO 000 : 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

Technische Fluidmechanik

Technische Fluidmechanik Technische Fluidmechanik überarbeitet Technische Fluidmechanik schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische Gliederung: Kontinuumsmechanik, Strömungslehre Springer

Mehr

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER Heinz Herwig Strömungsmechanik Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER vii 0 Das methodische Konzept dieses Buches 1 A Einführung

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

M21. Viskosität. ν = ρ

M21. Viskosität. ν = ρ M1 Viskosität In vielen Fällen wird bei Betrachtungen zur Mechanik vorausgesetzt, dass Reibungseffekte vernachlässigbar sind. In diesem Versuch sielt die Reibung in üssigkeiten die zentrale Rolle, es soll

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

DRUCKABFALL IN SCHÜTTSCHICHTEN

DRUCKABFALL IN SCHÜTTSCHICHTEN DRUCKABFALL IN SCHÜTTSCHICHTEN Reaktoren, die mit körnigem Packungsmaterial gefüllt sind, werden in der chemischen Industrie häufig verwendet. Bei einhasiger Arbeitsweise bezweckt man dabei den Kontakt

Mehr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr Klausur Strömungsmechanik Herbst 203 3. August 203, Beginn 5:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar TFD-Formelsammlung (ohne handschriftliche

Mehr

Kolumban Hutter. Thermodynamik. Eine Einführung. Zweite Auflage Mit 194 Abbildungen. Springer

Kolumban Hutter. Thermodynamik. Eine Einführung. Zweite Auflage Mit 194 Abbildungen. Springer Kolumban Hutter Fluidund Thermodynamik Eine Einführung Zweite Auflage Mit 194 Abbildungen Springer Inhaltsverzeichnis 1. Einleitung 1 1.1 Historische Notizen und Abgrenzung des Fachgebietes 1 1.2 Eigenschaften

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrscheinlichkeitsrechnung und Statistik Für Ingenieurstudenten an Fachhochschulen von Michael Sachs erweitert Wahrscheinlichkeitsrechnung und Statistik Sachs schnell und portofrei erhältlich bei beck-shopde

Mehr

Aufgabe 3.4: HPLC mit Dispersion

Aufgabe 3.4: HPLC mit Dispersion Aufgabe.4 HPLC mit Disersion Um eine Trennsäule (D 5 mm, L mm, µm,,5) zu betreiben, steht eine Druckifferenz von P bar zur erfügung. Die Stoffwerte er Flüssigkeit sin ρ f kg/m³, ν f -6 m²/s.. Berechnen

Mehr

Hydraulische Bemessung von Abwasserleitungen und -kanälen

Hydraulische Bemessung von Abwasserleitungen und -kanälen Hydraulische Bemessung von Abwasserleitungen und -kanälen Planung und Betrieb Bei der Planung von Abwasserleitungen und -kanälen ist die hydraulische Bemessung und damit der Nachweis des ablagerungsfreien

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 16. 3. 006 1. Aufgabe (6 Punkte) Eine starre, mit Luft im Umgebungszustand gefüllte Boje hat die Form eines Kegels (Höhe h 0, Radius

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN

TECHNISCHE UNIVERSITÄT DRESDEN TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Bauingenieurwesen Institut für Wasserbau und Technische Hydromechanik Dresdner Wasserbauliche Mitteilungen, Heft 33 Bornschein, Antje Die Ausbreitung von Schwallwellen

Mehr

Hydraulische Berechnung von Kreuzungsbauwerken

Hydraulische Berechnung von Kreuzungsbauwerken Gewässer-Nachbarschaft Nidda: Kreuzungsbauwerke von der Furt bis zur Mehrfeldbrücke Butzbach, 30. Juni 2009 Hydraulische Berechnung von Kreuzungsbauwerken Inhalt 1. Grundlagen der Strömungsbewegung 2.

Mehr

4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen

4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen 4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen 4.1.4-1 konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Nachklausur Strömungslehre Grundlagen Am Mittwoch, den 04. April 2018 12:00 14:00 Raum EB 301 Max. mögliche Punktzahl 80 Fakultät V Verkehrs- und Maschinensysteme Institut

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr.

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I. Name Vorname Matr. Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume Klausur Frühjahr 2002 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: Taschenrechner Formelsammlung-IfS,

Mehr

_~óéêáëåüéë=i~åçéë~ãí ÑΩê=t~ëëÉêïáêíëÅÜ~Ñí. jéêâää~íí=kêk=nkulq. Spülvorgänge in Fernleitungen und Auswahl geeigneter Regel- und Verschlussorgane

_~óéêáëåüéë=i~åçéë~ãí ÑΩê=t~ëëÉêïáêíëÅÜ~Ñí. jéêâää~íí=kêk=nkulq. Spülvorgänge in Fernleitungen und Auswahl geeigneter Regel- und Verschlussorgane jéêâää~íí=kêk=nkulq pí~åçw=mukommm ~äíé=kìããéêw=nkvjq ^åëéêéåüé~êíåéêw=oéñéê~í=oq e~ìë~åëåüêáñíw qéäéñçåw qéäéñ~ñw fåíéêåéíw bjj~áäw i~ò~êéííëíê~ É=ST UMSPS=jΩåÅÜÉå EMUVF=VO=NQJMN EMUVF=VO=NQJNQ=PR ÜííéWLLïïïKÄ~óÉêåKÇÉLäÑï

Mehr