Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014

Größe: px
Ab Seite anzeigen:

Download "Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014"

Transkript

1 Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1

2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster 3 Die Quadratzahlen 4 3 Die Dreieckszahlen 5 4 Die Polygonalzahlen 7 5 Die Hex Zahlen 9 6 Die zentrierten Quadratzahlen 10 7 Hexpyramiden oder Würfel 11 8 Die Tetraederzahlen 11 9 Die quadratischen Pyramidalzahlen 1 10 Die Oktaederzahlen 1

3 1 Abbildungen von Zahlen - Beweise durch Muster Diese Seminararbeit ist angelehnt an das Kapitel FIGURES FROM FIGURES: DOING ARITHMETIC AND ALGEBRA BY GEOMETRY aus dem Buch THE BOOK OF NUMBERS von John Horton Conway und Richard K. Guy. Die Bilder, außer dem ersten Bild auf Seite 9, stammen ebenfalls aus diesem Buch. 1 Abbildungen von Zahlen - Beweise durch Muster Wenn wir eine Tabelle mit zwei Spalten erstellen und sie mit den natürlichen Zahlen, beginnend bei 0 von links nach rechts beziehungsweise von oben nach unten, befüllen, erhalten wir in der linken Spalte die geraden Zahlen und in der rechten Spalte die ungeraden Zahlen. Wir können natürlich Tabellen mit beliebig vielen Spalten erstellen, dabei bekommt man dann in der linken Spalte die Vielfachen der Zahl, die die Anzahl der Spalten bestimmt. Außerdem können wir in dieser Grafik die verschiedenen Restklassen ablesen. Wir wissen, dass zwei Zahlen dann kongruent modulo n sind, wenn ihre Differenz ein Vielfaches von n ist. Unser n ist hier die Anzahl der Spalten und alle Zahlen, die in der selben Spalte stehen, liegen auch in der selben Restklasse, sind also kongruent modulo n. Die Neunerprobe Bei modulo 9 liegen 1, 10, 100, 1000,... in der selben Kongruenzklasse. Aus diesem Grund gibt es eine Probe, die man anwenden kann, um zu überprüfen, ob man sich bei Rechenoperationen mit großen Operationen verrechnet hat. Diese Probe nennt man die Neunerprobe. Addiert man zum Beispiel die Zahlen 111 und 65431, so erhält man Das wollen wir jetzt überprüfen. Dazu bestimmt man die Ziffernsumme 3

4 Die Quadratzahlen von den ersten beiden Zahlen und den Rest bei Division durch 9. Das wäre dann also 9 0 und 1 3. Dann addieren wir die erhaltenen Zahlen und bilden wieder den Rest bei Division durch 9. In unserem Fall ist das also 3. Jetzt müssen wir das Ergebnis der Rechnung überprüfen. Die Ziffernsumme von ist Also stimmt es. Die Probe funktioniert analog mit Multiplikation und Subtraktion, sie erkennt aber den Fehler nicht, wenn zwei Ziffern vertauscht wurden, da dies die Ziffernsumme nicht beeinflusst, oder wenn eine 9 durch eine 0 ersetzt wurde und umgekehrt. Die Quadratzahlen Die Quadratzahlen sind jene Zahlen, die auf der Hauptdiagonale der Multiplikationstafel stehen. Schreibt man sich nun die Zahlen von 0 bis 103, wie im Bild, in 8 Spalten auf, erkennt man schnell, dass die ungeraden Quadratzahlen alle kongruent 1 modulo 8 sind. Das Bild liefert uns den, im wahrsten Sinne des Wortes, äußerst anschaulichen Beweis zu dieser Behauptung. An dieser Stelle möchte ich den Begriff Gnomon einführen. Ein Gnomon ist ein Stück, das man zu einer ebenen Figur hinzufügen kann, um sie zu vergrößern, ohne ihre Form 4

5 3 Die Dreieckszahlen zu verändern. In diesem Bild hat jedes Gnomon eine andere Farbe. Interessant ist dabei die Tatsache, dass jedes Gnomon der Quadratzahlen eine ungerade Zahl darstellt. Das Bild beweist die Behauptung, dass die Summe der ersten n ungeraden Zahlen gleich n ist. Das kann man auch für die Addition eines weiteren Gnomons sehr schön aufschreiben: n + (n + 1) = (n + 1) 3 Die Dreieckszahlen Bei den Dreieckszahlen sind die Gnomone die natürlichen Zahlen. Also ist die n-te Dreieckszahl die Summe der ersten n natürlichen Zahlen, was, wie unser kleiner Carl Friedrich Gauß schon in frühen Jahren entdeckte, durch die Formel 1 n(n + 1) berechnet werden kann. Diese Formel Σ n i=1i = 1 n(n+1) (Induktionsvoraussetzung = IV) kann nun durch vollständige Induktion wie folgt bewiesen werden: Induktionsbeginn: n = 1 linke Seite: Σ 1 i=1i = 1 rechte Seite: 1 1 (1 + 1) = 1 5

6 3 Die Dreieckszahlen Induktionsschritt: zu zeigen: Σ (n+1) i=1 i = 1 (n + 1)(n + ) Σ (n+1) i=1 i = Σ (n) i=1i + (n + 1) = (IV) 1 n(n + 1) + (n + 1) = ( 1n + 1) (n + 1) = 1 (n + 1) (n + ) oder eben auch durch Figuren. Hier kommen wir nun zu den Pronischen Zahlen. Wenn wir ein Rechteck aus zweimal der n-ten Dreieckszahl bilden, so hat es die Länge n und die Breite n+1. Wenn wir also den Flächeninhalt dieses Rechtecks berechen, so erhalten wir n (n + 1). Dies ist also auch der doppelte Flächeninhalt der n-ten Dreieckszahl. Also ist die Formel für die n-te Dreieckszahl 1 n(n + 1). Man findet aber auch noch weitere Zusammenhänge zwischen Dreieckszahlen und anderen Zahlen. Zum Beispiel ergeben zwei aufeinanderfolgende Dreieckszahlen eine Quadratzahl. 6

7 4 Die Polygonalzahlen 4 Die Polygonalzahlen In der Graphik sehen wir verschiedene Polygonalzahlen, wobei wir die Quadratzahlen und die Dreieckszahlen schon kennengelernt haben. Betrachtet man die Graphik näher, fällt dabei auf, dass die Differenz des Wachtums der Zahlen jeweils in Schritten wächst, die um kleiner sind, als die Anzahl der Seiten des Polygons. Bei den Dreieckszahlen, die wir ja schon kennengelernt haben, ist die Differenz der jeweils zu addierenden Zahlen also 1. Wir starten mit einem Punkt, brauchen dann zusätzliche Kleckse, dann 3, dann 4 etc. Außerdem ist die dritte Zahl einer Kategorie immer ein Vielfaches von 3. Dasselbe 7

8 4 Die Polygonalzahlen gilt auch für die fünfte und die siebte Zahl, die dann durch 5 beziehungsweise durch 7 teilbar sind. Die Polygonzahlen sind zurückzuführen auf eine bestimmte Anordnung von Punkten, die schon seit mindestens 540 v.chr. bekannt sind. Zwischen den Polygonalzahlen gibt es auch ein paar interessante Zusammenhänge. Um diese Zusammenhänge zu erkennen, reicht es wieder, die Graphik zu betrachten. Wir können außerdem die Polygonalzahlen mit Hilfe der Dreieckszahl berechnen. Jede Hexagonalzahl ist eine Dreieckszahl. Dabei ist jede ungeradseitige Dreieckszahl auch eine Hexagonalzahl. Dies zeigt das Bild unterhalb sehr schön. Außerdem zeigt die dritte Abbildung in diesem Bild auch die Gültigkeit der Formel für die n-te Hexagonalzahl = n (n 1). Jede Pentagonalzahl ist ein Drittel einer Dreieckszahl. Graphisch ist das beweisbar 8

9 5 Die Hex Zahlen durch eindrücken des Daches beim Fünfeck und das Zusammenbauen dreier so erhaltener Trapeze zu einem Dreieck, wie man in der Graphik unterhalb gut erkennen kann. 5 Die Hex Zahlen Die Hex Zahlen sollte man nicht mit den Hexagonalzahlen verwechseln. Die n-te Hexzahl wird mit der Formel hex n = n 1 = 1 3n + 3n berechnet. Einerseits sehen wir an der Zeichnung sehr gut, dass die einzelnen Gnomone immer ein Vielfaches von 6 sind. Da wir mit einem einzelnem Klecks starten und immer ein Vielfaches von 6 dazuzählen, heißt das also, dass jede Hex Zahl immer hex n 1 modulo 6 entspricht. Weiters lässt sich der Zusammenhang zwischen den Hex Zahlen und den Dreieckszahlen, der schon in der Formel aufgezeigt wird, durch das Bild sehr gut veranschaulichen. Wir sehen, dass sich um den Klecks in der Mitte 6 Dreiecke sammeln, die bei der n-ten 9

10 6 Die zentrierten Quadratzahlen Hex Zahl, der (n 1)-ten Dreieckszahl entsprechen. Dies unterstreicht noch einmal, dass die Hex Zahlen 1 modulo 6 entsprechen, da wir ja immer 6 Dreieckszahlen und einen zentralen Punkt haben. 6 Die zentrierten Quadratzahlen Nun kommen wir zu den letzten Zahlen in der zweiten Dimension, nämlich zu den zentrierten Quadratzahlen. Ähnlich wie bei den Hex Zahlen, sind nun die zentrierten Quadratzahlen immer 1 modulo 4. Bei der vierten zentrierten Quadratzahl sieht man, dass die einzelnen Gnomone immer ein Vielfaches von vier bilden und bei der fünften zentrierten Quadratzahl sieht man wiederum, dass sich um einen zentralen Punkt vier Dreieckszahlen sammeln. Somit kann man die Aussage, dass die zentrierten Quadratzahlen immer 1 modulo 4 entsprechen, durch einfache Zeichnungen beweisen. Aus der Zeichnung kann man auch die allgemeine Formel zur Berechnung der n-ten zentrierten Quadratzahl leicht erkennen. zq n = n 1 10

11 Die dritte Dimension 7 Hexpyramiden oder Würfel 7 Hexpyramiden oder Würfel Wir kommen nun zu Hex Pyramiden und Würfeln. Das sind aber die selben Zahlen, da die Hex Pyramiden, im Grunde genommen, nichts anderes als die Projektionen von Würfeln sind. Im Bild sieht man oberhalb die Hex Pyramiden und unterhalb die Würfel. Die Gnomone von den Hex Pyramiden werden dabei von den Hex Zahlen gebildet. Diese sind einfach Schatten oder Projektionen von Würfeln. Die allgemeine Formel zur Berechnung der n-ten Zahl lautet also ganz einfach n 3. 8 Die Tetraederzahlen So wie gerade Hex Zahlen zu Hex Pyramiden gestapelt wurden, kann man auch Dreieckszahlen zu Pyramiden stapeln. Diese ergeben dann die Tetraederzahlen. Man kann die n-te Tetraederzahl 6 mal in eine Box mit den Maßen n (n + 1) (n + ) stapeln. Daraus ergibt sich zur Berechnung der n-ten Tetraederzahl die allgemeneine Formel T n = 1 n (n + 1) (n + ) 6 11

12 9 Die quadratischen Pyramidalzahlen 9 Die quadratischen Pyramidalzahlen Wenn wir nun Quadratzahlen so stapeln, wie wir es schon mit Dreieckszahlen und Hex Zahlen gemacht haben, erhalten wir die quadratischen Pyramidalzahlen. Von diesen können wir 6 in eine Box mit den Maßen n (n + 1) (n + 1) packen. Also ergibt sich die allgemeine Formel qp yr n = 1 n (n + 1) (n + 1) 6 10 Die Oktaederzahlen So ähnlich, wie wir vorher in der zweiten Dimension zwei aufeinanderfolgende Dreieckszahlen zu Quadratzahlen zusammengefügt haben, kann man nun auch zwei aufeinanderfolgende quadratische Pyramidalzahlen zusammenfügen und erhält die Oktaederzahlen. Für die n-te Oktaederzahl ergibt sich also die Formel Oct n = qp yr n 1 + qp yr n = 1 3 n (n + 1) 1

13 10 Die Oktaederzahlen Quelle: CONWAY, John Horton; GUY, Richard K.: The book of numbers. New York: Springer- Verlag

Spielen mit Zahlen Seminarleiter: Dieter Bauke

Spielen mit Zahlen Seminarleiter: Dieter Bauke Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

Hinweise zu den Anregungen zum Nachdenken und für eigene Untersuchungen

Hinweise zu den Anregungen zum Nachdenken und für eigene Untersuchungen Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: 978--66-579-9 Hinweise zu den Anregungen zum Nachdenken und für eigene Untersuchungen zu A.1: n 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 19

Mehr

Bericht vom 1. Leipziger Seminar am 5. November 2005

Bericht vom 1. Leipziger Seminar am 5. November 2005 Bericht vom 1. Leipziger Seminar am 5. November 2005 Der Eulersche Satz und die Eulersche Phi-Funktion Wir wollen einen berühmten Satz der Zahlentheorie behandeln, den Eulerschen Satz. Dazu müssen wir

Mehr

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5.

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5. ALGEBRA Lineare Gleichungen Teil 1: Trainingsheft für Klasse 7 und 8 Lineare Gleichungen mit einer Variablen Datei Nr. 1140 Friedrich W. Buckel Stand 5. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 3 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

Demo-Text für Modulo-Rechnungen. und. Restklassen. Höhere Algebra INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Modulo-Rechnungen. und. Restklassen. Höhere Algebra INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Höhere Algebra Modulo-Rechnungen und Restklassen Ein Stück Zahlentheorie Stand: 9. Februar 2019 Datei Nr. 55010 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de 55010 Modulo Restklassen

Mehr

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze?

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze? Zahlenfolgen Anna Rodenhausen Wieviele Dreiecke, wieviele Trapeze? Wieviele Dreiecke, wieviele Trapeze? # Linien # Dreiecke # Trapeze 0 3 0 3 3 6 5 0 5 6 5 3 Wieviele Dreiecke, wieviele Trapeze? # Linien

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

3. Argumentieren und Beweisen mit Punktemustern

3. Argumentieren und Beweisen mit Punktemustern 3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits

Mehr

Schule. Station Figurierte Zahlen Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Figurierte Zahlen Teil 3. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Schule Station Figurierte Zahlen Teil 3 Arbeitsheft Klasse Tischnummer Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit

Mehr

von Markus Wurster Titelseite und Buchrücken für Ringbuch

von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen DREIECK ZAHLEN von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen von Markus Wurster 1. Quadratzahlen Was Quadratzahlen sind, weißt du bestimmt: Man kann Perlen auf

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln.

In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln. In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln. Die Schülerinnen und Schüler können Zahl- und Operationsbeziehungen sowie arithmetische

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

Lösungen Klasse 10. Bezeichnungen ein und formulieren weitere Feststellungen.

Lösungen Klasse 10. Bezeichnungen ein und formulieren weitere Feststellungen. Lösungen Klasse 0 Klasse 0. Ein Baby liegt vor uns auf dem Bauch. Seine Füße zeigen zu uns, sein Kopf zeigt von uns weg. Es dreht sich entlang seiner Körperachse zunächst um 70 nach rechts, anschließend

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung)

Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung) Restklassen (die modulo-rechnung) Inhalt 4.1 4.1 Was Was sind sind Restklassen? [0], [0],[1], [1],...,...,[n 1] 4.2 4.2 Addition von von Restklassen [5] [5] + [7] [7] = [3] [3] 4.3 4.3 Multiplikation von

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die

Mehr

Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 77 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,

Mehr

Kapitel 1. Kapitel 1 Vollständige Induktion

Kapitel 1. Kapitel 1 Vollständige Induktion Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,

Mehr

schreiben, wobei p und q ganze Zahlen sind.

schreiben, wobei p und q ganze Zahlen sind. Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

VERTIEFUNGSKURS MATHEMATIK

VERTIEFUNGSKURS MATHEMATIK VERTIEFUNGSKURS MATHEMATIK KLAUSUR 1, 8.12.2015 (1) Verwandle die folgenden Zahlen in Keilschrift bzw. in unsere Schreibweise: a) 14 b) 30 c) 100 d) 1 2 e) 1 1 3 (2) a) Begründe, warum für kleine x die

Mehr

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel)

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel) Vektorrechnung Oftmals möchte man in der Mathematik mit mehreren Zahlen auf einmal rechnen. Dafür werde geordnete Listen verwendet. Eine Liste besteht aus n reellen Zahlen und wird n-tupel genannt. Beispiele:

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der

Mehr

Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau. Über Polynome mit Arithmetik modulo m.

Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau. Über Polynome mit Arithmetik modulo m. 19 Fingerprinting Martin Dietzfelbinger Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau Anhang: Über Polynome mit Arithmetik modulo m Dieser Abschnitt ergänzt Kapitel 19 Fingerprinting

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite. Bruchteil 3 4 von 00kg =75 kg NR: 00kg :4 3=25 kg 3=75 kg 3 4 heißt Anteil ; 75kg heißt Bruchteil.2 Erweitern

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Geheimnisvolle Zahlentafeln Lösungen

Geheimnisvolle Zahlentafeln Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Geheimnisvolle Zahlentafeln Lösungen Aufgabe 1 (3-mal-3-Zahlentafel (nur für die Klassen 7/8) [4 Punkte]). Finde je eine geheimnisvolle

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben

Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben ernziele Inhalt/ernziele Zahlendarstellung Zahlen auf dem Zahlenstrahl darstellen und interpretieren natürliche Zahlen bis 2 Millionen lesen und schreiben Schwierigkeitsgrad A1 73%, A2 57%, A4 56% A3 68%

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Summenzeichen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Grundlagen: Summenzeichen 1 1.1 Der Aufbau des Summenzeichens................ 1 1.1.1 Aufgaben.........................

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr

Natürliche Zahlen, besondere Zahlenmengen

Natürliche Zahlen, besondere Zahlenmengen Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehhren zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehhren zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehhren zur Menge der natürlichen Zahlen? Schreibe ist ein Element der Menge der natürlichen Zahlen in Symbolschreibweise. Zeichne die Zahlen, und

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen:

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen: Fachbereich Mathematik Tag der Mathematik 10. November 01 Klassenstufen 7, 8 Aufgabe 1 (4+4+6+4+ Punkte). Ihr kennt vermutlich schon Dreieckszahlen: n+1 n D 1 = 1 D = 3 D 3 = 6 D 4 = 10 D n = n (n+1) Wir

Mehr

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 2 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha?

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha? - 3 Punkte Beispiele - ) Was ist 2005 00 + 2005? A) 2005002005 B) 20052005 C) 2007005 D) 22055 E) 202505 200500 + 2005 = 202505 2) Anna und Bertha haben zusammen 0 Zuckerln. Bertha hat 2 mehr als Anna.

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Arbeitszeit Teil A 45 Minuten Teil B 45 Minuten

Arbeitszeit Teil A 45 Minuten Teil B 45 Minuten Inhalt/Lernziele Arbeitszeit Teil A 45 Minuten Teil B 45 Minuten Teil A Teiler einer Zahl bestimmen Teilbarkeitsgegeln anwenden Primzahlen kleiner 100 erkennen Quadratzahlen kleiner 300 erkennen Getönte

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

Übungen zur Diskreten Mathematik I

Übungen zur Diskreten Mathematik I 1 Aufgabe 1 Überprüfen Sie, ob die folgenden Aussagen Tautologien sind (i) (A B) (( A) ( B)), (ii) (A B) (( A) ( B)), (iii) ((A B) C) ((A C) (B C)), (iv) ((A B) C) ((A C) (B C)), (v) (A = B) (( A) B)),

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

8 Dezimalzahlen und Fehlerfortpflanzung

8 Dezimalzahlen und Fehlerfortpflanzung 7 Dezimalzahlen und Fehlerfortpflanzung 29 8 Dezimalzahlen und Fehlerfortpflanzung Lernziele: Konzepte: Dezimalzahlen und Runden Methoden: spezielle Umrechungen Kompetenzen: Einschätzen von Fehlerfortpflanzungen

Mehr

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man

Mehr

Mathematikbegriffe Größen Geometrische Formen und Körper

Mathematikbegriffe Größen Geometrische Formen und Körper Mathematikbegriffe Größen Geometrische Formen und Körper Rechenausdrücke addieren subtrahieren multiplizieren dividieren Addition Subtraktion Multiplikation Division Summe Differenz Produkt Quotient (+)

Mehr

Schule. Klasse. Station Figurierte Zahlen Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Figurierte Zahlen Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Figurierte Zahlen Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt. Die Steinchen

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1 Aufgabenblatt 1 40 Punte Aufgabe 1 (Teilermengen) Seien a = 128 und b = 129. a) Beschreiben Sie die Teilermengen T(a) und T(b) in aufzählender Form. 2 b) Seien p, q zwei verschiedene Primzahlen. (i) Wie

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Beispiellösungen zu Blatt 98

Beispiellösungen zu Blatt 98 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 98 Finde vier paarweise verschiedene positive ganze Zahlen a, b, c, d

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen

Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen Mein Schnittpunkt-Lernplan: Kapitel 1 Natürliche Zahlen Name: Klasse: Ich kann Übungen Kapitel 1 Das kann Das muss erledigt 1 Strichlisten und Diagramme (Seiten 8 10) 1 Strichlisten erstellen Nr.1, 2 Nr.

Mehr

Der mathematische Beweis

Der mathematische Beweis Der mathematische Beweis Im Studium wird man wesentlich häufiger als in der Schule Beweise führen müssen. Deshalb empfiehlt es sich, verschiedene Beweisverfahren intensiv zu trainieren. Beweisstruktur

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN

MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN Thema: Zahlenfolgen (Dreieckszahlen, Quadratzahlen,...) geometrisch darstellen und in Wertetabellen beschreiben. Klassen: 3. bis 5. Klasse (z.b. zu Zahlenbuch

Mehr